Abstract

This study evaluates the alkali activation of a binary system composed of sugar cane bagasse ash and carbide lime as a green stabilization technique for bauxite tailings (BTs). To analyze the feasibility of this alternative binder as a stabilizer, mechanical tests were performed to measure the strength, stiffness, and durability of BT binder mixtures. As a control group, tailings were stabilized with high-initial-strength portland cement (Type III). The results show that the alternative binder is a suitable option to improve the mechanical behavior of bauxite tailings. The porosity/binder index (η/Biv) was an appropriate parameter for evaluating BT stabilization. Reduced porosity and increased binder content (decreased η/Biv) led to an improvement in the mechanical behavior of the studied mixtures.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors wish to express their appreciation to FAPERGS/CNPq 12/2014—PRONEX (Project #16/2551-0000469-2), MCT-CNPq (Editais INCT-REAGEO, Universal & Produtividade em Pesquisa), and MEC-CAPES (PROEX) for their support of the research group.

References

Abdeldjouad, L., A. Asadi, R. J. Ball, H. Nahazanan, and B. B. K. Huat. 2019. “Application of alkali-activated palm oil fuel ash reinforced with glass fibers in soil stabilization.” Soils Found. 59 (5): 1552–1561. https://doi.org/10.1016/j.sandf.2019.07.008.
ABNT (Associação Brasileira de Normas Técnicas). 2012. Solo-cimento: Dosagem para emprego como camada de pavimento. [In Portuguese.]. Rio de Janeiro, Brazil: ABNT.
Alam, S., S. K. Das, and B. H. Rao. 2019. “Strength and durability characteristic of alkali activated GGBS stabilized red mud as geo-material.” Constr. Build. Mater. 211 (Jun): 932–942. https://doi.org/10.1016/j.conbuildmat.2019.03.261.
Andrew, R. M. 2018. “Global CO2 emissions from cement production.” Earth Syst. Sci. Data 10 (1): 195–217. https://doi.org/10.5194/essd-10-195-2018.
Armstrong, M., N. Langrené, R. Petter, W. Chen, and C. Petter. 2019. “Accounting for tailing dam failures in the valuation of mining projects.” Resour. Policy 63 (Oct): 101461. https://doi.org/10.1016/j.resourpol.2019.101461.
ASTM. 2012. Standard test methods for laboratory compaction characteristics of soil using modified effort (56,000  ft-lbf/ft3 (2,700  kN-m/m3)). ASTM D1557. West Conshohocken, PA: ASTM.
ASTM. 2014. Standard test methods for specific gravity of soil solids by water pycnometer. ASTM D854. West Conshohocken, PA: ASTM.
ASTM. 2015. Standard test methods for wetting and drying compacted soil-cement mixtures. ASTM D559/D559M. West Conshohocken, PA: ASTM.
ASTM. 2016. Standard test method for unconfined compressive strength of cohesive soil. ASTM D2166/D2166M. West Conshohocken, PA: ASTM.
ASTM. 2017a. Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM D2487. West Conshohocken, PA: ASTM.
ASTM. 2017b. Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM D4318. West Conshohocken, PA: ASTM.
ASTM. 2017c. Standard test method for particle-size distribution (gradation) of fine-grained soils using the sedimentation (hydrometer) analysis. ASTM D7928. West Conshohocken, PA: ASTM.
Bastos, L. A. D. C., G. C. Silva, J. C. Mendes, and R. A. F. Peixoto. 2016. “Using iron ore tailings from tailing dams as road material.” J. Mater. Civ. Eng. 28 (10): 04016102. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001613.
Consoli, N. C., M. S. Carretta, H. B. Leon, M. E. B. Schneider, N. C. Reginato, and J. A. H. Carraro. 2020a. “Behaviour of cement-stabilised silty sands subjected to harsh environmental conditions.” Proc. Inst. Civ. Eng. Geotech. Eng. 173 (1): 40–48. https://doi.org/10.1680/jgeen.18.00243.
Consoli, N. C., A. P. da Silva, H. P. Nierwinski, and J. Sosnoski. 2018. “Durability, strength, and stiffness of compacted gold tailings: Cement mixes.” Can. Geotech. J. 55 (4): 486–494. https://doi.org/10.1139/cgj-2016-0391.
Consoli, N. C., M. Da Silva Carretta, L. Festugato, H. B. Leon, L. F. Tomasi, and K. S. Heineck. 2020b. “Ground waste glass–carbide lime as a sustainable binder stabilising three different silica sands.” Géotechnique 71 (6): 1–14. https://doi.org/10.1680/jgeot.18.P.099.
Consoli, N. C., L. Festugato, H. C. S. Filho, G. D. Miguel, A. T. Neto, and D. Andreghetto. 2020c. “Durability assessment of soil-pozzolan-lime blends through ultrasonic-pulse velocity test.” J. Mater. Civ. Eng. 32 (8): 04020223. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003298.
Consoli, N. C., A. D. Rosa, and R. B. Saldanha. 2011. “Variables governing strength of compacted soil–fly ash–lime mixtures.” J. Mater. Civ. Eng. 23 (4): 432–440. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000186.
Consoli, N. C., and L. F. Tomasi. 2018. “The impact of dry unit weight and cement content on the durability of sand-cement blends.” Proc. Inst. Civ. Eng. Ground Improv. 171 (2): 96–102. https://doi.org/10.1680/jgrim.17.00034.
Corrêa-Silva, M., T. Miranda, M. Rouainia, N. Araújo, S. Glendinning, and N. Cristelo. 2020. “Geomechanical behaviour of a soft soil stabilised with alkali-activated blast-furnace slags.” J. Cleaner Prod. 267 (Sep): 122017. https://doi.org/10.1016/j.jclepro.2020.122017.
Coudert, E., M. Paris, D. Deneele, G. Russo, and A. Tarantino. 2019. “Use of alkali activated high-calcium fly ash binder for kaolin clay soil stabilisation: Physicochemical evolution.” Constr. Build. Mater. 201 (Mar): 539–552. https://doi.org/10.1016/j.conbuildmat.2018.12.188.
Da Rocha, C. G., A. Passuelo, N. C. Consoli, R. A. Q. Samaniego, and N. M. Kanazawa. 2016. “Life cycle assessment for soil stabilization dosages: A study for the Paraguayan Chaco.” J. Cleaner Prod. 139: 309–318. https://doi.org/10.1016/j.jclepro.2016.07.219.
Davidovits, J. 1991. “Geopolymers.” J. Therm. Anal. 37 (8): 1633–1656. https://doi.org/10.1007/BF01912193.
Desogus, P., P. P. Manca, G. Orrù, and A. Zucca. 2013. “Stabilization–solidification treatment of mine tailings using Portland cement, potassium dihydrogen phosphate and ferric chloride hexahydrate.” Miner. Eng. 45 (May): 47–54. https://doi.org/10.1016/j.mineng.2013.01.003.
Duxson, P., A. Fernández-Jiménez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S. J. van Deventer. 2007. “Geopolymer technology: The current state of the art.” J. Mater. Sci. 42 (9): 2917–2933. https://doi.org/10.1007/s10853-006-0637-z.
Duxson, P., J. L. Provis, G. C. Lukey, S. W. Mallicoat, W. M. Kriven, and J. S. J. van Deventer. 2005. “Understanding the relationship between geopolymer composition, microstructure and mechanical properties.” Colloids Surf., A 269 (1–3): 47–58. https://doi.org/10.1016/j.colsurfa.2005.06.060.
Elmannaey, A. S., H. E. E. Fouad, and Y. G. Youssef. 2021. “Improvement of swelling chlorite soil using sodium silicate alkali activator.” Ain Shams Eng. J. https://doi.org/10.1016/j.asej.2020.10.019.
Festugato, L., A. Peccin da Silva, A. Diambra, N. C. Consoli, and E. Ibraim. 2018. “Modelling tensile/compressive strength ratio of fibre reinforced cemented soils.” Geotext. Geomembr. 46 (2): 155–165. https://doi.org/10.1016/j.geotexmem.2017.11.003.
Fontes, W. C., G. G. Fontes, E. C. P. Costa, J. C. Mendes, G. J. B. Silva, and R. A. F. Peixoto. 2018. “Iron ore tailings in the production of cement tiles: A value analysis on building sustainability.” Ambiente Construído 18 (4): 395–412. https://doi.org/10.1590/s1678-86212018000400312.
Furlan, J. P. R., et al. 2020. “Occurrence and abundance of clinically relevant antimicrobial resistance genes in environmental samples after the Brumadinho Dam disaster in Brazil.” Sci. Total Environ. 726 (Jul): 138100. https://doi.org/10.1016/j.scitotenv.2020.138100.
Gama, F. F., W. R. Paradella, J. C. Mura, and C. G. de Oliveira. 2019. “Advanced DINSAR analysis on dam stability monitoring: A case study in the Germano Mining Complex (Mariana, Brazil) with SBAS and PSI techniques.” Remote Sens. Appl.: Soc. Environ. 16 (Nov): 100267. https://doi.org/10.1016/j.rsase.2019.100267.
Govindaraju, K. 1989. “Compilation of working values and sample description for 272 geostandards.” Geostand. Geoanal. Res. 13: 1–113. https://doi.org/10.1111/j.1751-908X.1989.tb00476.x.
Kim, S. Y., Y. Jun, D. Jeon, and J. E. Oh. 2017. “Synthesis of structural binder for red brick production based on red mud and fly ash activated using Ca(OH)2 and Na2CO3.” Constr. Build. Mater. 147 (Aug): 101–116. https://doi.org/10.1016/j.conbuildmat.2017.04.171.
Kiventerä, J., K. Piekkari, V. Isteri, K. Ohenoja, P. Tanskanen, and M. Illikainen. 2019. “Solidification/stabilization of gold mine tailings using calcium sulfoaluminate-belite cement.” J. Cleaner Prod. 239 (Dec): 118008. https://doi.org/10.1016/j.jclepro.2019.118008.
Kushwaha, S. S., and D. Kishan. 2016. “Stabilization of red mud by lime and gypsum and investigating its possible use in geoenvironmental engineering.” In Proc., Geo-Chicago, 978–988. Reston, VA: ASCE.
Ladd, R. S. 1978. “Preparing test specimens using undercompaction.” Geotech. Test. J. 1 (1): 16–23. https://doi.org/10.1520/GTJ10364J.
Lemos, S. G. F. P., M. D. S. S. Almeida, N. C. Consoli, T. Z. Nascimento, and U. F. Polido. 2020. “Field and laboratory investigation of highly organic clay stabilized with Portland Cement.” J. Mater. Civ. Eng. 32 (4): 04020063. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003111.
Li, L. Y. 1998. “Properties of red mud tailings produced under varying process conditions.” J. Environ. Eng. 124 (3): 254–264. https://doi.org/10.1061/(ASCE)0733-9372(1998)124:3(254).
Liu, R., J. Liu, Z. Zhang, A. Borthwick, and K. Zhang. 2015. “Accidental water pollution risk analysis of mine tailings ponds in Guanting Reservoir watershed, Zhangjiakou City, China.” Int. J. Environ. Res. Public Health 12 (12): 15269–15284. https://doi.org/10.3390/ijerph121214983.
Liu, S., Z. Li, Y. Li, and W. Cao. 2018. “Strength properties of Bayer red mud stabilized by lime-fly ash using orthogonal experiments.” Constr. Build. Mater. 166 (Mar): 554–563. https://doi.org/10.1016/j.conbuildmat.2018.01.186.
Nath, H., P. Sahoo, and A. Sahoo. 2015. “Characterization of red mud treated under high temperature fluidization.” Powder Technol. 269 (Jan): 233–239. https://doi.org/10.1016/j.powtec.2014.09.011.
Nishijima, M., and F. F. Rocha. 2020. “An economic investigation of the Dengue incidence as a result of a tailings dam accident in Brazil.” J. Environ. Manage. 253 (Jan): 109748. https://doi.org/10.1016/j.jenvman.2019.109748.
Pacheco-Torgal, F., J. Castro-Gomes, and S. Jalali. 2008. “Properties of tungsten mine waste geopolymeric binder.” Constr. Build. Mater. 22 (6): 1201–1211. https://doi.org/10.1016/j.conbuildmat.2007.01.022.
PCA (Portland Cement Association). 1992. Soil-cement laboratory handbook. Chicago: PCA.
Rivera, J. F., R. Mejía de Gutiérrez, S. Ramirez-Benavides, and A. Orobio. 2020. “Compressed and stabilized soil blocks with fly ash-based alkali-activated cements.” Constr. Build. Mater. 264 (Dec): 120285. https://doi.org/10.1016/j.conbuildmat.2020.120285.
Saldanha, R. B., H. C. Scheuermann Filho, J. E. C. Mallmann, and N. C. Consoli. 2016. “Physical-mineralogical-chemical characterization of carbide lime: An environment-friendly chemical additive for soil stabilization.” J. Mater. Civ. Eng. 30 (6): 06018004. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002283.
Sargent, P., P. N. Hughes, M. Rouainia, and M. L. White. 2013. “The use of alkali activated waste binders in enhancing the mechanical properties and durability of soft alluvial soils.” Eng. Geol. 152 (1): 96–108. https://doi.org/10.1016/j.enggeo.2012.10.013.
Schnaid, F., H. P. Nierwinski, J. Bedin, and E. Odebrecht. 2014. “On the characterization and classification of bauxite tailings.” Soil Rocks 37 (2): 277–284.
Sutherland, K. 2014. “Mining: Filtration prospects for the iron ore mining industry.” Filtr. Sep. 51 (6): 29–32. https://doi.org/10.1016/S0015-1882(14)70225-3.
van Jaarsveld, J. G. S., G. C. Lukey, J. S. J. Van Deventer, and A. Graham. 2000. “The stabilisation of mine tailings by reactive geopolymerisation.” In Proc., Int. Congress on Mineral Processing and Extractive Metallurgy, MINPREX 2000, 363–372. Carlton, Australia: Australasian Institute of Mining and Metallurgy.
Wattez, T., C. Patapy, L. Frouin, J. Waligora, and M. Cyr. 2021. “Interactions between alkali-activated ground granulated blast furnace slag and organic matter in soil stabilization/solidification.” Transp. Geotech. 26 (Jan): 100412. https://doi.org/10.1016/j.trgeo.2020.100412.
Zhang, L., S. Ahmari, and J. Zhang. 2011. “Synthesis and characterization of fly ash modified mine tailings-based geopolymers.” Constr. Build. Mater. 25 (9): 3773–3781. https://doi.org/10.1016/j.conbuildmat.2011.04.005.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 33Issue 11November 2021

History

Received: Nov 18, 2020
Accepted: Mar 22, 2021
Published online: Sep 2, 2021
Published in print: Nov 1, 2021
Discussion open until: Feb 2, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Student, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-190, Brazil (corresponding author). ORCID: https://orcid.org/0000-0002-0133-8308. Email: [email protected]
Ph.D. Student, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-190, Brazil. ORCID: https://orcid.org/0000-0002-3521-0951. Email: [email protected]
Ph.D. Student, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-190, Brazil. ORCID: https://orcid.org/0000-0002-3804-1743. Email: [email protected]
Ph.D. Student, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-190, Brazil. ORCID: https://orcid.org/0000-0003-3413-4747. Email: [email protected]
Sérgio Filipe Veloso Marques [email protected]
Postdoctoral Fellow, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-190, Brazil. Email: [email protected]
Professor of Civil Engineering, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-190, Brazil. ORCID: https://orcid.org/0000-0002-6408-451X. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Effect of Cement Type on Compacted Iron Ore Tailings-Binder Response Blends: Comparative Study, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-17486, 36, 8, (2024).
  • Mechanical, Rheological, and Microstructural Study of Ternary Alkali-Activated Pastes Using BOF Slag, Metakaolin, and Glass Powder as Precursors, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-17132, 36, 6, (2024).
  • Novel Porosity-Water/Binder Index for Strength Prediction of Artificially Cemented Soils, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-16432, 36, 2, (2024).
  • Durability, Long-Term, and Environmental Evaluation of Alkali-Activated Alternative Soluble Silica Source for Recycled Asphalt Pavement Stabilization, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-16168, 36, 2, (2024).
  • Mechanical Behavior of a Granular Soil Stabilized with Alkali-Activated Waste, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-15641, 36, 1, (2024).
  • Strength, Mineralogy, Microstructure, and Statistical Analysis of Alkali-Activated Sugarcane Bagasse Ash–Eggshell Lime Pastes, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-14539, 35, 6, (2023).
  • Mechanical, Microstructural, and Durability Properties of Soil Stabilized with Alkali-Activated Jarofix for Road Applications, Journal of Hazardous, Toxic, and Radioactive Waste, 10.1061/JHTRBP.HZENG-1236, 27, 4, (2023).
  • Use of Saline Water in Cemented Fine Tailings Backfill with One-Part Alkali-Activated Slag, Journal of Materials in Civil Engineering, 10.1061/(ASCE)MT.1943-5533.0004612, 35, 3, (2023).
  • Rice husk ash as an alternative soluble silica source for alkali-activated metakaolin systems applied to recycled asphalt pavement stabilization, Transportation Geotechnics, 10.1016/j.trgeo.2023.100940, 39, (100940), (2023).
  • Evaluation of mechanical and microstructural properties of eggshell lime/rice husk ash alkali-activated cement, Construction and Building Materials, 10.1016/j.conbuildmat.2022.129931, 364, (129931), (2023).
  • See more

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share