Abstract

Portland cement production is an energy-intensive process, and more sustainable substitutes are needed, e.g., alkali-activated binders originated from industrial wastes. Thus, this paper analyzes the combination of sugarcane bagasse ash (SCBA) and hydrated eggshell lime (HEL) as precursors for an alkali-activated binary system, a combination, to our best knowledge, not studied in past research. The mechanical and microstructural behavior of the SCBA-HEL alkali-activated pastes has been discussed through unconfined strength tests, and x-ray fluorescence, x-ray diffraction (XRD), Fourier transform infrared spectroscopy, and scanning electron microscopy (SEM) and energy-dispersive detector (EDS) microstructural analysis. In addition, an analysis of variance was applied to investigate the impact of a three-factor combination, i.e., SCBA/HEL ratio, NaOH concentration, and water/binder ratio (W/B), on the paste’s compressive strength. The highest compressive strength is associated with 80% of SCBA and 20% of HEL (ratio equals 4), 1 M molarity, and W/B relation of 0.8 (2.61% of Na2O). A C─ (N)─ A─ S─ H gel is observed in the form of an amorphous hump through the XRD pattern. SEM images show that the material synthesized from alkali-activation has a cementing effect, with a structure less dense and more porous than that of conventional cementing materials. The EDS display areas are rich in Ca, Si, Na, and Al. The bands found for the alkali-activated paste are consistent with vibrations characteristic of C─ A─ S─ H and N─ A─ S─ H gels.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The present work was supported by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) Brazil. The authors also wish to express their gratitude to MEC-CAPES, FAPERGS/CNPq 12/2014–PRONEX (Project #16/2551-0000469-2), and MCT-CNPq (Editais INCT-REAGEO, Universal & Produtividade em Pesquisa) for supporting the research group.

References

Abdollahnejad, Z., M. Mastali, T. Luukkonen, P. Kinnunen, and M. Illikainen. 2018. “Fiber-reinforced one-part alkali-activated slag/ceramic binders.” Ceram. Int. 44 (8): 8963–8976. https://doi.org/10.1016/j.ceramint.2018.02.097.
ABNT (Associação Brasileira de Normas Técnicas). 2004. Resíduos sólidos—Classificação. NBR 10004. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2010. Materiais pozolânicos—Determinação do teor de hidróxido de cálcio fixado—Método Chapelle modificado. NBR 15895. Rio de Janeiro, Brazil: ABNT.
ABNT(Associação Brasileira de Normas Técnicas). 2017. Cimento Portland e outros materiais em pó—Determinação da massa específica. NBR16605. São Paulo, Brazil: Associação Brasileira de Normas Técnicas.
Adesanya, E., P. Perumal, T. Luukkonen, J. Yliniemi, K. Ohenoja, P. Kinnunen, and M. Illikainen. 2021. “Opportunities to improve sustainability of alkali-activated materials: A review of side-stream based activators.” J. Cleaner Prod. 286 (Mar): 125558. https://doi.org/10.1016/j.jclepro.2020.125558.
AFNOR (Association Française de Normalization). 2012. Métakaolin, addition pouzzolanique pour bétons—Addition pour béton hydraulique—Métakaolin—Spécifications et critères de conformité. NFP 18-513. Paris: AFNOR.
Akram, T., S. A. Memon, and H. Obaid. 2009. “Production of low cost self compacting concrete using bagasse ash.” Constr. Build. Mater. 23 (2): 703–712. https://doi.org/10.1016/j.conbuildmat.2008.02.012.
Alehyen, S., M. Zerzouri, M. El Alouani, M. El Achouri, and M. Taibi. 2017. “Porosity and fire resistance of fly ash based geopolymer.” J. Mater. Environ. Sci. 8 (10): 3676–3689.
Anoop, S. P., H. Beegom, J. P. Johnson, J. Midhula, T. M. TN, and S. Prasanth. 2017. “Potential of Egg shell powder as replacement of Lime in soil stabilization.” Int. J. Adv. Eng. Res. Sci. 4 (8): 86–88. https://doi.org/10.22161/ijaers.4.8.15.
ASTM. 2020a. Standard test method for compressive strength of cylindrical concrete specimens. C39/C39M. West Conshohocken, PA: ASTM.
ASTM. 2020b. Standard test method for silica—pH value. West Conshohocken, PA: ASTM.
Beck, K., X. Brunetaud, J. Mertz, and M. Al-mukhtar. 2010. “On the use of eggshell lime and tuffeau powder to formulate an appropriate mortar for restoration purposes.” Geol. Soc. 331 (1): 137–145. https://doi.org/10.1144/SP331.12.
Bensaifi, E., F. Bouteldja, M. S. Nouaouria, and P. Breul. 2019. “Influence of crushed granulated blast furnace slag and calcined eggshell waste on mechanical properties of a compacted marl.” Transp. Geotech. 20 (Sep): 100244. https://doi.org/10.1016/j.trgeo.2019.100244.
Berenguer, R. A., A. P. B. Capraro, M. H. F. Medeiros, A. M. P. Carneiro, and R. A. D. Oliveira. 2020. “Sugar cane bagasse ash as a partial substitute of Portland cement: Effect on mechanical properties and emission of carbon dioxide.” J. Environ. Chem. Eng. 8 (2): 103655. https://doi.org/10.1016/j.jece.2020.103655.
Bilondi, M. P., M. Mohsen, and V. Toufigh. 2018. “Using calcium carbide residue as an alkaline activator for glass powder–Clay geopolymer.” Constr. Build. Mater. 183 (Sep): 417–428. https://doi.org/10.1016/j.conbuildmat.2018.06.190.
Bruschi, G. J., C. P. dos Santos, W. M. K. Levandoski, S. T. Ferrazzo, E. P. Korf, R. B. Saldanha, and N. C. Consoli. 2022. “Leaching assessment of cemented bauxite tailings through wetting and drying cycles of durability test.” In Environmental science and pollution research. Berlin: Springer.
Bruschi, G. J., C. P. Santos, M. T. Araújo, S. T. Ferrazzo, S. Marques, and N. C. Consoli. 2021a. “Green stabilization of bauxite tailings: A mechanical study on alkali-activated materials.” J. Mater. Civ. Eng. 33 (11): 06021007. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003949.
Bruschi, G. J., C. P. Santos, S. T. Ferrazzo, M. T. de Araújo, and N. C. Consoli. 2021b. “Parameters controlling loss of mass and stiffness degradation of green stabilized bauxite tailings.” Proc. Inst. Civ. Eng.: Geotech. Eng. 1–9. https://doi.org/10.1680/jgeen.21.00119.
Buchwald, A., K. Dombrowski, and M. Weil. 2005. “The influence of calcium content on the performance of geopolymeric binder especially the resistance against acids.” In Proc., World Congress Geopolymer, edited by J. Davidovits, 35–39. Saint Quentin, France: Geopolymer Institute.
Castaldelli, V. N., J. L. Akasaki, J. L. P. Melges, M. M. Tashima, L. Soriano, M. V. Barrachero, and J. Payá. 2013. “Use of slag/sugar cane bagasse ash (SCBA) blends in the production of alkali-activated materials.” Materials 6 (8): 3108–3127. https://doi.org/10.3390/ma6083108.
Castaldelli, V. N., J. C. B. Moraes, J. L. Akasaki, J. L. P. Melges, J. Monzó, M. V. Borrachero, L. Soriano, J. Payá, and M. M. Tashima. 2016. “Study of the binary system fly ash/sugarcane bagasse ash (FA/SCBA) in SiO2/K2O alkali-activated binders.” Fuel 174 (Jun): 307–316. https://doi.org/10.1016/j.fuel.2016.02.020.
CONAB (Companhia Nacional de Abastecimento). 2019. Acompanhamento da safra brasileira: Cana-de-açúcar. Brasília, Brazil: CONAB.
Consoli, N. C., A. M. L. Caicedo, R. B. Saldanha, C. H. Ilho Scheuermann, and C. J. M. Acosta. 2020. “Eggshell produced limes: Innovative materials for soil stabilization.” J. Mater. Civ. Eng. 32 (11): 06020018. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003418.
Consoli, N. C., C. A. P. Daassi-Gli, C. A. Ruver, A. Lotero, H. C. Scheuermann Filho, C. J. Moncaleano, and D. E. Lourenço. 2021. “Lime–ground glass–sodium hydroxide as an enhanced sustainable binder stabilizing silica sand.” J. Geotech. Geoenviron. Eng. 147 (10): 06021011. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002624.
Costa, L. M., N. G. S. Almeida, M. Houmard, P. R. Cetlin, G. J. B. Silva, and M. T. P. Aguilar. 2021. “Influence of the addition of amorphous and crystalline silica on the structural properties of metakaolin-based geopolymers.” Appl. Clay Sci. 215 (Dec): 106312. https://doi.org/10.1016/j.clay.2021.106312.
Davidovits, J. 1991. “Geopolymers—Inorganic polymeric new materials.” J. Therm. Anal. 37 (8): 1633–1656. https://doi.org/10.1007/BF01912193.
De Vargas, A. S., D. C. C. Dal Molin, Â. B. Masuero, A. C. F. Vilela, J. Castro-Gomes, and R. M. Gutierrez. 2014. “Strength development of alkali-activated fly ash produced with combined NaOH and Ca(OH)2 activators.” Cem. Concr. Compos. 53 (Oct): 341–349. https://doi.org/10.1016/j.cemconcomp.2014.06.012.
DNIT (Departamento Nacional de Infraestrutura de Transportes). 2010. Pavimentação—Base de solo—cimento—Especificação de serviço. DNIT 143. Rio de Janeiro, Brazil: DNIT.
Dombrowski, K., A. Buchwald, and M. Weil. 2007. “The influence of calcium content on the structure and thermal performance of fly ash based geopolymers.” J. Mater. Sci. 42 (9): 3033–3043. https://doi.org/10.1007/s10853-006-0532-7.
Duxson, P., A. Fernández-Jiménez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S. J. Van Deventer. 2007. “Geopolymer technology: The current state of the art.” J. Mater. Sci. 42 (9): 2917–2933. https://doi.org/10.1007/s10853-006-0637-z.
Ferraz, E., J. A. F. Gamelas, J. Coroado, C. Monteiro, and F. Rocha. 2018. “Eggshell waste to produce building lime: Calcium oxide reactivity, industrial, environmental and economic implications.” Mater. Struct. 51 (115): 1–14. https://doi.org/10.1617/s11527-018-1243-7.
Figueiredo, R. L., and S. Pavía. 2020. “A study of the parameters that determine the reactivity of sugarcane bagasse ashes (SCBA) for use as a binder in construction.” SN Appl. Sci. 2 (9): 1–15. https://doi.org/10.1007/s42452-020-03224-w.
Garcia, J. C. C., and E. Sperling. 2017. “Greenhouse gas emissions from sugar cane ethanol: Estimate considering current different production scenarios in Minas Gerais, Brazil.” Renewable Sustainable Energy Rev. 72 (May): 1033–1049. https://doi.org/10.1016/j.rser.2017.01.046.
Garcia-Lodeiro, I., A. Palomo, and A. Fernández-Jiménez. 2015. “An overview of the chemistry of alkali-activated cement-based binders.” In Handbook of alkali-activated cements, mortars and concretes, 19–47. Cambridge, UK: Woodhead Publishing.
Garcia-Lodeiro, I., A. Palomo, A. Fernández-Jiménez, and D. E. MacPhee. 2011. “Compatibility studies between N─ A─ S─ H and C─ A─ S─ H gels. Study in the ternary diagram Na2O-CaO-Al2O3-SiO2-H2O.” Cem. Concr. Res. 41 (9): 923–931. https://doi.org/10.1016/j.cemconres.2011.05.006.
Hossain, M. M., M. R. Karim, M. M. A. Elahi, M. N. Islam, and M. F. M. Zain. 2020. “Long-term durability properties of alkali-activated binders containing slag, fly ash, palm oil fuel ash and rice husk ash.” Constr. Build. Mater. 251 (Aug): 119094. https://doi.org/10.1016/j.conbuildmat.2020.119094.
Hwang, C. L., M. Damtie Yehualaw, D. H. Vo, and T. P. Huynh. 2019. “Development of high-strength alkali-activated pastes containing high volumes of waste brick and ceramic powders.” Constr. Build. Mater. 218 (Sep): 519–529. https://doi.org/10.1016/j.conbuildmat.2019.05.143.
Jaber, H. A., R. S. Mahdi, and A. K. Hassan. 2020. “Influence of eggshell powder on the Portland cement mortar properties.” Mater. Today: Proc. 20 (Jan): 391–396. https://doi.org/10.1016/j.matpr.2019.09.153.
Lei, J., W. W. Law, and E. H. Yang. 2021. “Effect of calcium hydroxide on the alkali-silica reaction of alkali-activated slag mortars activated by sodium hydroxide.” Constr. Build. Mater. 272 (Feb): 121868. https://doi.org/10.1016/j.conbuildmat.2020.121868.
Martinez-Lopez, R., and J. I. Escalante-Garcia. 2016. “Alkali activated composite binders of waste silica soda lime glass and blast furnace slag: Strength as a function of the composition.” Constr. Build. Mater. 119 (Aug): 119–129. https://doi.org/10.1016/j.conbuildmat.2016.05.064.
Maza-Ignacio, O. T., V. G. Jiménez-Quero, J. Guerrero-Paz, and P. Montes-García. 2020. “Recycling untreated sugarcane bagasse ash and industrial wastes for the preparation of resistant, lightweight and ecological fired bricks.” Constr. Build. Mater. 234 (Feb): 117314. https://doi.org/10.1016/j.conbuildmat.2019.117314.
Miller, S. A., and R. J. Myers. 2020. “Environmental impacts of alternative cement binders.” Environ. Sci. Technol. 54 (2): 677–686. https://doi.org/10.1021/acs.est.9b05550.
Nedeljković, M., Z. Li, and G. Ye. 2018. “Setting, strength, and autogenous shrinkage of alkali-activated fly ash and slag pastes: Effect of slag content.” Materials 11 (11): 2121. https://doi.org/10.3390/ma11112121.
Obenaus-Emler, R., M. Falah, and M. Illikainen. 2020. “Assessment of mine tailings as precursors for alkali-activated materials for on-site applications.” Constr. Build. Mater. 246 (Jun): 118470. https://doi.org/10.1016/j.conbuildmat.2020.118470.
Pereira, A., J. L. Akasaki, J. L. P. Melges, M. M. Tashima, L. Soriano, M. V. Borrachero, J. Monzó, and J. Payá. 2015. “Mechanical and durability properties of alkali-activated mortar based on sugarcane bagasse ash and blast furnace slag.” Ceram. Int. 41 (10): 13012–13024. https://doi.org/10.1016/j.ceramint.2015.07.001.
Pereira dos Santos, C., G. J. Bruschi, J. R. G. Mattos, and N. C. Consoli. 2022. “Stabilization of gold mining tailings with alkali-activated carbide lime and sugarcane bagasse ash.” Transp. Geotech. 32 (Nov): 100704. https://doi.org/10.1016/j.trgeo.2021.100704.
Perumal, P., H. Niu, J. Kiventerä, P. Kinnunen, and M. Illikainen. 2020. “Upcycling of mechanically treated silicate mine tailings as alkali activated binders.” Miner. Eng. 158 (Nov): 106587. https://doi.org/10.1016/j.mineng.2020.106587.
Pliya, P., and D. Cree. 2015. “Limestone derived eggshell powder as a replacement in Portland cement mortar.” Constr. Build. Mater. 95 (Oct): 1–9. https://doi.org/10.1016/j.conbuildmat.2015.07.103.
Provis, J. L. 2018. “Alkali-activated materials.” Cem. Concr. Res. 114 (Dec): 40–48. https://doi.org/10.1016/j.cemconres.2017.02.009.
Puertas, F., A. Fernández-Jiménez, and M. T. Blanco-Varela. 2004. “Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate.” Cem. Concr. Res. 34 (1): 139–148. https://doi.org/10.1016/S0008-8846(03)00254-0.
Puertas, F., M. Palacios, H. Manzano, J. S. Dolado, A. Rico, and J. Rodríguez. 2011. “A model for the C─ A─ S─ H gel formed in alkali-activated slag cements.” J. Eur. Ceram. Soc. 31 (12): 2043–2056. https://doi.org/10.1016/j.jeurceramsoc.2011.04.036.
Sales, A., and S. A. Lima. 2010. “Use of Brazilian sugarcane bagasse ash in concrete as sand replacement.” Waste Manage. (Oxford) 30 (6): 1114–1122. https://doi.org/10.1016/j.wasman.2010.01.026.
Samarakoon, M. H., P. G. Ranjith, and V. R. S. Silva. 2020. “Effect of soda-lime glass powder on alkali-activated binders: Rheology, strength and microstructure characterization.” Constr. Build. Mater. 241 (Apr): 118013. https://doi.org/10.1016/j.conbuildmat.2020.118013.
Shekhawat, P., G. Sharma, and R. Martand. 2019. “Strength behavior of alkaline activated eggshell powder and flyash geopolymer cured at ambient temperature.” Constr. Build. Mater. 223 (Oct): 1112–1122. https://doi.org/10.1016/j.conbuildmat.2019.07.325.
Shekhawat, P., G. Sharma, and R. Martand. 2020. “Potential application of heat cured eggshell powder and flyash—Based geopolymer in pavement construction.” Int. J. Geosynth. Ground Eng. 6 (28): 1–17. https://doi.org/10.1007/s40891-020-00213-2.
Shi, C., and J. A. Stegemann. 2000. “Acid corrosion resistance of different cementing materials.” Cem. Concr. Res. 30 (5): 803–808. https://doi.org/10.1016/S0008-8846(00)00234-9.
Somna, K., C. Jaturapitakkul, and P. Kajitvichyanukul. 2011a. “Microstructure of calcium carbide residue—Ground fly ash paste.” J. Mater. Civ. Eng. 23 (3): 298–304. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000167.
Somna, K., C. Jaturapitakkul, P. Kajitvichyanukul, and P. Chindaprasirt. 2011b. “NaOH-activated ground fly ash geopolymer cured at ambient temperature.” Fuel 90 (6): 2118–2124. https://doi.org/10.1016/j.fuel.2011.01.018.
Suhendro, B. 2014. “Toward green concrete for better sustainable environment.” Procedia Eng. 95 (Jan): 305–320. https://doi.org/10.1016/j.proeng.2014.12.190.
Sultana, M. S., and A. Rahman. 2013. “Characterization of calcined sugarcane bagasse ash and sugarcane waste ash for industrial use.” In Proc., Int. Conf. on Mechanical, Industrial and Materials Engineering, 508–513. Rajshahi, Bangladesh: Rajshahi Univ. of Engineering and Technology.
Sun, H., K. Nguyen, and J. Zuckerman. 2010. “Sialite technology—Sustainable alternative to portland cement.” Clean Technol. Environ. Policy 12 (5): 503–516. https://doi.org/10.1007/s10098-009-0258-8.
Temuujin, J., A. van Riessen, and R. Williams. 2009a. “Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes.” J. Hazard. Mater. 167 (1–3): 82–88. https://doi.org/10.1016/j.jhazmat.2008.12.121.
Temuujin, J., R. P. Williams, and A. van Riessen. 2009b. “Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature.” J. Mater. Process. Technol. 209 (12–13): 5276–5280. https://doi.org/10.1016/j.jmatprotec.2009.03.016.
Tonini de Araújo, M., S. Tonatto Ferrazzo, G. Jordi Bruschi, and N. Cesar Consoli. 2021. “Mechanical and environmental performance of eggshell lime for expansive soils improvement.” Transp. Geotech. 31 (2): 100681. https://doi.org/10.1016/j.trgeo.2021.100681.
Wong, Y. C., and R. X. Ang. 2018. “Study of calcined eggshell as potential catalyst for biodiesel formation using used cooking oil.” Open Chem. 16 (1): 1166–1175. https://doi.org/10.1515/chem-2018-0127.
Xu, Q., T. Ji, S. Gao, Z. Yang, and N. Wu. 2019. “Characteristics and applications of sugar cane.” Materials 12 (39): 1–19. https://doi.org/10.3390/ma12010039.
Yadav, V. K., K. K. Yadav, V. Tirth, G. Gnanamoorthy, N. Gupta, A. Algahtani, S. Islam, N. Choudhary, S. Modi, and B. Jeon. 2021. “Extraction of value-added minerals from various agricultural, industrial and domestic wastes.” Materials 14 (21): 6333. https://doi.org/10.3390/ma14216333.
Yip, C. K., G. C. Lukey, and J. S. J. Van Deventer. 2005. “The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation.” Cem. Concr. Res. 35 (9): 1688–1697. https://doi.org/10.1016/j.cemconres.2004.10.042.
Zaman, T., M. S. Mostari, M. A. Mahmood, and M. S. Rahman. 2018. “Evolution and characterization of eggshell as a potential candidate of raw material.” Cerâmica 64 (370): 236–241. https://doi.org/10.1590/0366-69132018643702349.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 6June 2023

History

Received: Mar 17, 2022
Accepted: Sep 19, 2022
Published online: Mar 20, 2023
Published in print: Jun 1, 2023
Discussion open until: Aug 20, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Mariana Tonini de Araújo, S.M.ASCE https://orcid.org/0000-0002-3804-1743 [email protected]
Ph.D. Student, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-190, Brazil (corresponding author). ORCID: https://orcid.org/0000-0002-3804-1743. Email: [email protected]
Ph.D. Student, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-190, Brazil. ORCID: https://orcid.org/0000-0003-3413-4747. Email: [email protected]
Ph.D. Student, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-190, Brazil. ORCID: https://orcid.org/0000-0002-0133-8308. Email: [email protected]
Professor of Civil Engineering, Graduate Program in Civil Engineering, Universidade Federal de Ouro Preto, Ouro Preto, MG 35400-000, Brazil. ORCID: https://orcid.org/0000-0001-8444-9451. Email: [email protected]
Professor of Civil Engineering, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-190, Brazil. ORCID: https://orcid.org/0000-0002-6408-451X. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share