Abstract

Lately, dry stacking of filtered tailings has emerged as a safer alternative to traditional slurry disposal in ponds as it comprehends the compaction of the unsaturated cake to form piles. A cementing agent can be added to the mixture to improve the mechanical properties of the compacted tailings; however, it is essential to understand its response under different conditions. The present study examines the mechanical behavior of compacted iron ore tailings (IOT)-binder blends for dry stacking purposes, highlighting the effect of the cement type on the behavior of the tailings: two commercially available types of binders, portland pozzolan cement (PPC) and high early-strength portland cement type III (PC III); and one green alkali-activated cement (AAC). A full factorial design approach was used to study the influence of the following parameters on the strength and stiffness of the studied mixtures: dry unit weight (γd), cement content (C), type of cement (TC), and curing period (CP). To do so, a set of unconfined compression, ultrasonic pulse velocity, and consolidated drained triaxial tests were carried out. To compare the microstructural and compositional characteristics of the three different cement types, secondary scanning electron microscopy (SSEM) and backscattered scanning electron microscopy (BSEM)/energy dispersive spectrometry (EDS) analyses were performed. The stiffness and strength results have been successfully correlated to the porosity/cement index (η/Civ) and the statistical analysis has unveiled the great effects attributed to the cement content, type, and CP. Additionally, microstructural and macrostructural observations revealed that after seven days of curing, the IOT mixtures stabilized with PC III exhibited more robust microstructures and superior mechanical performance: around five times greater strength and stiffness than AAC-containing samples and two times higher considering the PPC-containing specimens. With extended CPs (90 days), the performances of PC III and PPC samples are equivalent, whereas the strength is around three times greater than that of the AAC samples. That is, there was a notable enhancement in the cementitious matrix for IOTs stabilized with PPC and AAC for a more extended CP.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors wish to express their appreciation to VALE S.A., the Brazilian Research Council (CNPq), and CAPES-PROEX for their support of the research group.

References

Ali, A., D. D. Cortes, B. Weldon, P. Bandini, and J. C. Lommler. 2021. “Effect of compactive effort on the performance of fine-grained soil–cement mixtures.” Proc. Inst. Civ. Eng. Ground Improv. 174 (3): 167–172. https://doi.org/10.1680/jgrim.18.00126.
Amini, Y., A. Hamidi, and E. Asghari. 2014. “Shear strength–dilation characteristics of cemented sand–gravel mixtures.” Int. J. Geotech. Eng. 8 (4): 406–413. https://doi.org/10.1179/1939787913Y.0000000026.
ASTM. 2014. Test methods for specific gravity of soil solids by water pycnometer. ASTM D854. West Conshohocken, PA: ASTM.
ASTM. 2016. Test method for unconfined compressive strength of cohesive soil. ASTM D2166. West Conshohocken, PA: ASTM.
ASTM. 2017a. Practice for classification of soils for engineering purposes (unified soil classification system). ASTM D2487. West Conshohocken, PA: ASTM.
ASTM. 2017b. Test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM D4318. West Conshohocken, PA: ASTM.
ASTM. 2019. Standard test method for determination of shear wave velocity and initial shear modulus in soil specimens using bender elements. ASTM D8295. West Conshohocken, PA: ASTM.
ASTM. 2020. Test method for consolidated drained triaxial compression test for soils. ASTM D7181. West Conshohocken, PA: ASTM.
ASTM. 2021a. Test methods for laboratory compaction characteristics of soil using standard effort (12,400  ft-lbf/ft3 (600  kN-m/m3)). ASTM D698. West Conshohocken, PA: ASTM.
ASTM. 2021b. Test method for particle-size distribution (gradation) of fine-grained soils using the sedimentation (hydrometer) analysis. ASTM D7928. West Conshohocken, PA: ASTM.
ASTM. 2022. Specification for Portland cement. ASTM C150. West Conshohocken, PA: ASTM.
Bedin, J., F. Schnaid, A. Viana da Fonseca, and L. M. Costa Filho. 2012. “Gold tailings liquefaction under critical state soil mechanics.” Géotechnique 62 (3): 263–267. https://doi.org/10.1680/geot.10.P.037.
Been, K., M. G. Jefferies, and J. Hachey. 1991. “The critical state of sands.” Géotechnique 41 (3): 365–381. https://doi.org/10.1680/geot.1991.41.3.365.
Bruschi, G. J., C. P. dos Santos, M. Tonini de Araújo, S. T. Ferrazzo, S. F. V. Marques, and N. C. Consoli. 2021. “Green stabilization of bauxite tailings: Mechanical study on alkali-activated materials.” J. Mater. Civ. Eng. 33 (11): 06021007. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003949.
Cacciuttolo Vargas, C., and G. Pérez Campomanes. 2022. “Practical experience of filtered tailings technology in Chile and Peru: An environmentally friendly solution.” Minerals 12 (7): 889. https://doi.org/10.3390/min12070889.
Carrera, A., M. Coop, and R. Lancellotta. 2011. “Influence of grading on the mechanical behaviour of Stava tailings.” Géotechnique 61 (11): 935–946. https://doi.org/10.1680/geot.9.P.009.
Carvalho, J. V. A., A. C. Wagner, H. C. Scheuermann Filho, H. M. Chaves, J. P. S. Silva, B. G. Delgado, and N. C. Consoli. 2023. “Evaluation of strength parameters for application in cemented iron ore tailings stacks.” Indian Geotech. J. 53 (4): 775–788. https://doi.org/10.1007/s40098-023-00712-9.
Cha, M., J. C. Santamarina, H.-S. Kim, and G.-C. Cho. 2014. “Small-strain stiffness, shear-wave velocity, and soil compressibility.” J. Geotech. Geoenviron. Eng. 140 (10): 06014011. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001157.
Clayton, C. R. I., and S. A. Khatrush. 1986. “A new device for measuring local axial strains on triaxial specimens.” Géotechnique 36 (4): 593–597. https://doi.org/10.1680/geot.1986.36.4.593.
Clough, G. W., N. Sitar, R. C. Bachus, and N. S. Rad. 1981. “Cemented sands under static loading.” J. Geotech. Eng. Div. 107 (6): 799–817. https://doi.org/10.1061/AJGEB6.0001152.
Consoli, N. C. 2014. “A method proposed for the assessment of failure envelopes of cemented sandy soils.” Eng. Geol. 169 (Sep): 61–68. https://doi.org/10.1016/j.enggeo.2013.11.016.
Consoli, N. C., E. J. Bittar Marin, R. A. Quiñónez Samaniego, K. S. Heineck, and A. D. R. Johann. 2019. “Use of sustainable binders in soil stabilization.” J. Mater. Civ. Eng. 31 (2): 06018023. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002571.
Consoli, N. C., L. Festugato, C. G. da Rocha, and R. C. Cruz. 2013. “Key parameters for strength control of rammed sand–cement mixtures: Influence of types of Portland cement.” Constr. Build. Mater. 49 (Sep): 591–597. https://doi.org/10.1016/j.conbuildmat.2013.08.062.
Consoli, N. C., D. Foppa, L. Festugato, and K. S. Heineck. 2007. “Key parameters for strength control of artificially cemented soils.” J. Geotech. Geoenviron. Eng. 133 (2): 197–205. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(197).
Consoli, N. C., S. F. V. Marques, M. F. Floss, and L. Festugato. 2017. “Broad-spectrum empirical correlation determining tensile and compressive strength of cement-bonded clean granular soils.” J. Mater. Civ. Eng. 29 (6): 06017004. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001858.
Consoli, N. C., A. Peccin da Silva, H. P. Nierwinski, and J. Sosnoski. 2018. “Durability, strength, and stiffness of compacted gold tailings—Cement mixes.” Can. Geotech. J. 55 (4): 486–494. https://doi.org/10.1139/cgj-2016-0391.
Consoli, N. C., A. D. Rosa, and R. B. Saldanha. 2011. “Parameters controlling strength of industrial waste-lime amended soil.” Soils Found. 51 (2): 265–273. https://doi.org/10.3208/sandf.51.265.
Consoli, N. C., H. C. Scheuermann Filho, H. B. Leon, M. S. Carretta, M. B. Corte, R. E. Cordeiro, R. D. Caballero, and D. E. Lourenço. 2021. “General relationships controlling loss of mass, stiffness and strength of sustainable binders amended sand.” Transp. Geotech. 27 (Mar): 100473. https://doi.org/10.1016/j.trgeo.2020.100473.
Consoli, N. C., J. C. Vogt, J. P. S. Silva, H. M. Chaves, H. C. Scheuermann Filho, E. B. Moreira, and A. Lotero. 2022. “Behaviour of compacted filtered iron ore tailings–Portland cement blends: New Brazilian trend for tailings disposal by stacking.” Appl. Sci. 12 (2): 836. https://doi.org/10.3390/app12020836.
Dauce, P. D., G. B. de Castro, M. M. F. Lima, and R. M. F. Lima. 2019. “Characterisation and magnetic concentration of an iron ore tailings.” J. Mater. Res. Technol. 8 (1): 1052–1059. https://doi.org/10.1016/j.jmrt.2018.07.015.
Diambra, A., E. Ibraim, L. Festugato, and M. B. Corte. 2021. “Stiffness of artificially cemented sands: Insight on characterisation through empirical power relationships.” Road Mater. Pavement Des. 22 (6): 1469–1479. https://doi.org/10.1080/14680629.2019.1705379.
Diambra, A., E. Ibraim, A. Peccin, N. C. Consoli, and L. Festugato. 2017. “Theoretical derivation of artificially cemented granular soil strength.” J. Geotech. Geoenviron. Eng. 143 (5): 04017003. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001646.
Duxson, P., S. W. Mallicoat, G. C. Lukey, W. M. Kriven, and J. S. J. van Deventer. 2007. “The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers.” Colloids Surf., A 292 (1): 8–20. https://doi.org/10.1016/j.colsurfa.2006.05.044.
Fernandez, A. L., and J. C. Santamarina. 2001. “Effect of cementation on the small-strain parameters of sands.” Can. Geotech. J. 38 (1): 191–199. https://doi.org/10.1139/t00-081.
Ferreira, F. A., J. M. Desir, G. E. S. D. Lima, L. G. Pedroti, J. M. Franco De Carvalho, A. Lotero, and N. C. Consoli. 2023. “Evaluation of mechanical and microstructural properties of eggshell lime/rice husk ash alkali-activated cement.” Constr. Build. Mater. 364 (Aug): 129931. https://doi.org/10.1016/j.conbuildmat.2022.129931.
Festugato, L., A. Fourie, and N. C. Consoli. 2013. “Cyclic shear response of fibre-reinforced cemented paste backfill.” Géotech. Lett. 3 (1): 5–12. https://doi.org/10.1680/geolett.12.00042.
Garcia-Lodeiro, I., A. Palomo, A. Fernández-Jiménez, and D. E. Macphee. 2011. “Compatibility studies between N─ A─ S─ H and C─ A─ S─ H gels. Study in the ternary diagram Na2OCaOAl2O3SiO2H2O.” Cem. Concr. Res. 41 (9): 923–931. https://doi.org/10.1016/j.cemconres.2011.05.006.
Geraldo, R. H., J. P. Gonçalves, and G. Camarini. 2022. “Production process of an eco-friendly one-part alkali-activated binder.” Mater. Res. 25 (Jun): e20210433. https://doi.org/10.1590/1980-5373-mr-2021-0433.
Gomes, R. B., G. De Tomi, and P. S. Assis. 2016. “Iron ore tailings dry stacking in Pau Branco mine, Brazil.” J. Mater. Res. Technol. 5 (4): 339–344. https://doi.org/10.1016/j.jmrt.2016.03.008.
Gomez-Zamorano, L., M. Balonis, B. Erdemli, N. Neithalath, and G. Sant. 2017. “C─ (N)─ S─ H and N─ A─ S─ H gels: Compositions and solubility data at 25°C and 50°C.” J. Am. Ceram. Soc. 100 (6): 2700–2711. https://doi.org/10.1111/jace.14715.
Jefferies, M. 2022. “On the fundamental nature of the state parameter.” Géotechnique 72 (12): 1082–1091. https://doi.org/10.1680/jgeot.20.P.228.
Jefferies, M., and K. Been. 2015. Soil liquefaction: A critical state approach. 2nd ed. Boca Raton, FL: CRC Press.
Jennings, H. M. 2000. “A model for the microstructure of calcium silicate hydrate in cement paste.” Cem. Concr. Res. 30 (1): 101–116. https://doi.org/10.1016/S0008-8846(99)00209-4.
Kongsukprasert, L., F. Tatsuoka, and H. Takahashi. 2007. “Effects of curing period and stress conditions on the strength and deformation characteristics of cement-mixed soil.” Soils Found. 47 (3): 577–596. https://doi.org/10.3208/sandf.47.577.
Kossoff, D., W. E. Dubbin, M. Alfredsson, S. J. Edwards, M. G. Macklin, and K. A. Hudson-Edwards. 2014. “Mine tailings dams: Characteristics, failure, environmental impacts, and remediation.” Appl. Geochem. 51 (Aug): 229–245. https://doi.org/10.1016/j.apgeochem.2014.09.010.
Kuhn, M. R. 2016. “The critical state of granular media: Convergence, stationarity and disorder.” Géotechnique 66 (11): 902–909. https://doi.org/10.1680/jgeot.16.P.008.
Ladd, R. S. 1978. “Preparing test specimens using undercompaction.” Geotech. Test. J. 1 (1): 16. https://doi.org/10.1520/GTJ10364J.
Lade, P. V., and D. D. Overton. 1989. “Cementation effects in frictional materials.” J. Geotech. Eng. 115 (10): 1373–1387. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:10(1373).
Lade, P. V., and N. Trads. 2014. “The role of cementation in the behaviour of cemented soils.” Geotech. Res. 1 (4): 111–132. https://doi.org/10.1680/gr.14.00011.
Larrosa, C., A. Lotero, C. Bastos, S. Servi, and N. C. Consoli. 2023. “Stabilization of dredging material from Rio Grande harbor with alkali-activated cements to produce masonry elements.” J. Mater. Civ. Eng. 35 (4): 04023018. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004677.
Lee, S., and D. K. Lee. 2018. “What is the proper way to apply the multiple comparison test?” Korean J. Anesthesiol. 71 (5): 353–360. https://doi.org/10.4097/kja.d.18.00242.
Levandoski, W. M. K., S. T. Ferrazzo, G. J. Bruschi, N. C. Consoli, and E. P. Korf. 2023. “Mechanical and microstructural properties of iron mining tailings stabilized with alkali-activated binder produced from agro-industrial wastes.” Sci. Rep. 13 (1): 15754. https://doi.org/10.1038/s41598-023-42999-x.
Liu, C., X. Yao, and W. Zhang. 2020. “Controlling the setting times of one-part alkali-activated slag by using honeycomb ceramics as carrier of sodium silicate activator.” Constr. Build. Mater. 235 (Jun): 117091. https://doi.org/10.1016/j.conbuildmat.2019.117091.
Lotero, A., N. C. Consoli, C. J. Moncaleano, A. Tebechrani Neto, and E. Koester. 2021. “Mechanical properties of alkali-activated ground waste glass–carbide lime blends for geotechnical uses.” J. Mater. Civ. Eng. 33 (10): 04021284. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003918.
Lotero, A., C. J. Moncaleano, and N. C. Consoli. 2023. “Alkali-activated red ceramic wastes-carbide lime blend: An alternative alkaline cement manufactured at room temperature.” J. Build. Eng. 65 (Mar): 105663. https://doi.org/10.1016/j.jobe.2022.105663.
Luukkonen, T., Z. Abdollahnejad, J. Yliniemi, P. Kinnunen, and M. Illikainen. 2018. “One-part alkali-activated materials: A review.” Cem. Concr. Res. 103 (Sep): 21–34. https://doi.org/10.1016/j.cemconres.2017.10.001.
Lyu, Z., J. Chai, Z. Xu, Y. Qin, and J. Cao. 2019. “A comprehensive review on reasons for tailings dam failures based on case history.” Adv. Civ. Eng. 2019 (Feb): 1–18. https://doi.org/10.1155/2019/4159306.
Mafessoli, M., S. F. V. Marques, H. C. Scheuermann Filho, and N. C. Consoli. 2023. “Response of artificially cemented iron ore tailings for dry stacking disposal over a wide range of stresses.” Indian Geotech. J. 53 (4): 904–915. https://doi.org/10.1007/s40098-023-00711-w.
McHugh, M. L. 2011. “Multiple comparison analysis testing in ANOVA.” Biochem. Med. 21 (3): 203–209. https://doi.org/10.11613/BM.2011.029.
Montgomery, D. C. 2020. Design and analysis of experiments. Hoboken, NJ: Wiley.
Núñez, V., A. Lotero, C. A. Bastos, P. Sargent, and N. C. Consoli. 2024. “Mechanical and microstructure analysis of mass-stabilized organic clay thermally cured using a ternary binder.” Acta Geotech. 19 (Jun): 741–762. https://doi.org/10.1007/s11440-023-01961-x.
Oldecop, L., and G. Rodari. 2021. “Unsaturated mine tailings disposal.” Soils Rocks 44 (3): 1–12. https://doi.org/10.28927/SR.2021.067421.
Palmer, J. 2019. “Anatomy of a tailings dam failure and a caution for the future.” Engineering 5 (4): 605–606. https://doi.org/10.1016/j.eng.2019.07.009.
Pereira dos Santos, C., G. J. Bruschi, J. R. G. Mattos, and N. C. Consoli. 2022. “Stabilization of gold mining tailings with alkali-activated carbide lime and sugarcane bagasse ash.” Transp. Geotech. 32 (Aug): 100704. https://doi.org/10.1016/j.trgeo.2021.100704.
Richardson, I. G., and G. W. Groves. 1993. “The incorporation of minor and trace elements into calcium silicate hydrate (C-S-H) gel in hardened cement pastes.” Cem. Concr. Res. 23 (1): 131–138. https://doi.org/10.1016/0008-8846(93)90143-W.
Rotta, G. V., N. C. Consoli, P. D. M. Prietto, M. R. Coop, and J. Graham. 2003. “Isotropic yielding in an artificially cemented soil cured under stress.” Géotechnique 53 (5): 493–501. https://doi.org/10.1680/geot.2003.53.5.493.
Saldanha, R. B., A. L. Caicedo, M. Tonini de Araujo, H. C. S. Filho, C. J. Moncaleano, J. P. S. Silva, and N. C. Consoli. 2022. “Potential use of iron ore tailings for binder production: A life cycle assessment.” SSRN J. 365 (Feb): 130008. https://doi.org/10.2139/ssrn.4221827.
Saldanha, R. B., A. M. L. Caicedo, M. Tonini de Araújo, H. C. Scheuermann Filho, C. J. Moncaleano, J. P. S. Silva, and N. C. Consoli. 2023. “Potential use of iron ore tailings for binder production: A life cycle assessment.” Constr. Build. Mater. 365 (Feb): 130008. https://doi.org/10.1016/j.conbuildmat.2022.130008.
Saldanha, R. B., H. C. Scheuermann Filho, J. L. D. Ribeiro, and N. C. Consoli. 2017. “Modelling the influence of density, curing time, amounts of lime and sodium chloride on the durability of compacted geopolymers monolithic walls.” Constr. Build. Mater. 136 (Jun): 65–72. https://doi.org/10.1016/j.conbuildmat.2017.01.023.
Santamarina, J. C., L. A. Torres-Cruz, and R. C. Bachus. 2019. “Why coal ash and tailings dam disasters occur.” Science 364 (6440): 526–528. https://doi.org/10.1126/science.aax1927.
Schaper, D., R. Lessa, A. Freitas, and B. Weeks. 2020. “De-characterization and closure of TSF: Concepts of the Brazilian legislation and international criteria.” In Vol. 3 of Proc., 3rd Int. Congress on Planning for Closure of Mining Operations. Planning for Closure 2020, 12. Santiago, Chile: Gecamin Digital Publications.
Scheuermann Filho, H. C., and N. C. Consoli. 2022. “Mechanical response of a cemented soil over a wide range of porosities and cement contents.” Proc. Inst. Civ. Eng. Ground Improv. 1–11. https://doi.org/10.1680/jgrim.22.00028.
Scheuermann Filho, H. C., G. D. Miguel, and N. C. Consoli. 2022. “Porosity/cement index over a wide range of porosities and cement contents.” J. Mater. Civ. Eng. 34 (3): 06021011. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004115.
Schnaid, F., P. D. M. Prietto, and N. C. Consoli. 2001. “Characterization of cemented sand in triaxial compression.” J. Geotech. Geoenviron. Eng. 127 (10): 857–868. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(857).
Segura, I. P., T. Luukkonen, J. Yliniemi, H. Sreenivasan, A. J. Damø, L. S. Jensen, M. Canut, A. M. Kantola, V.-V. Telkki, and P. A. Jensen. 2022. “Comparison of one-part and two-part alkali-activated metakaolin and blast furnace slag.” J. Sustainable Metall. 8 (4): 1816–1830. https://doi.org/10.1007/s40831-022-00606-9.
Servi, S., A. Lotero, J. P. S. Silva, C. Bastos, and N. C. Consoli. 2022. “Mechanical response of filtered and compacted iron ore tailings with different cementing agents: Focus on tailings-binder mixtures disposal by stacking.” Constr. Build. Mater. 349 (Sep): 128770. https://doi.org/10.1016/j.conbuildmat.2022.128770.
Taylor, H. F. W. 1997. Cement chemistry. London: Thomas Telford.
Vilaça, A. S. I., L. Simão, O. R. K. Montedo, A. P. Novaes de Oliveira, and F. Raupp-Pereira. 2022. “Waste valorization of iron ore tailings in Brazil: Assessment metrics from a circular economy perspective.” Resour. Policy 75 (Jan): 102477. https://doi.org/10.1016/j.resourpol.2021.102477.
Warren, A. L. 2011. “Investigation of dam incidents and failures.” Proc. Inst. Civ. Eng. Forensic Eng. 164 (1): 33–41. https://doi.org/10.1680/feng.2011.164.1.33.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 36Issue 8August 2024

History

Received: Aug 17, 2023
Accepted: Jan 23, 2024
Published online: May 30, 2024
Published in print: Aug 1, 2024
Discussion open until: Oct 30, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Professor of Civil Engineering, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-190, Brazil (corresponding author). ORCID: https://orcid.org/0000-0002-6408-451X. Email: [email protected]
Research Fellow, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-190, Brazil. ORCID: https://orcid.org/0000-0002-2843-8384. Email: [email protected]
Hugo Carlos Scheuermann Filho [email protected]
Research Fellow, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-190, Brazil. Email: [email protected]
Research Fellow, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-190, Brazil. ORCID: https://orcid.org/0000-0002-4634-6299. Email: [email protected]
Ph.D. Candidate, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-190, Brazil. ORCID: https://orcid.org/0009-0008-8125-0787. Email: [email protected]
Jordanna Chamon Vogt [email protected]
Geotechnical and Infrastructure Project Leader, Mineração Rio do Norte, Oriximiná, PA 68275-000, Brazil. Email: [email protected]
João Paulo de Sousa Silva [email protected]
Expert Engineer, Exploration and Mineral Projects-Mineral Development Centre, VALE S.A., Santa Luzia, MG 33040-900, Brazil. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share