Abstract

The lack of bearing capacity of geotechnical materials is a recurrent problem that can be solved through chemical admixtures and densification methods. However, traditional materials/techniques are normally associated with energy-intensive processes and the extraction of natural resources and gaseous emissions. As a result, interest in more ecologically friendly solutions is rising. This paper evaluated the influence of several factors on the mechanical behavior of granular soil stabilized with an alternative alkali-activated cement produced from ceramic waste and carbide lime. Mixtures were tested for unconfined compressive strength, stiffness, durability, and strength parameters on simple shear equipment. The porosity/binder content index was applied to correlate all outcomes. Results showed that a lower silica modulus (SiO2/Na2O) resulted in lower strength and stiffness due to excessive alkalis presence; Lower silica modulus, however, also led to a smaller loss of mass under durability circumstances, indicating that the test conditions diluted any excessive alkalis. It has been demonstrated that the porosity/binder index is a useful tool for predicting mechanical behavior in terms of strength, stiffness, and durability. Finally, the monotonic shear response showed that the inclusion of the alkali-activated cement positively influenced the internal friction angle of the material and the cohesion intercept when compared to the natural granular soil.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors wish to explicit their appreciation to the Brazilian Research Council CNPq for supporting the research group (Grants Nos. 307289/2018-4 and 402572/2021-1).

References

Adewumi, A. A., M. A. Mohd Ariffin, M. Maslehuddin, M. O. Yusuf, M. Ismail, and K. A. A. Al-Sodani. 2021. “Influence of silica modulus and curing temperature on the strength of alkali-activated volcanic ash and limestone powder mortar.” Materials (Basel) 14 (18): 5204. https://doi.org/10.3390/ma14185204.
Andreghetto, D., L. Festugato, G. Miguel, and A. Silva. 2022. “Automated true triaxial apparatus development for soil mechanics investigation.” Soils Rocks 45 (2): 1–10. https://doi.org/10.28927/SR.2022.077321.
ASTM. 2012. Standard test methods for laboratory compaction characteristics of soil using modified effort (56,000ft-lbf/ft3 (2,700kN-m/m3)). ASTM D1557. West Conshohocken, PA: ASTM.
ASTM. 2014. Standard test methods for specific gravity of soil solids by water pycnometer. ASTM D854. West Conshohocken, PA: ASTM.
ASTM. 2015. Standard test methods for wetting and drying compacted soil-cement mixtures. ASTM D559/D559M. West Conshohocken, PA: ASTM.
ASTM. 2016. Standard test method for unconfined compressive strength of cohesive soil. ASTM D2166/D2166M. West Conshohocken, PA: ASTM.
ASTM. 2017. Standard test method for particle-size distribution (gradation) of fine-grained soils using the sedimentation (hydrometer) analysis. ASTM D7928. West Conshohocken, PA: ASTM.
Bruschi, G. J., C. P. Dos Santos, M. T. De Araújo, S. T. Ferrazzo, S. Marques, and N. C. Consoli. 2021a. “Green stabilization of bauxite tailings: A mechanical study on alkali-activated materials.” J. Mater. Civ. Eng. 33 (11): 06021007. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003949.
Bruschi, G. J., C. P. Dos Santos, S. T. Ferrazzo, M. T. De Araújo, and N. C. Consoli. 2021b. “Parameters controlling loss of mass and stiffness degradation of green stabilized bauxite tailings.” Proc. Inst. Civ. Eng. Geotech. Eng. 2021 (1): 1–21. https://doi.org/10.1680/jgeen.21.00119.
Bruschi, G. J., C. P. Dos Santos, S. T. Ferrazzo, M. T. De Araújo, and N. C. Consoli. 2021c. “Parameters controlling loss of mass and stiffness degradation of ‘green’ stabilised tailings.” Proc. Inst. Civ. Eng. Geotech. Eng. 2021 (Oct): 1–9. https://doi.org/10.1680/jgeen.21.00119.
Bruschi, G. J., C. P. Dos Santos, W. M. K. Levandoski, S. T. Ferrazzo, E. P. Korf, R. B. Saldanha, and N. C. Consoli. 2022a. “Leaching assessment of cemented bauxite tailings through wetting and drying cycles of durability test.” Environ. Sci. Pollut. Res. 29 (39): 59247–59262. https://doi.org/10.1007/s11356-022-20031-5.
Bruschi, G. J., C. P. Dos Santos, M. Tonini de Araújo, S. T. Ferrazzo, S. F. V. Marques, and N. C. Consoli. 2021d. “Green stabilization of bauxite tailings: Mechanical study on alkali-activated materials.” J. Mater. Civ. Eng. 33 (11): 06021007. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003949.
Bruschi, G. J., M. P. Secco, L. Sousa, A. Briga-Sá, and N. Cristelo. 2022b. “Development of facade panels with optimised thermal performance from alkali-activated stone-cutting waste.” Environ. Earth Sci. 81 (12): 331. https://doi.org/10.1007/s12665-022-10452-3.
Consoli, N. C., C. G. Da Rocha, and R. B. Saldanha. 2014. “Coal fly ash–carbide lime bricks: An environment friendly building product.” Constr. Build. Mater. 69 (7): 301–309. https://doi.org/10.1016/j.conbuildmat.2014.07.067.
Consoli, N. C., A. P. da Silva, H. P. Nierwinski, and J. Sosnoski. 2018a. “Durability, strength, and stiffness of compacted gold tailings—Cement mixes.” Can. Geotech. J. 55 (4): 486–494. https://doi.org/10.1139/cgj-2016-0391.
Consoli, N. C., K. da Silva, S. Filho, and A. B. Rivoire. 2017. “Compacted clay-industrial wastes blends: Long term performance under extreme freeze-thaw and wet-dry conditions.” Appl. Clay Sci. 146 (Feb): 404–410. https://doi.org/10.1016/j.clay.2017.06.032.
Consoli, N. C., M. Da Silva Carretta, L. Festugato, H. B. Leon, L. F. Tomasi, and K. S. Heineck. 2020a. “Ground waste glass–carbide lime as a sustainable binder stabilising three different silica sands.” Géotechnique 2020 (1): 1–14. https://doi.org/10.1680/jgeot.18.P.099.
Consoli, N. C., L. da Silva Lopes, D. Foppa, and K. S. Heineck. 2009a. “Key parameters dictating strength of lime/cement-treated soils.” Proc. Inst. Civ. Eng. Geotech. Eng. 162 (2): 111–118. https://doi.org/10.1680/geng.2009.162.2.111.
Consoli, N. C., L. Festugato, C. G. Da Rocha, and R. C. Cruz. 2013. “Key parameters for strength control of rammed sand-cement mixtures: Influence of types of Portland cement.” Constr. Build. Mater. 49 (Jun): 591–597. https://doi.org/10.1016/j.conbuildmat.2013.08.062.
Consoli, N. C., L. Festugato, H. C. S. Filho, G. D. Miguel, A. T. Neto, and D. Andreghetto. 2020b. “Durability assessment of soil-pozzolan-lime blends through ultrasonic-pulse velocity test.” J. Mater. Civ. Eng. 32 (8): 04020223. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003298.
Consoli, N. C., L. Festugato, G. D. Miguel, E. B. Moreira, and H. C. S. Filho. 2021a. “Fatigue life of green stabilized fiber-reinforced sulfate-rich dispersive soil.” J. Mater. Civ. Eng. 33 (9). https://doi.org/10.1061/(ASCE)MT.1943-5533.0003842.
Consoli, N. C., D. N. Giese, H. B. Leon, D. M. Mocelin, R. Wetzel, and S. F. V. Marques. 2018b. “Sodium chloride as a catalyser for crushed reclaimed asphalt pavement–fly ash–carbide lime blends.” Transp. Geotech. 15 (Jun): 13–19. https://doi.org/10.1016/j.trgeo.2018.02.001.
Consoli, N. C., V. B. Godoy, L. F. Tomasi, T. M. De Paula, M. S. Bortolotto, and F. Favretto. 2019. “Fibre-reinforced sand-coal fly ash-lime-NaCl blends under severe environmental conditions.” Geosynth. Int. 26 (5): 1–34. https://doi.org/10.1680/jgein.19.00039.
Consoli, N. C., R. A. Quiñónez Samaniego, L. E. González, E. J. Bittar, and O. Cuisinier. 2018c. “Impact of severe climate conditions on loss of mass, strength, and stiffness of compacted fine-grained soils–portland cement blends.” J. Mater. Civ. Eng. 30 (8): 04018174. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002392.
Consoli, N. C., A. D. Rosa, and R. B. Saldanha. 2011a. “Variables governing strength of compacted soil–fly ash–lime mixtures.” J. Mater. Civ. Eng. 23 (4): 432–440. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000186.
Consoli, N. C., R. A. Q. Samaniego, and N. M. K. Villalba. 2016. “Durability, strength, and stiffness of dispersive clay–lime blends.” J. Mater. Civ. Eng. 28 (11): 04016124. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001632.
Consoli, N. C., L. W. Silvano, A. Lotero, H. C. Scheuermann Filho, C. J. Moncaleano, and N. Cristelo. 2022. “Key parameters establishing alkali activation effects on stabilized rammed earth.” Constr. Build. Mater. 345 (Aug): 128299. https://doi.org/10.1016/j.conbuildmat.2022.128299.
Consoli, N. C., A. Tebechrani Neto, B. R. S. Correa, R. A. Quiñónez Samaniego, and N. Cristelo. 2021b. “Durability evaluation of reclaimed asphalt pavement, ground glass and carbide lime blends based on unconfined compression tests.” Transp. Geotech. 27 (Mar): 100461. https://doi.org/10.1016/j.trgeo.2020.100461.
Consoli, N. C., M. A. Vendruscolo, A. Fonini, and F. D. Rosa. 2009b. “Fiber reinforcement effects on sand considering a wide cementation range.” Geotext. Geomembr. 27 (3): 196–203. https://doi.org/10.1016/j.geotexmem.2008.11.005.
Consoli, N. C., D. Winter, H. B. Leon, and H. C. Scheuermann Filho. 2018d. “Durability, strength, and stiffness of green stabilized sand.” J. Geotech. Geoenviron. Eng. 144 (9): 04018057. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001928.
Consoli, N. C., F. Zortéa, M. de Souza, and L. Festugato. 2011b. “Studies on the dosage of fiber-reinforced cemented soils.” J. Mater. Civ. Eng. 23 (12): 1624–1632. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000343.
Coppola, B., J.-M. Tulliani, P. Antonaci, and P. Palmero. 2020. “Role of natural stone wastes and minerals in the alkali activation process: A review.” Materials (Basel). 13 (10): 2284. https://doi.org/10.3390/ma13102284.
Corrêa, B. R. S., H. C. Scheuermann Filho, J. R. G. Mattos, and N. C. Consoli. 2021. “Compacted ground glass particles—Carbide lime blends: An environment friendly material.” Geotech. Geol. Eng. 39 (4): 3207–3219. https://doi.org/10.1007/s10706-021-01689-z.
Corte, M. B., L. Festugato, and N. C. Consoli. 2017. “Development of a cyclic simple shear apparatus.” Soils Rocks 40 (3): 279–289. https://doi.org/10.28927/SR.403279.
da Rocha, C. G., A. Passuello, N. C. Consoli, R. A. Quiñónez Samaniego, and N. M. Kanazawa. 2016. “Life cycle assessment for soil stabilization dosages: A study for the Paraguayan Chaco.” J. Cleaner Prod. 139 (Jun): 309–318. https://doi.org/10.1016/j.jclepro.2016.07.219.
Duxson, P., G. C. Lukey, and J. S. J. van Deventer. 2007. “Physical evolution of Na-geopolymer derived from metakaolin up to 1000°C.” J. Mater. Sci. 42 (9): 3044–3054. https://doi.org/10.1007/s10853-006-0535-4.
Fasihnikoutalab, M. H., S. Pourakbar, R. J. Ball, C. Unluer, and N. Cristelo. 2020. “Sustainable soil stabilisation with ground granulated blast-furnace slag activated by olivine and sodium hydroxide.” Acta Geotech. 15 (Nov): 1981–1991. https://doi.org/10.1007/s11440-019-00884-w.
Festugato, L., E. Menger, F. Benezra, E. A. Kipper, and N. C. Consoli. 2017. “Fibre-reinforced cemented soils compressive and tensile strength assessment as a function of filament length.” Geotext. Geomembr. 45 (1): 77–82. https://doi.org/10.1016/j.geotexmem.2016.09.001.
Festugato, L., A. Peccin da Silva, A. Diambra, N. C. Consoli, and E. Ibraim. 2018. “Modelling tensile/compressive strength ratio of fibre reinforced cemented soils.” Geotext. Geomembr. 46 (2): 155–165. https://doi.org/10.1016/j.geotexmem.2017.11.003.
Festugato, L., G. I. Venson, and N. C. Consoli. 2020. “Parameters controlling cyclic behaviour of cement-treated sand.” Transp. Geotech. 1 (Jun): 100488. https://doi.org/10.1016/j.trgeo.2020.100488.
Fonseca, A. V., R. C. Cruz, and N. C. Consoli. 2009. “Strength properties of sandy soil–Cement admixtures.” Geotech. Geol. Eng. 27 (6): 681–686. https://doi.org/10.1007/s10706-009-9267-y.
Forcelini, M., G. R. Garbin, V. P. Faro, and N. C. Consoli. 2016. “Mechanical behavior of soil cement blends with Osorio sand.” Procedia Eng. 143 (Dec): 75–81. https://doi.org/10.1016/j.proeng.2016.06.010.
Galvão Souza Azevedo, A., and K. Strecker. 2021. “Kaolin, fly-ash and ceramic waste based alkali-activated materials production by the ‘one-part’ method.” Constr. Build. Mater. 269 (Jun): 121306. https://doi.org/10.1016/j.conbuildmat.2020.121306.
Garcia-Lodeiro, I., A. Palomo, and A. Fernández-Jiménez. 2015. “An overview of the chemistry of alkali-activated cement-based binders.” In Alkali-activated cement mortars concrete, 19–47. Amsterdam, Netherlands: Elsevier.
Ibrahim, J. E. F. M., M. Tihtih, E. Kurovics, L. A. Gömze, and I. Kocserha. 2022. “Innovative glass-ceramic foams prepared by alkali activation and reactive sintering of clay containing zeolite (zeolite-poor rock) and sawdust for thermal insulation.” J. Build. Eng. 59 (Nov): 105160. https://doi.org/10.1016/j.jobe.2022.105160.
Kaze, C. R., A. Adesina, G. L. Lecomte-Nana, T. Alomayri, E. Kamseu, and U. C. Melo. 2021. “Alkali-activated laterite binders: Influence of silica modulus on setting time, Rheological behaviour and strength development.” Cleaner Eng. Technol. 4 (Oct): 100175. https://doi.org/10.1016/j.clet.2021.100175.
Ladd, R. S. 1978. “Preparing test specimens using undercompaction.” Geotech. Test. J. 1 (1): 16–23. https://doi.org/10.1520/GTJ10364J.
Lotero, A., N. C. Consoli, C. J. Moncaleano, A. T. Neto, and E. Koester. 2021. “Mechanical properties of alkali-activated ground waste glass-carbide lime blends for geotechnical uses.” J. Mater. Civ. Eng. 33 (10): 04021284. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003918.
Mangi, S. A., M. S. Raza, S. H. Khahro, A. S. Qureshi, and R. Kumar. 2022. “Recycling of ceramic tiles waste and marble waste in sustainable production of concrete: A review.” Environ. Sci. Pollut. Res. 29 (Mar): 18311–18332. https://doi.org/10.1007/s11356-021-18105-x.
Metekong, J. V. S., C. R. Kaze, A. Adesina, J. G. D. Nemaleu, J. N. Y. Djobo, P. N. Lemougna, T. Alomayri, E. Kamseu, U. C. Melo, and T. T. Tatietse. 2022. “Influence of thermal activation and silica modulus on the properties of clayey-lateritic based geopolymer binders cured at room temperature.” In Silicon. Berlin: Springer.
Miller, S. A., and R. J. Myers. 2020. “Environmental impacts of alternative cement binders.” Environ. Sci. Technol. 54 (Jun): 677–686. https://doi.org/10.1021/acs.est.9b05550.
Ouda, A. S., and M. Gharieb. 2021. “Behavior of alkali-activated pozzocrete-fly ash paste modified with ceramic tile waste against elevated temperatures and seawater attacks.” Constr. Build. Mater. 285 (Apr): 122866. https://doi.org/10.1016/j.conbuildmat.2021.122866.
Pasche, E., G. J. Bruschi, L. P. Specht, F. T. S. Aragão, and N. C. Consoli. 2022. “Fiber-reinforcement effect on the mechanical behavior of reclaimed asphalt pavement–powdered rock–Portland cement mixtures.” Transp. Eng. 9 (Jul): 100121. https://doi.org/10.1016/j.treng.2022.100121.
Pereira dos Santos, C., G. J. Bruschi, J. R. G. Mattos, and N. C. Consoli. 2022. “Stabilization of gold mining tailings with alkali-activated carbide lime and sugarcane bagasse ash.” Transp. Geotech. 32 (Nov): 100704. https://doi.org/10.1016/j.trgeo.2021.100704.
Piuzzi, G. P., H. C. Scheuermann Filho, J. A. Villena Del Carpio, and N. C. Consoli. 2021. “The effects of porosity, asphalt content and fiberglass incorporation on the tensile strength and resilient modulus of asphalt concrete blends.” Geotext. Geomembr. 49 (3): 864–870. https://doi.org/10.1016/j.geotexmem.2021.01.002.
Qin, L., X. Gao, and Q. Li. 2018. “Upcycling carbon dioxide to improve mechanical strength of Portland cement.” J. Cleaner Prod. 196 (6): 726–738. https://doi.org/10.1016/j.jclepro.2018.06.120.
Queiróz, L. C., L. L. S. Batista, L. M. P. Souza, M. D. Lima, S. Danieli, G. J. Bruschi, and C. P. Bergmann. 2022. “Alkali-activated system of carbide lime and rice husk for granular soil stabilization.” Proc. Inst. Civ. Eng. Ground Improv. 2022 (1): 1–37. https://doi.org/10.1680/jgrim.21.00048.
Quiñónez Samaniego, R. A., G. J. Bruschi, H. C. Scheuermann Filho, M. Tonini de Araújo, L. Festugato, and N. C. Consoli. 2022. “Effect of extended mellowing on strength and swelling behaviour of a high sulfated soil.” Proc. Inst. Civ. Eng. Ground Improv. 2022 (May): 1–10. https://doi.org/10.1680/jgrim.22.00017.
Quiñónez Samaniego, R. A., H. C. Scheuermann Filho, M. T. de Araújo, G. J. Bruschi, L. Festugato, and N. C. Consoli. 2021. “Key parameters controlling strength and resilient modulus of a stabilised dispersive soil.” Road Mater. Pavement Des. 2011 (Dec): 1–16. https://doi.org/10.1080/14680629.2021.2013937.
Reig, L., M. M. Tashima, M. V. Borrachero, J. Monzó, C. R. Cheeseman, and J. Payá. 2013. “Properties and microstructure of alkali-activated red clay brick waste.” Constr. Build. Mater. 43 (Jun): 98–106. https://doi.org/10.1016/j.conbuildmat.2013.01.031.
Saldanha, R. B., H. C. Scheuermann Filho, J. E. C. Mallmann, N. C. Consoli, and K. R. Reddy. 2018. “Physical–mineralogical–chemical characterization of carbide lime: An environment-friendly chemical additive for soil stabilization.” J. Mater. Civ. Eng. 30 (6): 06018004. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002283.
Secco, M. P., D. T. Mesavilla, M. F. Floss, N. Cesar Consoli, T. Miranda, and N. Cristelo. 2021. “Live-scale testing of granular materials stabilized with alkali-activated waste glass and carbide lime.” Appl. Sci. 11 (23): 11286. https://doi.org/10.3390/app112311286.
Tong, K. T., R. Vinai, and M. N. Soutsos. 2018. “Use of Vietnamese rice husk ash for the production of sodium silicate as the activator for alkali-activated binders.” J. Cleaner Prod. 201 (Apr): 272–286. https://doi.org/10.1016/j.jclepro.2018.08.025.
Tonini de Araújo, M., S. Tonatto Ferrazzo, G. J. Bruschi, and N. Cesar Consoli. 2021a. “Mechanical and environmental performance of eggshell lime for expansive soils improvement.” Transp. Geotech. 31 (Nov): 100681. https://doi.org/10.1016/j.trgeo.2021.100681.
Zhang, G., R. Lin, Y.-S. Wang, and X. Wang. 2022. “Influence of K+ and CO32− in activator on high-temperature performance of alkali-activated slag-ceramic powder binary blends.” Case Stud. Constr. Mater. 17 (Apr): e01306. https://doi.org/10.1016/j.cscm.2022.e01306.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 36Issue 1January 2024

History

Received: Sep 17, 2022
Accepted: May 26, 2023
Published online: Oct 17, 2023
Published in print: Jan 1, 2024
Discussion open until: Mar 17, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Bruna Martins Lima [email protected]
Ph.D. Student, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-190, Brazil. Email: [email protected]
Research Fellow, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-190, Brazil (corresponding author). ORCID: https://orcid.org/0000-0002-0133-8308. Email: [email protected]
Associate Professor of Civil Engineering, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-190, Brazil. ORCID: https://orcid.org/0000-0002-6710-8927. Email: [email protected]
Professor of Civil Engineering, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-190, Brazil. ORCID: https://orcid.org/0000-0002-6408-451X. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share