Technical Papers
Mar 23, 2024

Mechanical, Rheological, and Microstructural Study of Ternary Alkali-Activated Pastes Using BOF Slag, Metakaolin, and Glass Powder as Precursors

Publication: Journal of Materials in Civil Engineering
Volume 36, Issue 6

Abstract

The study of alkali-activated materials as a replacement for portland cement has been growing in recent years due to the sustainable nature of these materials. Nevertheless, ternary alkali-activated pastes using waste glass as a precursor have been insufficiently studied concerning their rheological, mechanical, and microstructural properties. In addition, there is a lack of research studying alkali-activated mixtures using basic oxygen furnace (BOF) slag and glass waste as precursors. Therefore, this paper aims to study the effect of glass powder (GP) content as a precursor, the effect of the activator ratio in alkali-activated ternary pastes of BOF slag, metakaolin (MK), and GP, and the influence of the Na2SiO3/NaOH ratio on its mixtures. The activator solutions of NaOH and Na2SiO3/NaOH were used in the production of the pastes. The liquid/solid ratio was kept fixed at 0.6 and the molarity of the NaOH solution was fixed at 12 M, seeking to analyze the impact of the Na2SiO3/NaOH ratio, with adopted values of 0.75, 1.5, and 2.5. We also aimed to study the impact of the glass content in the mixture for the values of 10%, 20%, and 25%, replacing the BOF slag. The workability by the minislump test, rheology, compressive strength for 1 and 28 days, and microstructural parameters were analyzed. ANOVA was performed to determine the significance of variables in the workability and compressive strength parameters. Pastes with the highest activator ratio (Na2SiO3/NaOH=2.5) produced better compressive strength (34.74 to 36.11 MPa) and lower minislump spreads (90 to 98 mm) compared with the mixtures with Na2SiO3/NaOH=1.5 and 0.75, besides indicating a denser microstructure, linked to higher production of aluminosilicate gels. Higher GP contents generated pastes with lower mechanical performance (16.7 MPa for Na2SiO3/NaOH=0.75) and microstructural qualities, albeit with better workability (124-mm minislump spread).

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

No data, models, or code were generated or used during the study.

Acknowledgments

The authors acknowledge the support of companies Eco-Vidro Engineering and Pecém Steel Company (CSP) for providing the necessary materials for this study. The research was partially funded by the Brazilian National Council for Scientific and Technological Development (CNPq). The authors also extend their appreciation to the Federal University of Ceará and the Laboratory of Building Materials for their support.

References

Abhishek, H. S., S. Prashant, and M. V. Kamath. 2022. “Fresh mechanical and durability properties of alkali-activated fly ash-slag concrete: A review.” Innovative Infrastruct. Solutions 7 (1): 1–14. https://doi.org/10.1007/s41062-021-00711-w.
ABNT (Brazilian Association of Technical Standards). 2005. Mortar for jointing and sheathing of walls and ceilings - Determination of flexural tensile and compressive strength. ABNT NBR 13279. Rio de Janeiro, Brazil: ABNT.
ABNT (Brazilian Association of Technical Standards). 2017. Self-consolidating concrete Part 2: Slump-flow test, flow time and visual stability index: Abrams cone method. ABNT NBR 15823-2. Rio de Janeiro, Brazil: ABNT.
Adesina, A., A. R. G. de Azevedo, M. Amin, M. Hadzima-Nyarko, I. S. Agwa, A. M. Zeyad, and B. A. Tayeh. 2022. “Fresh and mechanical properties overview of alkali-activated materials made with glass powder as precursor.” Cleaner Mater. 3 (Mar): 100036. https://doi.org/10.1016/j.clema.2021.100036.
Albitar, M., M. S. Mohamed Ali, P. Visintin, and M. Drechsler. 2017. “Durability evaluation of geopolymer and conventional concretes.” Constr. Build. Mater. 136 (Apr): 374–385. https://doi.org/10.1016/j.conbuildmat.2017.01.056.
Aldred, J., and J. Day. 2012. “Is geopolymer concrete a suitable alternative to traditional concrete.” In Proc., 37th Conf. on Our World in Concrete & Structures, 29–31. Singapore: CI-Premier Pte. Limited.
Ali, H. A., K. Sun, D. Xuan, J.-X. Lu, M. Cyr, and C. S. Poon. 2023. “Recycling of high-volume waste glass powder in alkali-activated materials: An efflorescence mitigation strategy.” J. Build. Eng. 65 (Apr): 105756. https://doi.org/10.1016/j.jobe.2022.105756.
Alnahhal, M. F., T. Kim, and A. Hajimohammadi. 2021. “Waste-derived activators for alkali-activated materials: A review.” Cem. Concr. Compos. 118 (Apr): 103980. https://doi.org/10.1016/j.cemconcomp.2021.103980.
Andrew, R. M. 2019. “Global CO2 emissions from cement production, 1928–2018.” Earth Syst. Sci. 10 (4): 2213–2239. https://doi.org/10.5194/essd-10-2213-2018.
ASTM. 2005. Standard test method for slump flow of self-consolidating concrete. ASTM C1611/C1611M. West Conshohocken, PA: ASTM.
ASTM. 2007. Standard test method for flow of hydraulic cement mortar. ASTM C1437. West Conshohocken, PA: ASTM.
ASTM. 2020. Standard test method for compressive strength of hydraulic cement mortars. ASTM C109/C109M. West Conshohocken, PA: ASTM.
Aziz, I. H., M. Abdullah, M. Salleh, L. Ming, L. Li, A. Sandu, P. Vizureanu, O. Nemes, and S. Mahdi. 2022. “Recent developments in steelmaking industry and potential alkali activated based steel waste: A comprehensive review.” Materials 15 (5): 1948. https://doi.org/10.3390/ma15051948.
Borba, J. C., Jr., G. J. Brigolini, V. A. A. Oliveira, J. L. Calmon, and E. F. Mariano. 2022. “Steel slag as a precursor material for alkali-activated binders: A systematic review.” Preprints 2022 (1): 2022100137. https://doi.org/10.20944/preprints202210.0137.v1.
Bruschi, G. J., and C. P. dos Santos. 2021. “Green stabilization of bauxite tailings: Mechanical study on alkali-activated materials.” J. Mater. Civ. Eng. 33 (11): 06021007. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003949.
Carvalho, S. Z., F. Vernilli, B. Almeida, M. Demarco, and S. N. Silva. 2017. “The recycling effect of BOF slag in the Portland cement properties.” Resour. Conserv. Recycl. 127 (Dec): 216–220. https://doi.org/10.1016/j.resconrec.2017.08.021.
Cercel, J., A. Adesina, and S. Das. 2021. “Performance of eco-friendly mortars made with alkali-activated slag and glass powder as a binder.” Constr. Build. Mater. 270 (Feb): 121457. https://doi.org/10.1016/j.conbuildmat.2020.121457.
Chen, L., Z. Wang, Y. Wang, and J. Feng. 2016. “Preparation and properties of alkali activated metakaolin-based geopolymer.” Materials 9 (9): 767. https://doi.org/10.3390/ma9090767.
Chindaprasirt, P., U. Rattanasak, P. Vongvoradit, and S. Jenjirapanya. 2012. “Thermal treatment and utilization of Al-rich waste in high calcium fly ash geopolymeric materials.” Int. J. Miner. Metall. Mater. 19 (9): 872–878. https://doi.org/10.1007/s12613-012-0641-z.
Dadsetan, S., H. Siad, M. Lachemi, and M. Sahmaran. 2021. “Evaluation of the tridymite formation as a technique for enhancing geopolymer binders based on glass waste.” J. Cleaner Prod. 278 (Jan): 123983. https://doi.org/10.1016/j.jclepro.2020.123983.
Darvishan, E., M. Adabi, and A. Amani. 2023. “Investigation of mechanical and durability properties of alkali-activated concrete prepared with ternary blended ground granulated blast furnace slag, fly ash, and jajrood trass.” J. Mater. Civ. Eng. 35 (7): 04023213. https://doi.org/10.1061/JMCEE7.MTENG-15144.
Das, S. K., and S. Shrivastava. 2023. “A comparative study on the mechanical and acid resistance characteristics of ambient temperature-cured glass waste and fly ash-based geopolymeric masonry mortars.” Environ. Dev. Sustainability 25 (11): 13399–13427. https://doi.org/10.1007/s10668-022-02622-x.
Deja, J., A. Uliasz-Bochenczyk, and E. Mokrzycki. 2010. “CO2 emissions from Polish cement industry.” Int. J. Greenhouse Gas Control 4 (4): 583–588. https://doi.org/10.1016/j.ijggc.2010.02.002.
Delgado-Plana, P., A. Rodríguez-Expósito, S. Bueno-Rodríguez, L. Pérez-Villarejo, D. M. Tobaldi, J. A. Labrincha, and D. Eliche-Quesada. 2021. “Effect of activating solution modulus on the synthesis of sustainable geopolymer binders using spent oil bleaching earths as precursor.” Sustainability 13 (13): 7501. https://doi.org/10.3390/su13137501.
Duxson, P., J. L. Provis, G. C. Lukey, and J. S. Van Deventer. 2007. “The role of inorganic polymer technology in the development of ‘green concrete’.” Cem. Concr. Res. 37 (12): 1590–1597. https://doi.org/10.1016/j.cemconres.2007.08.018.
Fernández-Jiménez, A., and A. Palomo. 2003. “Characterisation of fly ashes. Potential reactivity as alkaline cements.” Fuel 82 (18): 2259–2265. https://doi.org/10.1016/S0016-2361(03)00194-7.
Ganesh, A. C., and M. Muthukannan. 2021. “Development of high performance sustainable optimized fiber reinforced geopolymer concrete and prediction of compressive strength.” J. Cleaner Prod. 282 (Feb): 124543. https://doi.org/10.1016/j.jclepro.2020.124543.
Glid, M., I. Sobrados, H. B. Rhaiem, J. Sanz, and A. B. H. Amara. 2017. “Alkaline activation of metakaolinite-silica mixtures: Role of dissolved silica concentration on the formation of geopolymers.” Ceram. Int. 43 (15): 12641–12650. https://doi.org/10.1016/j.ceramint.2017.06.144.
Guo, X., and X. Pan. 2020. “Effects of steel slag on mechanical Properties and mechanism of fly ash-based geopolymer.” J. Mater. Civ. Eng. 32 (2): 04019348. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003012.
Hasnaoui, A., E. Ghorbel, and G. Wardeh. 2019. “Optimization approach of granulated blast furnace slag and metakaolin based geopolymer mortars.” Constr. Build. Mater. 198 (Feb): 10–26. https://doi.org/10.1016/j.conbuildmat.2018.11.251.
Hossain, M. M., M. R. Karim, and M. F. M. Zain. 2018. “Acid and sulfate resistance of alkali-activated ternary blended composite binder.” J. Mater. Civ. Eng. 30 (2): 04017276. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002131.
Jani, Y., and W. Hogland. 2014. “Waste glass in the production of cement and concrete: A review.” J. Environ. Chem. Eng. 2 (3): 1767–1775. https://doi.org/10.1016/j.jece.2014.03.016.
Jaya, N. A., Y. Liew, C. Heah, M. Mohd, A. Al Bakri, and H. Kamarudin. 2020. “Correlation between pore structure, compressive strength and thermal conductivity of porous metakaolin geopolymer.” Constr. Build. Mater. 247 (Jun): 118641. https://doi.org/10.1016/j.conbuildmat.2020.118641.
Kabay, N., N. Miyan, and H. Özkan. 2021. “Basic oxygen furnace and ground granulated blast furnace slag based alkali-activated pastes: Characterization and optimization.” J. Cleaner Prod. 327 (Dec): 129483. https://doi.org/10.1016/j.jclepro.2021.129483.
Kamath, M., S. Prashanth, and M. Kumar. 2021. “Micro-characterisation of alkali activated paste with fly ash-GGBS-metakaolin binder system with ambient setting characteristics.” Constr. Build. Mater. 277 (Mar): 122323. https://doi.org/10.1016/j.conbuildmat.2021.122323.
Kastiukas, G., and X. Zhou. 2017. “Effects of waste glass on alkali-activated tungsten mining waste: Composition and mechanical properties.” Mater. Struct. 50 (4): 194. https://doi.org/10.1617/s11527-017-1062-2.
Lotero, A., N. C. Consoli, C. J. Moncaleano, A. T. Neto, and E. Koester. 2021. “Mechanical properties of alkali-activated ground waste glass–carbide lime blends for geotechnical uses.” J. Mater. Civ. Eng. 33 (10): 04021284. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003918.
Lu, C., Z. Zhang, C. Shi, N. Li, D. Jiao, and Q. Yuan. 2021. “Rheology of alkali-activated materials: A review.” Cem. Concr. Compos. 121 (Aug): 104061. https://doi.org/10.1016/j.cemconcomp.2021.104061.
Lu, J.-X., and C. S. Poon. 2018. “Use of waste glass in alkali activated cement mortar.” Constr. Build. Mater. 160 (Jan): 399–407. https://doi.org/10.1016/j.conbuildmat.2017.11.080.
Ma, C.-K., A. Z. Awang, and W. Omar. 2018. “Structural and material performance of geopolymer concrete: A review.” Constr. Build. Mater. 186 (Oct): 90–102. https://doi.org/10.1016/j.conbuildmat.2018.07.111.
Maddalena, R., J. J. Roberts, and A. Hamilton. 2018. “Can Portland cement be replaced by low-carbon alternative materials? A study on the thermal properties and carbon emissions of innovative cements.” J. Cleaner Prod. 186 (Jun): 933–942. https://doi.org/10.1016/j.jclepro.2018.02.138.
Mahmood, A. H., M. Babaee, S. J. Foster, and A. Castel. 2021. “Continuous monitoring of the early-age properties of activated GGBFS with alkaline solutions of different concentrations.” J. Mater. Civ. Eng. 33 (12): 04021374. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003997.
Mahmoodi, O., H. Siad, M. Lachemi, S. Dadsetan, and M. Sahmaran. 2021. “Development of normal and very high strength geopolymer binders based on concrete waste at ambient environment.” J. Cleaner Prod. 279 (Jan): 123436. https://doi.org/10.1016/j.jclepro.2020.123436.
Malkawi, A. B., M. F. Nuruddin, A. Fauzi, H. Almattarneh, and B. S. Mohammed. 2016. “Effects of alkaline solution on properties of the HCFA geopolymer mortars.” Procedia Eng. 148: 710–717. https://doi.org/10.1016/j.proeng.2016.06.581.
Manikandan, P., L. Natrayan, S. Duraimurugan, and V. Vasugi. 2022. “Influence of waste glass powder as an aluminosilicate precursor in synthesizing ternary blended alkali-activated binder.” Silicon Chem. 14 (13): 7799–7808. https://doi.org/10.1007/s12633-021-01533-2.
Manikandan, P., and V. Vasugi. 2022. “Powder as a precursor material in synthesizing ecofriendly ternary blended geopolymer potential utilization of waste glass matrix.” J. Cleaner Prod. 355 (Jun): 131860. https://doi.org/10.1016/j.jclepro.2022.131860.
Morsy, M. S., S. H. Alsayed, Y. Al-Salloum, and T. Almusallam. 2014. “Effect of sodium silicate to sodium hydroxide ratios on strength and microstructure of fly ash geopolymer binder.” Arab. J. Sci. Eng. 39 (6): 4333–4339. https://doi.org/10.1007/s13369-014-1093-8.
Mousavinejad, S. H., and M. Sammak. 2022. “An assessment of the effect of Na2SiO3/NaOH ratio, NaOH solution concentration, and aging on the fracture properties of ultra-high-performance geopolymer concrete: The application of the work of fracture and size effect methods.” Structures 39 (May): 434–443. https://doi.org/10.1016/j.istruc.2022.03.045.
Mustafa, A. M., A. Bakri, H. Kamarudin, M. Bnhussain, I. K. Nizar, A. R. Rafiza, and Y. Zarina. 2012. “The processing, characterization, and properties of fly ash based geopolymer concrete.” Rev. Adv. Mat. Sci. 30 (1): 90–97.
Ouellet-Plamondon, C., and G. Habert. 2015. “25: Life cycle assessment (LCA) of alkali-activated cements and concretes.” In Handbook of alkali-activated cements, mortars and concretes, edited by F. Pacheco-Torgal, J. A. Labrincha, C. Leonelli, A. Palomo, and P. Chindaprasirt, 663–686. Oxford, UK: Woodhead.
Parathi, S., P. Nagarajan, and S. A. Pallikkara. 2021. “Ecofriendly geopolymer concrete: A comprehensive review.” Clean Technol. Environ. Policy 23 (6): 1701–1713. https://doi.org/10.1007/s10098-021-02085-0.
Pelletier, L., F. Winnefeld, and B. Lothenbach. 2010. “The ternary system Portland cement–calcium sulphoaluminate clinker–anhydrite: Hydration mechanism and mortar properties.” Cem. Concr. Compos. 32 (7): 497–507. https://doi.org/10.1016/j.cemconcomp.2010.03.010.
Pollery, C., S. M. Cramer, and R. V. De la Cruz. 1998. “Potential for usingwaste glass in portland cement concrete.” J. Mater. Civ. Eng. 10 (4): 210–219. https://doi.org/10.1061/(ASCE)0899-1561(1998)10:4(210).
Provis, J. L., and S. A. Bernal. 2014. “Geopolymers and related alkali-activated materials.” Annu. Rev. Mater. Res. 44 (1): 299–327. https://doi.org/10.1146/annurev-matsci-070813-113515.
Provis, J. L., A. Palomo, and C. Shi. 2015. “Advances in understanding alkali-activated materials.” Cem. Concr. Res. 78 (Part A): 110–125. https://doi.org/10.1016/j.cemconres.2015.04.013.
Provis, J. L., and J. S. J. Van Daventer. 2019. “Geopolymers and other alkali-activated materials.” In Lea’s chemistry of cement and concrete, edited by P. C. Hewlett and M. Liska, 5th ed. Amsterdam, Netherlands: Elsevier.
Puertas, F., M. Palacios, H. Manzano, and J. S. Dolado. 2011. “A model for the CASH gel formed in alkali-activated slag cements.” J. Eur. Ceram. Soc. 31 (12): 2043–2056. https://doi.org/10.1016/j.jeurceramsoc.2011.04.036.
Rashad, A. M., G. M. F. Essa, and H. A. Abdel-Gawwad. 2022. “An investigation of alkali-activated slag pastes containing recycled glass powder under the effect of elevated temperatures.” Environ. Sci. Pollut. Res. Int. 29 (19): 28647–28660. https://doi.org/10.1007/s11356-021-18365-7.
Saha, S., and C. Rajasekaran. 2017. “Enhancement of the properties of fly ash based geopolymer paste by incorporating ground granulated blast furnace slag.” Constr. Build. Mater. 146 (Aug): 615–620. https://doi.org/10.1016/j.conbuildmat.2017.04.139.
Samarakoon, M. H., P. G. Ranjith, and V. R. S. De Silva. 2020. “Effect of soda-lime glass powder on alkali-activated binders: Rheology, strength and microstructure characterization.” Constr. Build. Mater. 241 (Apr): 118013. https://doi.org/10.1016/j.conbuildmat.2020.118013.
Shoaei, P., F. Ameri, H. Reza Musaeei, T. Ghasemi, and C. B. Cheah. 2020. “Glass powder as a partial precursor in Portland cement and alkali-activated slag mortar: A comprehensive comparative study.” Constr. Build. Mater. 251 (Aug): 118991. https://doi.org/10.1016/j.conbuildmat.2020.118991.
Sun, Y., S. Zhang, A. V. Rahul, Y. Tao, F. Van Bockstaele, K. Dewettinck, G. Ye, and G. De Schutter. 2022. “Rheology of alkali-activated slag pastes: New insight from microstructural investigations by cryo-SEM.” Cem. Concr. Res. 157 (Jul): 106806. https://doi.org/10.1016/j.cemconres.2022.106806.
Tho-In, T., V. Sata, K. Boonserm, and P. Chindaprasirt. 2018. “Compressive strength and microstructure analysis of geopolymer paste using waste glass powder and fly ash.” J. Cleaner Prod. 172 (Jan): 2892–2898. https://doi.org/10.1016/j.jclepro.2017.11.125.
Vinai, R., and M. Soutsos. 2019. “Production of sodium silicate powder from waste glass cullet for alkali activation of alternative binders.” Cem. Concr. Res. 116 (Feb): 45–56. https://doi.org/10.1016/j.cemconres.2018.11.008.
Walkley, B., R. S. Nicolas, M. A. Sani, G. J. Rees, J. V. Hanna, J. S. J. Van Deventer, and J. L. Provis. 2015. “Stoichiometrically controlled C-(A)-S-H/N-A-S-H gel blends via alkali activation of synthetic precursors.” Adv. Appl. Ceram. 114 (7): 372–377. https://doi.org/10.1179/1743676115Y.0000000057.
Walkley, B., R. S. Nicolas, M. A. Sani, G. J. Rees, J. V. Hanna, J. S. J. Van Deventer, and J. L. Provis. 2016. “Phase evolution of C-(N)-A-S-H/N-A-S-H gel blends investigated via alkali-activation of synthetic calcium aluminosilicate precursors.” Cem. Concr. Res. 89 (Nov): 120–135. https://doi.org/10.1016/j.cemconres.2016.08.010.
Wang, J. Y., M. H. Zhang, W. Li, K. S. Chia, and R. J. Y. Liew. 2012. “Stability of cenospheres in lightweight cement composites in terms of alkali-silica reaction.” Cem. Concr. Res. 42 (5): 721–727. https://doi.org/10.1016/j.cemconres.2012.02.010.
Wedding, P. A., and D. L. Kantro. 1980. “Influence of water-reducing admixtures on properties of cement paste—A miniature slump test.” Cem. Concr. Aggregates 2 (2): 95. https://doi.org/10.1520/CCA10190J.
Wen, Z.-Y., J. Yan, and S.-H. Yin. 2011. “Rheological characteristics of sodium silicate solution and its effects on the performance of geopolymer slurry.” J. Build. Mater 14 (6): 723–729. https://doi.org/10.3969/j.issn.1007-9629.2011.06.001.
Wu, M., W. Shen, X. Xiong, L. Zhao, Z. Yu, H. Sun, G. Xu, Q. Zhao, G. Wang, and W. Zhang. 2023. “Effects of the phosphogypsum on the hydration and microstructure of alkali activated slag pastes.” Constr. Build. Mater. 368 (Mar): 130391. https://doi.org/10.1016/j.conbuildmat.2023.130391.
Xiao, R., Y. Ma, X. Jiang, M. Zhang, Y. Zhang, Y. Wang, B. Huang, and Q. He. 2020. “Strength, microstructure, efflorescence behavior and environmental impacts of waste glass geopolymers cured at ambient temperature.” J. Cleaner Prod. 252 (Apr): 119610. https://doi.org/10.1016/j.jclepro.2019.119610.
Xu, Z., J. Yue, G. Pang, R. Li, P. Zhang, and S. Xu. 2021. “Influence of the activator concentration and solid/liquid ratio on the strength and shrinkage characteristics of alkali-activated slag geopolymer pastes.” In Advances in civil engineering. New York: Hindawi. https://doi.org/10.1155/2021/6631316.
Zhang, B., P. He, and C. S. Poon. 2020a. “Optimizing the use of recycled glass materials in alkali activated cement (AAC) based mortars.” J. Cleaner Prod. 255 (May): 120228. https://doi.org/10.1016/j.jclepro.2020.120228.
Zhang, J., C. Shi, Z. Zhang, and Z. Ou. 2017a. “Durability of alkali-activated materials in aggressive environments: A review on recent studies.” Constr. Build. Mater. 152 (Oct): 598–613. https://doi.org/10.1016/j.conbuildmat.2017.07.027.
Zhang, S., A. Keulen, K. Arbi, and G. Ye. 2017b. “Waste glass as partial mineral precursor in alkali-activated slag/fly ash system.” Cem. Concr. Res. 102 (Dec): 29–40. https://doi.org/10.1016/j.cemconres.2017.08.012.
Zhang, Y., R. Xiao, X. Jiang, W. Li, X. Zhu, and B. Huang. 2020b. “Effect of particle size and curing temperature on mechanical and microstructural properties of waste glass-slag-based and waste glass-fly ash-based geopolymers.” J. Cleaner Prod. 273 (Nov): 122970. https://doi.org/10.1016/j.jclepro.2020.122970.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 36Issue 6June 2024

History

Received: Jun 16, 2023
Accepted: Nov 20, 2023
Published online: Mar 23, 2024
Published in print: Jun 1, 2024
Discussion open until: Aug 23, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Student, Dept. of Structural Engineering and Building Construction, Federal Univ. of Ceara, Pici Campus, Fortaleza 60440-900, Brazil (corresponding author). ORCID: https://orcid.org/0000-0002-4588-1011. Email: [email protected]
André R. Chaves [email protected]
Civil Engineer, Dept. of Structural Engineering and Building Construction, Federal Univ. of Ceara, Pici Campus, Fortaleza 60440-900, Brazil. Email: [email protected]
Clédson L. Araújo [email protected]
Civil Engineer, Dept. of Structural Engineering and Building Construction, Federal Univ. of Ceara, Pici Campus, Fortaleza 60440-900, Brazil. Email: [email protected]
Heloina N. Costa, Ph.D. [email protected]
Professor, Civil Engineering Dept., Crateús Campus, Federal Univ. of Ceara, Crateús 63700-000, Brazil. Email: [email protected]
Professor, Dept. of Structural Engineering and Building Construction, Federal Univ. of Ceara, Pici Campus, Fortaleza 60440-900, Brazil. ORCID: https://orcid.org/0000-0001-6394-1164. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share