Abstract

Biotreatment has the potential to be used in restoration and conservation of stone-cultural relics, but less research has been focused on the anisotropic strength of rock with biotreated cracks. In this study, a series of Brazilian splitting tests (BSTs) was conducted on the intact disc sandstone specimens to generate mimicking natural cracks. A specifically designed biocementing system was then adopted to form effective biocementation between the two halves of the specimen, as indicated by microimages. The sandstone specimens with a biotreated crack were then subjected to BSTs at different loading angles. The apparent tensile strength (ATS) of the biotreated specimen can reach and even exceed that of the intact specimen, with low anisotropy. Furthermore, four failure modes are identified based on optical photos. The aforementioned findings reveal that the biotreatment is a remarkable method for repairing cracks of stone-cultural relics.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors would like to acknowledge the financial support from the National Nature Science Foundation of China (Grant Nos. 52108303, 52078085, and 52178313) and Chongqing Talents Program (Grant No. cstc2021ycjh-bgzxm0051). Huanran Wu acknowledges the support from the China Postdoctoral Science Foundation (Grant No. 2021M693741) and the Natural Science Foundation of Chongqing, China (Grant No. cstc2020jcyj-bshX0111). We would also like to thank Dr. Y. Yang, Dr. X. He, Mr. W. T. Xiao, Mr. X. M. Zhang, and Mr. B. Y. Wu for the assistance in the specimen preparation, the biocementing process, and the mechanical experiments. Finally, special thanks to the assistance in specimens and instruments from the Academy of Dazu Rock Carvings and the Analytical and Testing Center of Chongqing University, respectively.

References

ASTM. 2016. Standard test method for splitting tensile strength of intact rock core specimens. ASTM D3967-16. West Conshohocken, PA: ASTM.
Cardoso, R., E. Arbabzadeh, J. T. de Lima, I. Flores-Colen, M. F. C. Pereira, M. Costa e Silva, S. O. D. Duarte, and G. A. Monteiro. 2021. “The influence of stone joints width and roughness on the efficiency of biocementation sealing.” Constr. Build. Mater. 283: 122743. https://doi.org/10.1016/j.conbuildmat.2021.122743.
Cheng, L., M. A. Shahin, and J. Chu. 2019. “Soil bio-cementation using a new one-phase low-pH injection method.” Acta Geotech. 14 (3): 615–626. https://doi.org/10.1007/s11440-018-0738-2.
Cheng, Y.-J., C.-S. Tang, X.-H. Pan, B. Liu, Y.-H. Xie, Q. Cheng, and B. Shi. 2021. “Application of microbial induced carbonate precipitation for loess surface erosion control.” Eng. Geol. 294: 106387. https://doi.org/10.1016/j.enggeo.2021.106387.
Choi, S.-G., I. Chang, M. Lee, J.-H. Lee, J.-T. Han, and T.-H. Kwon. 2020. “Review on geotechnical engineering properties of sands treated by microbially induced calcium carbonate precipitation (MICP) and biopolymers.” Constr. Build. Mater. 246: 118415. https://doi.org/10.1016/j.conbuildmat.2020.118415.
Chu, J., V. Ivanov, M. Naeimi, V. Stabnikov, and H.-L. Liu. 2014. “Optimization of calcium-based bioclogging and biocementation of sand.” Acta Geotech. 9 (2): 277–285. https://doi.org/10.1007/s11440-013-0278-8.
Cuthbert, M. O., L. A. McMillan, S. Handley-Sidhu, M. S. Riley, D. J. Tobler, and V. R. Phoenix. 2013. “A field and modeling study of fractured rock permeability reduction using microbially induced calcite precipitation.” Environ. Sci. Technol. 47 (23): 13637–13643. https://doi.org/10.1021/es402601g.
Dai, F., and K. Xia. 2010. “Loading rate dependence of tensile strength anisotropy of barre granite.” Pure Appl. Geophys. 167 (11): 1419–1432. https://doi.org/10.1007/s00024-010-0103-3.
Dai, F., and K. W. Xia. 2013. “Laboratory measurements of the rate dependence of the fracture toughness anisotropy of Barre granite.” Int. J. Rock Mech. Min. Sci. 60: 57–65. https://doi.org/10.1016/j.ijrmms.2012.12.035.
DeJong, J. T., et al. 2013. “Biogeochemical processes and geotechnical applications: Progress, opportunities and challenges.” Géotechnique 63 (4): 287–301. https://doi.org/10.1680/geot.SIP13.P.017.
Feng, G., Y. Kang, X. Wang, Y. Hu, and X. Li. 2020. “Investigation on the failure characteristics and fracture classification of shale under Brazilian test conditions.” Rock Mech. Rock Eng. 53 (7): 3325–3340. https://doi.org/10.1007/s00603-020-02110-6.
Gao, K., H. Lin, M. T. Suleiman, P. Bick, T. Babuska, X. Li, J. Helm, D. G. Brown, and N. Zouari. 2023. “Shear and tensile strength measurements of CaCO3 cemented bonds between glass beads treated by microbially induced carbonate precipitation.” J. Geotech. Geoenviron. Eng. 149 (1): 04022117. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002927.
Gao, Y., L. Hang, J. He, and J. Chu. 2019. “Mechanical behaviour of biocemented sands at various treatment levels and relative densities.” Acta Geotech. 14 (3): 697–707. https://doi.org/10.1007/s11440-018-0729-3.
Ham, S.-M., A. Martinez, G. Han, and T.-H. Kwon. 2022. “Grain-scale tensile and shear strengths of glass beads cemented by MICP.” J. Geotech. Geoenviron. Eng. 148 (9): 04022068. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002863.
He, W., and A. Hayatdavoudi. 2018. “A comprehensive analysis of fracture initiation and propagation in sandstones based on micro-level observation and digital imaging correlation.” J. Petrol. Sci. Eng. 164: 75–86. https://doi.org/10.1016/j.petrol.2018.01.041.
Huang, M., K. Xu, C. Xu, G. Jin, and S. Guo. 2021. “Micromechanical properties of biocemented shale soils analyzed using nanoindentation test.” J. Geotech. Geoenviron. Eng. 147 (12): 04021157. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002653.
Ivanov, V., and J. Chu. 2008. “Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ.” Rev. Environ. Sci. Bio/Technol. 7 (2): 139–153. https://doi.org/10.1007/s11157-007-9126-3.
Jiang, N.-J., C.-S. Tang, L.-Y. Yin, Y.-H. Xie, and B. Shi. 2019. “Applicability of microbial calcification method for sandy-slope surface erosion control.” J. Mater. Civ. Eng. 31 (11): 04019250. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002897.
Kashizadeh, E., A. Mukherjee, and A. Tordesillas. 2021. “Experimental and numerical investigations on confined granular systems stabilized by bacterial cementation.” Int. J. Geomech. 21 (1): 04020244. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001891.
Kirkland, C. M., A. Thane, R. Hiebert, R. Hyatt, J. Kirksey, A. B. Cunningham, R. Gerlach, L. Spangler, and A. J. Phillips. 2020. “Addressing wellbore integrity and thief zone permeability using microbially-induced calcium carbonate precipitation (MICP): A field demonstration.” J. Petrol. Sci. Eng. 190: 107060. https://doi.org/10.1016/j.petrol.2020.107060.
Lee, M., M. G. Gomez, M. El Kortbawi, and K. Ziotopoulou. 2022. “Effect of light biocementation on the liquefaction triggering and post-triggering behavior of loose sands.” J. Geotech. Geoenviron. Eng. 148 (1): 04021170. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002707.
Li, M., L. Li, U. Ogbonnaya, K. Wen, A. Tian, and F. Amini. 2016. “Influence of fiber addition on mechanical properties of MICP-treated sand.” J. Mater. Civ. Eng. 28 (4): 04015166. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001442.
Li, Z., G. Xu, P. Huang, X. Zhao, and Y. Fu. 2017. “Experimental study on anisotropic properties of Silurian silty slates.” Geotech. Geol. Eng. 35 (4): 1755–1766. https://doi.org/10.1007/s10706-017-0206-z.
Lin, H., M. T. Suleiman, D. G. Brown, and E. Kavazanjian Jr. 2016a. “Mechanical behavior of sands treated by microbially induced carbonate precipitation.” J. Geotech. Geoenviron. Eng. 142 (2): 04015066. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001383.
Lin, H., M. T. Suleiman, H. M. Jabbour, and D. G. Brown. 2018. “Bio-grouting to enhance axial pull-out response of pervious concrete ground improvement piles.” Can. Geotech. J. 55 (1): 119–130. https://doi.org/10.1139/cgj-2016-0438.
Lin, H., M. T. Suleiman, H. M. Jabbour, D. G. Brown, and E. Kavazanjian Jr. 2016b. “Enhancing the axial compression response of pervious concrete ground improvement piles using biogrouting.” J. Geotech. Geoenviron. Eng. 142 (10): 04016045. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001515.
Liu, L., H. Liu, A. W. Stuedlein, T. M. Evans, and Y. Xiao. 2019. “Strength, stiffness, and microstructure characteristics of biocemented calcareous sand.” Can. Geotech. J. 56 (10): 1502–1513. https://doi.org/10.1139/cgj-2018-0007.
Lv, C., C. Zhu, C.-S. Tang, Q. Cheng, L.-Y. Yin, and B. Shi. 2021. “Effect of fiber reinforcement on the mechanical behavior of bio-cemented sand.” Geosynth. Int. 28 (2): 195–205. https://doi.org/10.1680/jgein.20.00037.
Ma, G., X. He, X. Jiang, H. Liu, J. Chu, and Y. Xiao. 2021. “Strength and permeability of bentonite-assisted biocemented coarse sand.” Can. Geotech. J. 57 (7): 969–981. https://doi.org/10.1139/cgj-2020-0045.
Ma, G., Y. Xiao, W. Fan, J. Chu, and H. Liu. 2022. “Mechanical properties of biocement formed by microbially induced carbonate precipitation.” Acta Geotech. 17 (11): 4905–4919. https://doi.org/10.1007/s11440-022-01584-8.
Mahawish, A., A. Bouazza, and W. P. Gates. 2018. “Effect of particle size distribution on the bio-cementation of coarse aggregates.” Acta Geotech. 13 (4): 1019–1025. https://doi.org/10.1007/s11440-017-0604-7.
Minto, J. M., E. MacLachlan, G. El Mountassir, and R. J. Lunn. 2016. “Rock fracture grouting with microbially induced carbonate precipitation.” Water Resour. Res. 52 (11): 8810–8827. https://doi.org/10.1002/2016wr018884.
Montoya, B. M., and J. T. DeJong. 2015. “Stress–strain behavior of sands cemented by microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 141 (6): 04015019. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001302.
Montoya, B. M., J. T. DeJong, and R. W. Boulanger. 2013. “Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation.” Géotechnique 63 (4): 302–312. https://doi.org/10.1680/geot.SIP13.P.019.
Mujah, D., M. A. Shahin, L. Cheng, and A. Karrech. 2021. “Experimental and analytical study on geomechanical behavior of biocemented sand.” Int. J. Geomech. 21 (8): 04021126. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002105.
Na, S., W. Sun, M. D. Ingraham, and H. Yoon. 2017. “Effects of spatial heterogeneity and material anisotropy on the fracture pattern and macroscopic effective toughness of Mancos Shale in Brazilian tests.” J. Geophys. Res. Solid Earth 122 (8): 6202–6230. https://doi.org/10.1002/2016jb013374.
Nafisi, A., B. M. Montoya, and T. M. Evans. 2020. “Shear strength envelopes of biocemented sands with varying particle size and cementation level.” J. Geotech. Geoenviron. Eng. 146 (3): 04020002. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002201.
Ou, X., X. Zhang, H. Feng, C. Zhang, X. Zhou, and L. Wang. 2020. “Static and dynamic Brazilian tests on layered slate considering the bedding directivity.” Adv. Civ. Eng. 2020: 8860558. https://doi.org/10.1155/2020/8860558.
Pan, X., J. Chu, Y. Yang, and L. Cheng. 2020. “A new biogrouting method for fine to coarse sand.” Acta Geotech. 15 (1): 1–16. https://doi.org/10.1007/s11440-019-00872-0.
Perras, M. A., and M. S. Diederichs. 2014. “A review of the tensile strength of rock: Concepts and testing.” Geotech. Geol. Eng. 32 (2): 525–546. https://doi.org/10.1007/s10706-014-9732-0.
Que, X., Z. Zhu, L. Zhou, Z. Niu, and H. Huang. 2022. “Strength and failure characteristics of an irregular columnar jointed rock mass under polyaxial stress conditions.” Rock Mech. Rock Eng. 55 (11): 7223–7242. https://doi.org/10.1007/s00603-022-03023-2.
Rodriguez-Navarro, C., M. Rodriguez-Gallego, K. Ben Chekroun, and M. T. Gonzalez-Muñoz. 2003. “Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization.” Appl. Environ. Microbiol. 69 (4): 2182–2193. https://doi.org/10.1128/AEM.69.4.2182-2193.2003.
Song, C., D. Elsworth, Y. Jia, and J. Lin. 2022. “Permeable rock matrix sealed with microbially-induced calcium carbonate precipitation: Evolutions of mechanical behaviors and associated microstructure.” Eng. Geol. 304: 106697. https://doi.org/10.1016/j.enggeo.2022.106697.
Sun, X., L. Miao, R. Chen, H. Wang, L. Wu, and J. Xia. 2021. “Liquefaction resistance of biocemented loess soil.” J. Geotech. Geoenviron. Eng. 147 (11): 04021117. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002638.
Sun, X., L. Miao, and C. Wang. 2019. “Glucose addition improves the bio-remediation efficiency for crack repair.” Mater. Struct. 52 (6): 111. https://doi.org/10.1617/s11527-019-1410-5.
Tobler, D. J., J. M. Minto, G. El Mountassir, R. J. Lunn, and V. R. Phoenix. 2018. “Microscale analysis of fractured rock sealed with microbially induced CaCO3 precipitation: Influence on hydraulic and mechanical performance.” Water Resour. Res. 54 (10): 8295–8308. https://doi.org/10.1029/2018wr023032.
Wang, Y.-J., N.-J. Jiang, X.-L. Han, and Y.-J. Du. 2023. “Shear behavior of biochar-amended biocemented calcareous sand treated by biostimulation.” Int. J. Geomech. 23 (1): 04022260. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002634.
Whiffin, V. S., L. A. van Paassen, and M. P. Harkes. 2007. “Microbial carbonate precipitation as a soil improvement technique.” Geomicrobiol. J. 24 (5): 417–423. https://doi.org/10.1080/01490450701436505.
Won, J., B. Jeong, J. Lee, S. Dai, and S. E. Burns. 2021. “Facilitation of microbially induced calcite precipitation with kaolinite nucleation.” Géotechnique 71 (8): 728–734. https://doi.org/10.1680/jgeot.19.P.324.
Wu, C., J. Chu, S. Wu, and W. Guo. 2019a. “Quantifying the permeability reduction of biogrouted rock fracture.” Rock Mech. Rock Eng. 52 (3): 947–954. https://doi.org/10.1007/s00603-018-1669-9.
Wu, C., J. Chu, S. Wu, and Y. Hong. 2019b. “3D characterization of microbially induced carbonate precipitation in rock fracture and the resulted permeability reduction.” Eng. Geol. 249: 23–30. https://doi.org/10.1016/j.enggeo.2018.12.017.
Wu, C., Z. Song, B.-A. Jang, H.-G. Song, and P. Ni. 2021a. “Strength improvement of rock fractures and aggregates cemented with bio-slurry.” Mater. Lett. 305: 130866. https://doi.org/10.1016/j.matlet.2021.130866.
Wu, H., W. Wu, W. Liang, F. Dai, H. Liu, and Y. Xiao. 2023. “3D DEM modeling of biocemented sand with fines as cementing agents.” Int. J. Numer. Anal. Methods Geomech. 47: 212–240. https://doi.org/10.1002/nag.3466.
Wu, S., B. Li, and J. Chu. 2021b. “Stress-dilatancy behavior of MICP-treated sand.” Int. J. Geomech. 21 (3): 04020264. https://doi.org/10.1061/(ASCE)gm.1943-5622.0001923.
Xiao, P., H. Liu, A. W. Stuedlein, T. M. Evans, and Y. Xiao. 2019a. “Effect of relative density and biocementation on cyclic response of calcareous sand.” Can. Geotech. J. 56 (12): 1849–1862. https://doi.org/10.1139/cgj-2018-0573.
Xiao, P., H. Liu, Y. Xiao, A. W. Stuedlein, and T. M. Evans. 2018. “Liquefaction resistance of bio-cemented calcareous sand.” Soil Dyn. Earthquake Eng. 107: 9–19. https://doi.org/10.1016/j.soildyn.2018.01.008.
Xiao, Y., H. Chen, A. W. Stuedlein, T. M. Evans, J. Chu, L. Cheng, N. Jiang, H. Lin, H. Liu, and H. M. Aboel-Naga. 2020. “Restraint of particle breakage by biotreatment method.” J. Geotech. Geoenviron. Eng. 146 (11): 04020123. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002384.
Xiao, Y., X. He, T. M. Evans, A. W. Stuedlein, and H. Liu. 2019b. “Unconfined compressive and splitting tensile strength of basalt fiber-reinforced biocemented sand.” J. Geotech. Geoenviron. Eng. 145 (9): 04019048. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002108.
Xiao, Y., X. He, A. W. Stuedlein, J. Chu, T. M. Evans, and L. A. van Paassen. 2022a. “Crystal growth of MICP through microfluidic chip tests.” J. Geotech. Geoenviron. Eng. 148 (5): 06022002. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002756.
Xiao, Y., X. He, W. Wu, A. W. Stuedlein, T. M. Evans, J. Chu, H. Liu, L. A. van Paassen, and H. Wu. 2021a. “Kinetic biomineralization through microfluidic chip tests.” Acta Geotech. 16 (10): 3229–3237. https://doi.org/10.1007/s11440-021-01205-w.
Xiao, Y., X. He, M. Zaman, G. Ma, and C. Zhao. 2022b. “Review of strength improvements of biocemented soils.” Int. J. Geomech. 22 (11): 03122001. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002565.
Xiao, Y., G. Ma, H. Wu, H. Lu, and M. Zaman. 2022c. “Rainfall-induced erosion of biocemented graded slopes.” Int. J. Geomech. 22 (1): 04021256. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002239.
Xiao, Y., A. W. Stuedlein, X. He, F. Han, T. M. Evans, Z. Pan, H. Lin, J. Chu, and L. A. van Paassen. 2021b. “Lateral responses of a model pile in biocemented sand.” Int. J. Geomech. 21 (11): 06021027. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002179.
Xiao, Y., Y. Wang, S. Wang, T. M. Evans, A. Stuedlein, J. Chu, C. Zhao, H. Wu, and H. Liu. 2021c. “Homogeneity and mechanical behaviors of sands improved by a temperature-controlled one-phase MICP method.” Acta Geotech. 16 (5): 1417–1427. https://doi.org/10.1007/s11440-020-01122-4.
Xiao, Y., W. Xiao, H. Wu, Y. Liu, and H. Liu. 2023. “Fracture of interparticle MICP bonds under compression.” Int. J. Geomech. 23 (3): 04022316. https://doi.org/10.1061/IJGNAI.GMENG-8282.
Xiao, Y., C. Zhao, Y. Sun, S. Wang, H. Wu, H. Chen, and H. Liu. 2021d. “Compression behavior of MICP-treated sand with various gradations.” Acta Geotech. 16 (5): 1391–1400. https://doi.org/10.1007/s11440-020-01116-2.
Xiong, J., K. Liu, L. Liang, X. Liu, and C. Zhang. 2019. “Investigation of influence factors of the fracture toughness of shale: A case study of the Longmaxi formation shale in Sichuan Basin, China.” Geotech. Geol. Eng. 37 (4): 2927–2934. https://doi.org/10.1007/s10706-019-00809-0.
Xu, G., M. Gutierrez, C. He, and W. Meng. 2020. “Discrete element modeling of transversely isotropic rocks with non-continuous planar fabrics under Brazilian test.” Acta Geotech. 15 (8): 2277–2304. https://doi.org/10.1007/s11440-020-00919-7.
Yan, S., N. Xie, J. Liu, L. Li, L. Peng, and S. Jiang. 2022. “Salt weathering of sandstone under dehydration and moisture absorption cycles: An experimental study on the sandstone from Dazu rock carvings.” Earth Surf. Processes Landforms 47 (4): 977–993. https://doi.org/10.1002/esp.5298.
Yang, P., E. Kavazanjian, and N. Neithalath. 2019. “Particle-scale mechanisms in undrained triaxial compression of biocemented sands: Insights from 3D DEM simulations with flexible boundary.” Int. J. Geomech. 19 (4): 04019009. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001346.
Zamani, A., and B. M. Montoya. 2019. “Undrained cyclic response of silty sands improved by microbial induced calcium carbonate precipitation.” Soil Dyn. Earthquake Eng. 120: 436–448. https://doi.org/10.1016/j.soildyn.2019.01.010.
Zhang, J., J. Huang, J. Liu, S. Jiang, L. Li, and M. Shao. 2018. “Surface weathering characteristics and degree of Niche of Sakyamuni Entering Nirvana at Dazu Rock Carvings, China.” Bull. Eng. Geol. Environ. 78 (6): 3891–3899. https://doi.org/10.1007/s10064-018-1424-1.
Zhao, Q., L. Li, C. Li, M. Li, F. Amini, and H. Zhang. 2014. “Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease.” J. Mater. Civ. Eng. 26 (12): 04014094. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001013.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 23Issue 8August 2023

History

Received: Jan 24, 2023
Accepted: Mar 23, 2023
Published online: Jun 13, 2023
Published in print: Aug 1, 2023
Discussion open until: Nov 13, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, Key Laboratory of New Technology for Construction of Cities in Mountain Area, State Key Laboratory of Coal Mine Disaster Dynamics and Control, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. ORCID: https://orcid.org/0000-0002-9411-4660. Email: [email protected]
Hanghang Zhao [email protected]
Master’s Candidate, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Huanran Wu, M.ASCE [email protected]
Associate Professor, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China (corresponding author). Email: [email protected]
Xiang Jiang, Ph.D. [email protected]
Professor, School of Materials Science and Engineering, Chongqing Jiaotong Univ., Chongqing 400074, China. Email: [email protected]
Hanlong Liu [email protected]
Professor and Vice President, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Strength and Kaolin Nucleation in Biotreated Coarse Sand, International Journal of Geomechanics, 10.1061/IJGNAI.GMENG-9138, 24, 5, (2024).
  • Constitutive Modeling for Biocemented Calcareous Sands, International Journal of Geomechanics, 10.1061/IJGNAI.GMENG-9089, 24, 8, (2024).
  • Tensile Strength and Fracture of Interparticle MICP Bonds, International Journal of Geomechanics, 10.1061/IJGNAI.GMENG-10233, 24, 10, (2024).
  • Numerical Investigation on the Grouting Penetration Process of Quick-Setting Grout in Discrete Fractured Rock Mass Based on the Combined Finite–Discrete-Element Method, International Journal of Geomechanics, 10.1061/IJGNAI.GMENG-9247, 24, 3, (2023).
  • Strengths and Infinite Slope Stability of Unsaturated Soils, International Journal of Geomechanics, 10.1061/IJGNAI.GMENG-9021, 23, 12, (2023).
  • Acoustic Emission of Biocemented Calcareous Sand Base, International Journal of Geomechanics, 10.1061/IJGNAI.GMENG-8817, 23, 9, (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share