Abstract

Microbially induced calcium carbonate precipitation (MICP) is a novel cementation technique. The improved responses of biotreated soils are mainly attributed to interparticle MICP bonds and have been extensively studied by element-scale tests. However, the particle-scale mechanism of MICP bonds has not been fully understood, especially when considering the discrepancy in particle morphology. In this paper, we carried out a series of particle-scale tensile tests on biotreated quartz sands and glass beads and found that tensile strength of the MICP bonds increased with an increase in cementation level or a decrease in regularity of particle shape. We also interpreted the statistical distribution of the tensile strength and tensile failure modes. The results of this study could provide a solid base for theoretic modeling of biotreated soils.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and codes generated or used during the study appear in the published article. The additional images or videos of particle-scale tensile tests, the verification of calcium carbonate during the MICP-treated process, and the detailed calculations of the Weibull distribution function for fractures of the MICP bonds are available from the corresponding author upon reasonable request.

Acknowledgments

The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 52108303, 52078085, and 52378325) and Chongqing Planning and Natural Resources Bureau (Grant no. KJ-2021048). The authors thank Mr. H. H. Zhao and Mr. W. T. Xiao for their help during the experiments and suggestions on the analyses of MICP reinforcement mechanisms. Finally, special thanks to the Analytical and Testing Center of the Chongqing University for the instruments used in this study.

References

Alshibli, K. A., and M. B. Cil. 2018. “Influence of particle morphology on the friction and dilatancy of sand.” J. Geotech. Geoenviron. Eng. 144 (3): 04017118. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001841.
Altuhafi, F. N., M. R. Coop, and V. N. Georgiannou. 2016. “Effect of particle shape on the mechanical behavior of natural sands.” J. Geotech. Geoenviron. Eng. 142 (12): 04016071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001569.
Cheng, L., M. A. Shahin, and J. Chu. 2019. “Soil bio-cementation using a new one-phase low-pH injection method.” Acta Geotech. 14 (3): 615–626. https://doi.org/10.1007/s11440-018-0738-2.
Cho, G.-C., J. Dodds, and J. C. Santamarina. 2006. “Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands.” J. Geotech. Geoenviron. Eng. 132 (5): 591–602. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(591).
Choi, S.-G., S.-S. Park, S. Wu, and J. Chu. 2017. “Methods for calcium carbonate content measurement of biocemented soils.” J. Mater. Civil. Eng. 29 (11): 06017015. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002064.
DeJong, J. T., M. B. Fritzges, and K. Nüsslein. 2006. “Microbially induced cementation to control sand response to undrained shear.” J. Geotech. Geoenviron. Eng. 132 (11): 1381–1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381).
DeJong, J. T., B. M. Mortensen, B. C. Martinez, and D. C. Nelson. 2010. “Bio-mediated soil improvement.” Ecol. Eng. 36 (2): 197–210. https://doi.org/10.1016/j.ecoleng.2008.12.029.
Fan, W., Y. Xiao, B. Cao, J. Shi, H. Wu, and S. Shu. 2024. “Comparison of bioaugmentation and biostimulation approaches for biocementation in soil column experiments.” J. Build. Eng. 82: 108335. https://doi.org/10.1016/j.jobe.2023.108335.
Frossard, E., W. Hu, C. Dano, and P.-Y. Hicher. 2012. “Rockfill shear strength evaluation: A rational method based on size effects.” Geotechnique 62 (5): 415–427. https://doi.org/10.1680/geot.10.P.079.
Gao, K., H. Lin, M. T. Suleiman, P. Bick, T. Babuska, X. Li, J. Helm, G. Brown Derick, and N. Zouari. 2023. “Shear and tensile strength measurements of CaCO3 cemented bonds between glass beads treated by microbially induced carbonate precipitation.” J. Geotech. Geoenviron. Eng. 149 (1): 04022117. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002927.
Gao, Y., L. Hang, J. He, and J. Chu. 2019. “Mechanical behaviour of biocemented sands at various treatment levels and relative densities.” Acta Geotech. 14 (3): 697–707. https://doi.org/10.1007/s11440-018-0729-3.
Ghasemi, P., and B. M. Montoya. 2022. “Field implementation of microbially induced calcium carbonate precipitation for surface erosion reduction of a coastal plain sandy slope.” J. Geotech. Geoenviron. Eng. 148 (9): 04022071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002836.
Gowthaman, S., H. Koizumi, K. Nakashima, and S. Kawasaki. 2023. “Field experimentation of bio-cementation using low-cost cementation media for preservation of slope surface.” Case Stud. Constr. Mater. 18: e02086. https://doi.org/10.1016/j.cscm.2023.e02086.
Guo, P., and X. Su. 2007. “Shear strength, interparticle locking, and dilatancy of granular materials.” Can. Geotech. J. 44 (5): 579–591. https://doi.org/10.1139/T07-010.
Ham, S.-M., A. Martinez, G. Han, and T.-H. Kwon. 2022. “Grain-scale tensile and shear strengths of glass beads cemented by MICP.” J. Geotech. Geoenviron. Eng. 148 (9): 04022068. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002863.
Han, Z., X. Cheng, and Q. Ma. 2016. “An experimental study on dynamic response for MICP strengthening liquefiable sands.” Earthq. Eng. Eng. Vib. 15 (4): 673–679. https://doi.org/10.1007/s11803-016-0357-6.
Keramatikerman, M., and A. Chegenizadeh. 2017. “Effect of particle shape on monotonic liquefaction: Natural and crushed sand.” Exp. Mech. 57 (8): 1341–1348. https://doi.org/10.1007/s11340-017-0313-z.
Lakkimsetti, B., and G. M. Latha. 2023. “Role of grain size and shape on undrained monotonic shear, liquefaction, and post-liquefaction behaviour of granular ensembles.” Soil Dyn. Earthq. Eng. 173: 108086. https://doi.org/10.1016/j.soildyn.2023.108086.
Lee, C., H. S. Suh, B. Yoon, and T. S. Yun. 2017. “Particle shape effect on thermal conductivity and shear wave velocity in sands.” Acta Geotech. 12 (3): 615–625. https://doi.org/10.1007/s11440-017-0524-6.
Li, S., C. Li, D. Yao, and S. Wang. 2020. “Feasibility of microbially induced carbonate precipitation and straw checkerboard barriers on desertification control and ecological restoration.” Ecol. Eng. 152: 105883. https://doi.org/10.1016/j.ecoleng.2020.105883.
Li, Y. 2013. “Effects of particle shape and size distribution on the shear strength behavior of composite soils.” Bull. Eng. Geol. Environ. 72 (3–4): 371–381. https://doi.org/10.1007/s10064-013-0482-7.
Liu, L., H. Liu, A. W. Stuedlein, T. M. Evans, and Y. Xiao. 2019. “Strength, stiffness, and microstructure characteristics of biocemented calcareous sand.” Can. Geotech. J. 56 (10): 1502–1513. https://doi.org/10.1139/cgj-2018-0007.
Ma, G., Q. Fang, Y. Xiao, J. Chu, and H. Liu. 2022a. “Microscopic investigation on bonding fracture of biocemented sand from novel in situ Brazil splitting tests.” Acta Geotech. 17 (11): 4935–4951. https://doi.org/10.1007/s11440-022-01682-7.
Ma, G., Y. Xiao, W. Fan, J. Chu, and H. Liu. 2022b. “Mechanical properties of biocement formed by microbially induced carbonate precipitation.” Acta Geotech. 17 (11): 4905–4919. https://doi.org/10.1007/s11440-022-01584-8.
Meng, L., P. Lu, S. Li, J. Zhao, and T. Li. 2012. “Shape and size effects on the packing density of binary spherocylinders.” Powder Technol. 228: 284–294. https://doi.org/10.1016/j.powtec.2012.05.033.
Minto, J. M., R. J. Lunn, and G. El Mountassir. 2019. “Development of a reactive transport model for field-scale simulation of microbially induced carbonate precipitation.” Water Resour. Res. 55 (8): 7229–7245. https://doi.org/10.1029/2019wr025153.
Montoya, B. M., J. T. DeJong, and R. W. Boulanger. 2013. “Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation.” Géotechnique 63 (4): 302–312. https://doi.org/10.1680/geot.SIP13.P.019.
Naeimi, M., J. Chu, M. Khosroshahi, and L. Kashi Zenouzi. 2023. “Soil stabilization for dunes fixation using microbially induced calcium carbonate precipitation.” Geoderma 429: 116183. https://doi.org/10.1016/j.geoderma.2022.116183.
O’Donnell, S. T., and E. Kavazanjian Jr. 2015. “Stiffness and dilatancy improvements in uncemented sands treated through MICP.” J. Geotech. Geoenviron. Eng. 141 (11): 02815004. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001407.
Ovalle, C., E. Frossard, C. Dano, W. Hu, S. Maiolino, and P. Y. Hicher. 2014. “The effect of size on the strength of coarse rock aggregates and large rockfill samples through experimental data.” Acta Mech. 225 (6): 2199–2216. https://doi.org/10.1007/s00707-014-1127-z.
Shi, J., Y. Xiao, J. A. H. Carraro, H. Li, H. Liu, and J. Chu. 2024. “Anisotropic small strain stiffness of lightly biocemented sand considering grain morphology.” Géotechnique. https://doi.org/10.1680/jgeot.22.00350.
Tang, C.-S., B. Shi, and L.-Z. Zhao. 2010. “Interfacial shear strength of fiber reinforced soil.” Geotext. Geomembr. 28 (1): 54–62. https://doi.org/10.1016/j.geotexmem.2009.10.001.
Trustrum, K., and A. D. S. Jayatilaka. 1983. “Applicability of Weibull analysis for brittle materials.” J. Mater. Sci. 18 (9): 2765–2770. https://doi.org/10.1007/bf00547593.
Wang, T., L. Ma, M. Wang, Z. Li, X. Zhang, and H. Geng. 2022. “Effects of particle shape on dynamic mechanical behaviours of coral sand under one-dimensional compression.” Eng. Geol. 304: 106624. https://doi.org/10.1016/j.enggeo.2022.106624.
Wang, W., and M. R. Coop. 2016. “An investigation of breakage behaviour of single sand particles using a high-speed microscope camera.” Géotechnique 66 (12): 984–998. https://doi.org/10.1680/jgeot.15.P.247.
Wang, X. R., J. L. Tao, R. T. Bao, T. Tran, and S. Tucker-Kulesza. 2018. “Surficial soil stabilization against water-induced erosion using polymer-modified microbially induced carbonate precipitation.” J. Mater. Civil. Eng. 30 (10): 04018267. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002490.
Wei, L. M., and J. Yang. 2014. “On the role of grain shape in static liquefaction of sand-fines mixtures.” Géotechnique 64 (9): 740–745. https://doi.org/10.1680/geot.14.T.013.
Weibull, W. 1951. “A statistical distribution function of wide applicability.” J. Appl. Mech. 18 (3): 293–297. https://doi.org/10.1115/1.4010337.
Whiffin, V. S., L. A. van Paassen, and M. P. Harkes. 2007. “Microbial carbonate precipitation as a soil improvement technique.” Geomicrobiol. J. 24 (5): 417–423. https://doi.org/10.1080/01490450701436505.
Wu, H., J. Shi, Y. Xiao, J. He, and J. Chu. 2023a. “Microbial mineralization: A promising approach for stone cultural relics restoration.” Biogeotechnics 1 (4): 100053. https://doi.org/10.1016/j.bgtech.2023.100053.
Wu, H., W. Wu, W. Liang, F. Dai, H. Liu, and Y. Xiao. 2023b. “3D DEM modeling of biocemented sand with fines as cementing agents.” Int. J. Numer. Anal. Met. 47 (2): 212–240. https://doi.org/10.1002/nag.3466.
Wu, S., B. Li, and J. Chu. 2021. “Stress-dilatancy behavior of MICP-treated sand.” Int. J. Geomech. 21 (3): 04020264. https://doi.org/10.1061/(ASCE)gm.1943-5622.0001923.
Xiao, P., H. Liu, A. W. Stuedlein, T. M. Evans, and Y. Xiao. 2019a. “Effect of relative density and biocementation on cyclic response of calcareous sand.” Can. Geotech. J. 56 (12): 1849–1862. https://doi.org/10.1139/cgj-2018-0573.
Xiao, P., H. Liu, Y. Xiao, A. W. Stuedlein, and T. M. Evans. 2018. “Liquefaction resistance of bio-cemented calcareous sand.” Soil Dyn. Earthq. Eng. 107: 9–19. https://doi.org/10.1016/j.soildyn.2018.01.008.
Xiao, Y., H. Chen, A. W. Stuedlein, T. M. Evans, J. Chu, L. Cheng, N. Jiang, H. Lin, H. Liu, and H. M. Aboel-Naga. 2020a. “Restraint of particle breakage by biotreatment method.” J. Geotech. Geoenviron. Eng. 146 (11): 04020123. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002384.
Xiao, Y., X. He, T. M. Evans, A. W. Stuedlein, and H. Liu. 2019b. “Unconfined compressive and splitting tensile strength of basalt fiber-reinforced biocemented sand.” J. Geotech. Geoenviron. Eng. 145 (9): 04019048. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002108.
Xiao, Y., H. Li, J. Shi, J. Hu, L. Zhang, and H. Liu. 2023a. “Effect of particle size on small strain stiffness of biotreated sands.” Transp. Geotech. 41: 101027. https://doi.org/10.1016/j.trgeo.2023.101027.
Xiao, Y., Y. Ling, J. Shi, Y. Sun, and H. Liu. 2022a. “Breakage and morphology of sands in drained shearing.” Int. J. Geomech. 22 (9): 04022140. https://doi.org/10.1061/(ASCE)GM.1943-5622.000252.
Xiao, Y., L. Long, T. M. Evans, H. Zhou, H. Liu, and A. W. Stuedlein. 2019c. “Effect of particle shape on stress-dilatancy responses of medium-dense sands.” J. Geotech. Geoenviron. Eng. 145 (2): 04018105. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001994.
Xiao, Y., G. Ma, X. He, H. Liu, and M. Zaman. 2024a. “Strength and kaolin nucleation in biotreated coarse sand.” Int. J. Geomech. 24 (5): 04024055. https://doi.org/10.1061/IJGNAI.GMENG-9138.
Xiao, Y., G. Ma, B. Nan, and J. S. McCartney. 2020b. “Thermal conductivity of granular soil mixtures with contrasting particle shapes.” J. Geotech. Geoenviron. Eng. 146 (5): 06020004. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002243.
Xiao, Y., G. Ma, H. Wu, H. Lu, and M. Zaman. 2022b. “Rainfall-induced erosion of biocemented graded slopes.” Int. J. Geomech. 22 (1): 04021256. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002239.
Xiao, Y., A. W. Stuedlein, J. Ran, T. M. Evans, L. Cheng, H. Liu, L. A. van Paassen, and J. Chu. 2019d. “Effect of particle shape on strength and stiffness of biocemented glass beads.” J. Geotech. Geoenviron. Eng. 145 (11): 06019016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002165.
Xiao, Y., Y. Wang, S. Wang, T. M. Evans, A. W. Stuedlein, J. Chu, C. Zhao, H. Wu, and H. Liu. 2021a. “Homogeneity and mechanical behaviors of sands improved by a temperature-controlled one-phase MICP method.” Acta Geotech. 16 (5): 1417–1427. https://doi.org/10.1007/s11440-020-01122-4.
Xiao, Y., B. Wu, X. Jiang, L. Wang, and C. S. Desai. 2024b. “Avalanches and fractures in biotreated calcareous sands.” Int. J. Geomech. 24 (5): 04024061. https://doi.org/10.1061/IJGNAI.GMENG-9514.
Xiao, Y., W. Xiao, H. Wu, Y. Liu, and H. Liu. 2023b. “Fracture of interparticle MICP bonds under compression.” Int. J. Geomech. 23 (3): 04022316. https://doi.org/10.1061/IJGNAI.GMENG-8282.
Xiao, Y., W. Xiao, H. Wu, and M. Zaman. 2024c. “Tensile strengths and size effects of biocemented sands.” Int. J. Geomech. 24 (5): 06024004. https://doi.org/10.1061/IJGNAI.GMENG-9353.
Xiao, Y., Z. Yuan, J. Lin, J. Ran, B. Dai, J. Chu, and H. Liu. 2019e. “Effect of particle shape of glass beads on the strength and deformation of cemented sands.” Acta Geotech. 14 (6): 2123–2131. https://doi.org/10.1007/s11440-019-00830-w.
Xiao, Y., Z. Zhang, A. W. Stuedlein, and T. M. Evans. 2021b. “Liquefaction modeling for biocemented calcareous sand.” J. Geotech. Geoenviron. Eng. 147 (12): 04021149. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002666.
Xiao, Y., C. Zhao, Y. Sun, S. Wang, H. Wu, H. Chen, and H. Liu. 2021c. “Compression behavior of MICP-treated sand with various gradations.” Acta Geotech. 16 (5): 1391–1400. https://doi.org/10.1007/s11440-020-01116-2.
Xiao, Y., H. Zhao, H. Wu, X. Jiang, and H. Liu. 2023c. “Anisotropic fracture of sandstone with biotreated cracks.” Int. J. Geomech. 23 (8): 06023012. https://doi.org/10.1061/IJGNAI.GMENG-8821.
Yang, J., and X. D. Luo. 2015. “Exploring the relationship between critical state and particle shape for granular materials.” J. Mech. Phys. Solids 84: 196–213. https://doi.org/10.1016/j.jmps.2015.08.001.
Yang, Y., S. Han, H. Liu, H. Chen, and S. Jiang. 2023. “Influence of particle size distribution on biocarbonation method produced microbial restoration mortar for conservation of sandstone cultural relics.” Biogeotechnics 1 (4): 100051. https://doi.org/10.1016/j.bgtech.2023.100051.
Zamani, A., P. Xiao, T. Baumer, T. J. Carey, B. Sawyer, J. T. DeJong, and R. W. Boulanger. 2021. “Mitigation of liquefaction triggering and foundation settlement by MICP treatment.” J. Geotech. Geoenviron. Eng. 147 (10): 04021099. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002596.
Zeng, C., Y. Veenis, A. Hall Caitlyn, S. Young Elizabeth, R. L. van der Star Wouter, J.-j. Zheng, and A. van Paassen Leon. 2021. “Experimental and numerical analysis of a field trial application of microbially induced calcite precipitation for ground stabilization.” J. Geotech. Geoenviron. Eng. 147 (7): 05021003. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002545.
Zhang, Y., X. Hu, Y. Wang, and N. Jiang. 2023. “A critical review of biomineralization in environmental geotechnics: Applications, trends, and perspectives.” Biogeotechnics 1 (1): 100003. https://doi.org/10.1016/j.bgtech.2023.100003.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 24Issue 10October 2024

History

Received: Jan 24, 2024
Accepted: Apr 29, 2024
Published online: Aug 9, 2024
Published in print: Oct 1, 2024
Discussion open until: Jan 9, 2025

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Yang Xiao, M.ASCE [email protected]
Professor, Key Laboratory of New Technology for Construction of Cities in Mountain Area, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Master’s Candidate, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. ORCID: https://orcid.org/0009-0002-7928-1134. Email: [email protected]
Huanran Wu, M.ASCE [email protected]
Associate Professor, School of Civil Engineering, Chongqing Univ., Chongqing 400045. China (corresponding author). Email: [email protected]
Musharraf Zaman, F.ASCE [email protected]
David Ross Boyd Professor and Aaron Alexander Professor, School of Civil Engineering and Environmental Science, Univ. of Oklahoma, 202 W. Boyd St., Rm. 334, Norman, OK 73019; Alumni Chair Professor of Petroleum and Geological Engineering, Univ. of Oklahoma, 202 W. Boyd St., Rm. 334, Norman, OK 73019. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share