Abstract

Microbially induced calcite precipitation is an environment-friendly method for improving stiffness, strength, and dilatancy of loose or weak soils. Although many experimental studies have been performed on biocemented sands, few efforts have been devoted to establishing constitutive models for such materials. A critical-state-based bounding-surface model for biocemented sands was proposed in this research. An exponential equation of the plastic deviatoric strain was used to describe the degradation in a biocemented bond. The established model was applied to predict the drained triaxial test results of biocemented calcareous sands at different confining pressures and biocementation levels. We found that the current proposed biocemented model can well predict the softening and dilation of biocemented calcareous sands.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and codes generated or used during the study appear in the published paper. The detailed derivation process on the degradation mechanism of biocements, the unit loading vector, the state-dependent dilatancy equation, the unit vector related to the state-dependent dilatancy equation, and the plastic modulus are available from the corresponding author upon reasonable request.

Acknowledgments

The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (Grant nos. 41831282, 52078085, and 51922024) and the Natural Science Foundation of Chongqing, China (Grant no. cstc2019jcyjjqX0014). The authors thank Dr. L. Liu for providing the experimental data. The authors also thank Mr. B.Y. Wu, Mr. Q.Y. Fang, Mr. H. Zhao, and Mr. F. Liang for the suggestions provided during the theoretical derivation.

References

Achal, V., and A. Mukherjee. 2015. “A review of microbial precipitation for sustainable construction.” Constr. Build. Mater. 93: 1224–1235. https://doi.org/10.1016/j.conbuildmat.2015.04.051.
Achal, V., A. Mukherjee, D. Kumari, and Q. Zhang. 2015. “Biomineralization for sustainable construction—A review of processes and applications.” Earth Sci. Rev. 148: 1–17. https://doi.org/10.1016/j.earscirev.2015.05.008.
Bardet, J. P. 1986. “Bounding surface plasticity model for sands.” J. Eng. Mech. 112 (11): 1198–1217. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:11(1198).
Been, K., and M. G. Jefferies. 1985. “A state parameter for sands.” Géotechnique 35 (2): 99–112. https://doi.org/10.1680/geot.1985.35.2.99.
Chen, J. 2017. “A monotonic bounding surface critical state model for clays.” Acta Geotech. 12 (1): 225–230. https://doi.org/10.1007/s11440-016-0439-7.
Chen, Q., B. Indraratna, J. P. Carter, and S. Nimbalkar. 2016. “Isotropic–kinematic hardening model for coarse granular soils capturing particle breakage and cyclic loading under triaxial stress space.” Can. Geotech. J. 53 (4): 646–658. https://doi.org/10.1139/cgj-2015-0166.
Cheng, L., R. Cord-Ruwisch, and M. A. Shahin. 2013. “Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation.” Can. Geotech. J. 50 (1): 81–90. https://doi.org/10.1139/cgj-2012-0023.
Cheshomi, A., S. Mansouri, and M. A. Amoozegar. 2018. “Improving the shear strength of quartz sand using the microbial method.” Geomicrobiol. J. 35 (9): 749–756. https://doi.org/10.1080/01490451.2018.1462868.
Cui, M.-J., J.-J. Zheng, J. Chu, C.-C. Wu, and H.-J. Lai. 2021. “Bio-mediated calcium carbonate precipitation and its effect on the shear behaviour of calcareous sand.” Acta Geotech. 16 (5): 1377–1389. https://doi.org/10.1007/s11440-020-01099-0.
Cui, M.-J., J.-J. Zheng, R.-J. Zhang, H.-J. Lai, and J. Zhang. 2017. “Influence of cementation level on the strength behaviour of bio-cemented sand.” Acta Geotech. 12 (5): 971–986. https://doi.org/10.1007/s11440-017-0574-9.
Dafalias, Y. F. 1986. “Bounding surface plasticity. I: Mathematical foundation and hypoplasticity.” J. Eng. Mech. 112 (9): 966–987. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:9(966).
Dafalias, Y. F., and M. T. Manzari. 2004. “Simple plasticity sand model accounting for fabric change effects.” J. Eng. Mech. 130 (6): 622–634. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:6(622).
Feng, K., and B. M. Montoya. 2016. “Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading.” J. Geotech. Geoenviron. Eng. 142 (1): 04015057. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001379.
Gai, X., and M. Sánchez. 2019. “An elastoplastic mechanical constitutive model for microbially mediated cemented soils.” Acta Geotech. 14 (3): 709–726. https://doi.org/10.1007/s11440-018-0721-y.
Gao, Y., L. Hang, J. He, and J. Chu. 2019. “Mechanical behaviour of biocemented sands at various treatment levels and relative densities.” Acta Geotech. 14 (3): 697–707. https://doi.org/10.1007/s11440-018-0729-3.
Ghasemi, P., and B. M. Montoya. 2022. “Field implementation of microbially induced calcium carbonate precipitation for surface erosion reduction of a coastal plain sandy slope.” J. Geotech. Geoenviron. Eng. 148 (9): 04022071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002836.
Gomez, M. G., C. E. Hunt, B. C. Martinez, J. T. Dejong, D. W. Major, and S. M. Dworatzek. 2015. “Field-scale bio-cementation tests to improve sands.” Proc. Inst. Civ. Eng. Ground Improv. 168 (6): 206–216. https://doi.org/10.1680/grim.13.00052.
He, J., and J. Chu. 2014. “Undrained responses of microbially desaturated sand under monotonic loading.” J. Geotech. Geoenviron. Eng. 140 (5): 04014003. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001082.
Horpibulsuk, S., M. D. Liu, D. S. Liyanapathirana, and J. Suebsuk. 2010. “Behaviour of cemented clay simulated via the theoretical framework of the Structured Cam Clay model.” Comput. Geotech. 37 (1): 1–9. https://doi.org/10.1016/j.compgeo.2009.06.007.
Hu, C., and H. Liu. 2015. “A new bounding-surface plasticity model for cyclic behaviors of saturated clay.” Commun. Nonlinear Sci. Numer. Simul. 22 (1–3): 101–119. https://doi.org/10.1016/j.cnsns.2014.10.023.
Indraratna, B., S. Nimbalkar, M. Coop, and S. W. Sloan. 2014. “A constitutive model for coal-fouled ballast capturing the effects of particle degradation.” Comput. Geotech. 61: 96–107. https://doi.org/10.1016/j.compgeo.2014.05.003.
Jefferies, M. G. 1993. “Nor-sand: A simple critical state model for sand.” Géotechnique 43 (1): 91–103. https://doi.org/10.1680/geot.1993.43.1.91.
Jiang, J., and Y. Sun. 2021. “Experimental evaluation and stress–fractional modeling of the state-dependent behavior of rockfill.” Int. J. Geomech. 21 (7): 04021109. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002070.
Jockovic, S., and M. Vukicevic. 2017. “Bounding surface model for overconsolidated clays with new state parameter formulation of hardening rule.” Comput. Geotech. 83: 16–29. https://doi.org/10.1016/j.compgeo.2016.10.013.
Kan, M. E., H. A. Taiebat, and N. Khalili. 2014. “Simplified mapping rule for bounding surface simulation of complex loading paths in granular materials.” Int. J. Geomech. 14 (2): 239–253. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000307.
Kasama, K., H. Ochiai, and N. Yasufuku. 2000. “On the stress–strain behaviour of lightly cemented clay based on an extended critical state concept.” Soils Found. 40 (5): 37–47. https://doi.org/10.3208/sandf.40.5_37.
Kashizadeh, E., A. Mukherjee, and A. Tordesillas. 2021. “Experimental and numerical investigations on confined granular systems stabilized by bacterial cementation.” Int. J. Geomech. 21 (1): 04020244. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001891.
Khalili, N., M. A. Habte, and S. Valliappan. 2005. “A bounding surface plasticity model for cyclic loading of granular soils.” Int. J. Numer. Methods Eng. 63 (14): 1939–1960. https://doi.org/10.1002/nme.1351.
Lashkari, A. 2009. “On the modeling of the state dependency of granular soils.” Comput. Geotech. 36 (7): 1237–1245. https://doi.org/10.1016/j.compgeo.2009.06.003.
Li, X. S. 2002. “A sand model with state-dapendent dilatancy.” Géotechnique 52 (3): 173–186. https://doi.org/10.1680/geot.2002.52.3.173.
Li, X.-S., Y. F. Dafalias, and Z.-L. Wang. 1999. “State-dependent dilatancy in critical-state constitutive modelling of sand.” Can. Geotech. J. 36 (4): 599–611. https://doi.org/10.1139/t99-029.
Lin, H., M. T. Suleiman, D. G. Brown Jr, and E. Kavazanjian. 2016. “Mechanical behavior of sands treated by microbially induced carbonate precipitation.” J. Geotech. Geoenviron. Eng. 142 (2): 04015066. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001383.
Liu, H. L., Y. Xiao, J. Y. Liu, and G. Y. Li. 2010. “A new elliptic-parabolic yield surface model revised by an adaptive criterion for granular soils.” Sci. China Technol. Sci. 53 (8): 2152–2159. https://doi.org/10.1007/s11431-010-4014-4.
Liu, L. 2018. “Experimental study on mechanical properties of MICP-treated calcareous sand.” Ph.D. thesis, College of Civil and Transportation Engineering, Hohai Univ.
Liu, L., H. Liu, A. W. Stuedlein, T. M. Evans, and Y. Xiao. 2019. “Strength, stiffness, and microstructure characteristics of biocemented calcareous sand.” Can. Geotech. J. 56 (10): 1502–1513. https://doi.org/10.1139/cgj-2018-0007.
Liu, L., H. Liu, Y. Xiao, J. Chu, P. Xiao, and Y. Wang. 2018. “Biocementation of calcareous sand using soluble calcium derived from calcareous sand.” Bull. Eng. Geol. Environ. 77 (4): 1781–1791. https://doi.org/10.1007/s10064-017-1106-4.
Liu, M. D., and B. N. Indraratna. 2011. “General strength criterion for geomaterials including anisotropic effect.” Int. J. Geomech. 11 (3): 251–262. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000082.
Liu, Y., and F. Dai. 2018. “A damage constitutive model for intermittent jointed rocks under cyclic uniaxial compression.” Int. J. Rock Mech. Min. Sci. 103: 289–301. https://doi.org/10.1016/j.ijrmms.2018.01.046.
Lü, X., M. Huang, and J. Qian. 2018. “Influences of loading direction and intermediate principal stress ratio on the initiation of strain localization in cross-anisotropic sand.” Acta Geotech. 13 (3): 619–633. https://doi.org/10.1007/s11440-017-0582-9.
Lü, X., D. Xue, B. Zhang, and Q. Zhong. 2022. “Experimental studies and constitutive modeling of static liquefaction instability in sand–clay mixtures.” Int. J. Geomech. 22 (9): 04022149. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002472.
Manzari, M. T., and Y. F. Dafalias. 1997. “A critical state two-surface plasticity model for sands.” Géotechnique 47 (2): 255–272. https://doi.org/10.1680/geot.1997.47.2.255.
Montoya, B. M., and J. T. DeJong. 2015. “Stress–strain behavior of sands cemented by microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 141 (6): 04015019. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001302.
Montoya, B. M., J. T. DeJong, and R. W. Boulanger. 2013. “Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation.” Géotechnique 63 (4): 302–312. https://doi.org/10.1680/geot.SIP13.P.019.
Morales, L., E. Romero, C. Jommi, E. Garzón, and A. Giménez. 2015. “Feasibility of a soft biological improvement of natural soils used in compacted linear earth construction.” Acta Geotech. 10 (1): 157–171. https://doi.org/10.1007/s11440-014-0344-x.
Moug, D. M., et al. 2022. “Field trials of microbially induced desaturation in low-plasticity silt.” J. Geotech. Geoenviron. Eng. 148 (11): 05022005. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002890.
Mujah, D., M. A. Shahin, and L. Cheng. 2017. “State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization.” Geomicrobiol. J. 34 (6): 524–537. https://doi.org/10.1080/01490451.2016.1225866.
Mujah, D., M. A. Shahin, L. Cheng, and A. Karrech. 2021. “Experimental and analytical study on geomechanical behavior of biocemented sand.” Int. J. Geomech. 21 (8): 04021126. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002105.
Nafisi, A., B. M. Montoya, and T. M. Evans. 2020. “Shear strength envelopes of biocemented sands with varying particle size and cementation level.” J. Geotech. Geoenviron. Eng. 146 (3): 04020002. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002201.
Nafisi, A., S. Safavizadeh, and B. M. Montoya. 2019. “Influence of microbe and enzyme-induced treatments on cemented sand shear response.” J. Geotech. Geoenviron. Eng. 145 (9): 06019008. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002111.
Nguyen, L. D., B. Fatahi, and H. Khabbaz. 2014. “A constitutive model for cemented clays capturing cementation degradation.” Int. J. Plast. 56 (5): 1–18. https://doi.org/10.1016/j.ijplas.2014.01.007.
Nguyen, L., B. Fatahi, and H. Khabbaz. 2017. “Development of a constitutive model to predict the behavior of cement-treated clay during cementation degradation: C3 model.” Int. J. Geomech. 17 (7): 04017010. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000863.
Nova, R., R. Castellanza, and C. Tamagnini. 2003. “A constitutive model for bonded geomaterials subject to mechanical and/or chemical degradation.” Int. J. Numer. Anal. Methods Geomech. 27 (9): 705–732. https://doi.org/10.1002/nag.294.
Pakbaz, M. S., H. Behzadipour, and G. R. Ghezelbash. 2018. “Evaluation of shear strength parameters of sandy soils upon microbial treatment.” Geomicrobiol. J. 35 (8): 721–726. https://doi.org/10.1080/01490451.2018.1455766.
Pham, V. P., L. A. van Paassen, W. R. L. van der Star, and T. J. Heimovaara. 2018. “Evaluating strategies to improve process efficiency of denitrification-based MICP.” J. Geotech. Geoenviron. Eng. 144 (8): 04018049. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001909.
Proto, C. J., J. T. DeJong, and D. C. Nelson. 2016. “Biomediated permeability reduction of saturated sands.” J. Geotech. Geoenviron. Eng. 142 (12): 4016073. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001558.
Rahimi, M., D. Chan, and A. Nouri. 2016. “Bounding surface constitutive model for cemented sand under monotonic loading.” Int. J. Geomech. 16 (2): 04015049. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000534.
Riveros, G. A., and A. Sadrekarimi. 2020. “Effect of microbially induced cementation on the instability and critical state behaviours of Fraser River sand.” Can. Geotech. J. 57 (12): 1870–1880. https://doi.org/10.1139/cgj-2019-0514.
Roscoe, K. H., and J. B. Burland. 1968. “On the generalised stress–strain behaviour of ‘wet’ clay.” In Engineering plasticity, edited by J. Heyman and F. A. Leckie, 535–609. Cambridge, UK: Cambridge University Press.
Roscoe, K. H., A. N. Schofield, and A. Thurairajah. 1963. “Yielding of clays in states wetter than critical.” Géotechnique 13 (3): 211–240. https://doi.org/10.1680/geot.1963.13.3.211.
Roscoe, K. H., A. N. Schofield, and C. P. Wroth. 1958. “On the yielding of soils.” Géotechnique 8 (1): 22–53. https://doi.org/10.1680/geot.1958.8.1.22.
Sasaki, T., and R. Kuwano. 2016. “Undrained cyclic triaxial testing on sand with non-plastic fines content cemented with microbially induced CaCO3.” Soils Found. 56 (3): 485–495. https://doi.org/10.1016/j.sandf.2016.04.014.
Schofield, A. N., and C. P. Wroth. 1968. Critical state soil mechanics. New York: McGraw-Hill.
Sharma, M., N. Satyam, and K. R. Reddy. 2022. “Comparison of improved shear strength of biotreated sand using different ureolytic strains and sterile conditions.” Soil Use Manage. 38 (1): 771–789. https://doi.org/10.1111/sum.12690.
Shi, J., Y. Xiao, J. A. H. Carraro, H. Li, H. Liu, and J. Chu. 2023. “Anisotropic small-strain stiffness of lightly biocemented sand considering grain morphology.” Géotechnique 1–14. https://doi.org/10.1680/jgeot.22.00350.
Shu, S., B. Muhunthan, and X. S. Li. 2011. “Numerical simulation of the influence of initial state of sand on element tests and micropile performance.” Int. J. Geomech. 11 (5): 370–380. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000095.
Suebsuk, J., S. Horpibulsuk, and M. D. Liu. 2010. “Modified structured Cam Clay: A generalised critical state model for destructured, naturally structured and artificially structured clays.” Comput. Geotech. 37 (7): 956–968. https://doi.org/10.1016/j.compgeo.2010.08.002.
Sun, Y., Y. Gao, S. Song, and C. Chen. 2020. “Three-dimensional state-dependent fractional plasticity model for soils.” Int. J. Geomech. 20 (2): 04019161. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001557.
Terzis, D., R. Bernier-Latmani, and L. Laloui. 2016. “Fabric characteristics and mechanical response of bio-improved sand to various treatment conditions.” Géotechnique Lett. 6 (1): 50–57. https://doi.org/10.1680/jgele.15.00134.
van Paassen, L. A., C. M. Daza, M. Staal, D. Y. Sorokin, W. van der Zon, and M. C. M. van Loosdrecht. 2010. “Potential soil reinforcement by biological denitrification.” Ecol. Eng. 36: 168–175. https://doi.org/10.1016/j.ecoleng.2009.03.026.
Venda Oliveira, P. J., M. S. da Costa, J. N. P. Costa, and M. F. Nobre. 2015. “Comparison of the ability of two bacteria to improve the behavior of sandy soil.” J. Mater. Civ. Eng. 27 (1): 06014025. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001138.
Wang, K., J. Chu, S. Wu, and J. He. 2021a. “Stress–strain behaviour of bio-desaturated sand under undrained monotonic and cyclic loading.” Géotechnique 71 (6): 521–533. https://doi.org/10.1680/jgeot.19.P.080.
Wang, L., J. Chu, S. Wu, and H. Wang. 2021b. “Stress–dilatancy behavior of cemented sand: Comparison between bonding provided by cement and biocement.” Acta Geotech. 16 (5): 1441–1456. https://doi.org/10.1007/s11440-021-01146-4.
Wang, Y., P. Guo, F. Dai, X. Li, Y. Zhao, and Y. Liu. 2018a. “Behavior and modeling of fiber-reinforced clay under triaxial compression by combining the superposition method with the energy-based homogenization technique.” Int. J. Geomech. 18 (12): 04018172. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001313.
Wang, Z., N. Zhang, J. Ding, C. Lu, and Y. Jin. 2018b. “Experimental study on wind erosion resistance and strength of sands treated with microbial-induced calcium carbonate precipitation.” Adv. Mater. Sci. Eng. 2018: 3463298. https://doi.org/10.1155/2018/3463298.
Whiffin, V. S., L. A. van Paassen, and M. P. Harkes. 2007. “Microbial carbonate precipitation as a soil improvement technique.” Geomicrobiol. J. 24 (5): 417–423. https://doi.org/10.1080/01490450701436505.
Wu, H., W. Wu, W. Liang, F. Dai, H. Liu, and Y. Xiao. 2023. “3D DEM modeling of biocemented sand with fines as cementing agents.” Int. J. Numer. Anal. Methods Geomech. 47: 212–240. https://doi.org/10.1002/nag.3466.
Wu, S., B. Li, and J. Chu. 2021. “Stress–dilatancy behavior of MICP-treated sand.” Int. J. Geomech. 21 (3): 04020264. https://doi.org/10.1061/(ASCE)gm.1943-5622.0001923.
Xiao, P., H. Liu, A. W. Stuedlein, T. M. Evans, and Y. Xiao. 2019a. “Effect of relative density and biocementation on cyclic response of calcareous sand.” Can. Geotech. J. 56 (12): 1849–1862. https://doi.org/10.1139/cgj-2018-0573.
Xiao, Y., Y. Ling, J. Shi, Y. Sun, and H. Liu. 2022a. “Breakage and morphology of sands in drained shearing.” Int. J. Geomech. 22 (9): 04022140. https://doi.org/10.1061/(ASCE)GM.1943-5622.000252.
Xiao, Y., H. Liu, Y. Chen, and J. Jiang. 2014a. “Bounding surface model for rockfill materials dependent on density and pressure under triaxial stress conditions.” J. Eng. Mech. 140 (4): 04014002. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000702.
Xiao, Y., H. Liu, Y. Chen, and J. Jiang. 2014b. “Bounding surface plasticity model incorporating the state pressure index for rockfill materials.” J. Eng. Mech. 140 (11): 04014087. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000802.
Xiao, Y., H. Liu, Y. Chen, J. Jiang, and W. Zhang. 2015. “State-dependent constitutive model for rockfill materials.” Int. J. Geomech. 15 (5): 04014075. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000421.
Xiao, Y., Z. Sun, A. W. Stuedlein, C. Wang, Z. Wu, and Z. Zhang. 2020. “Bounding surface plasticity model for stress–strain and grain-crushing behaviors of rockfill materials.” Geosci. Front. 11 (2): 495–510. https://doi.org/10.1016/j.gsf.2019.06.010.
Xiao, Y., Y. Wang, C. S. Desai, X. Jiang, and H. Liu. 2019b. “Strength and deformation responses of biocemented sands using a temperature-controlled method.” Int. J. Geomech. 19 (11): 04019120. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001497.
Xiao, Y., W. Xiao, H. Wu, Y. Liu, and H. Liu. 2023a. “Fracture of interparticle MICP bonds under compression.” Int. J. Geomech. 23 (3): 04022316. https://doi.org/10.1061/IJGNAI.GMENG-8282.
Xiao, Y., H. Zhao, H. Wu, X. Jiang, and H. Liu. 2023b. “Anisotropic fracture of sandstone with biotreated cracks.” Int. J. Geomech. 23 (8): 06023012. https://doi.org/10.1061/IJGNAI.GMENG-8821.
Xiao, Y., W. Zhou, J. Shi, H. Lu, and Z. Zhang. 2022b. “Erosion of biotreated field-scale slopes under rainfalls.” J. Perform. Constr. Facil 36 (3): 04022030. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001732.
Xue, X., X. Yang, W. Zhang, and F. Dai. 2014. “A soil damage model expressed by a double scalar and its applications.” Acta Mech. 225 (9): 2667–2683. https://doi.org/10.1007/s00707-014-1097-1.
Yang, P., E. Kavazanjian, and N. Neithalath. 2019. “Particle-scale mechanisms in undrained triaxial compression of biocemented sands: Insights from 3D DEM simulations with flexible boundary.” Int. J. Geomech. 19 (4): 04019009. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001346.
Yapage, N. N. S., and D. S. Liyanapathirana. 2019. “A review of constitutive models for cement-treated clay.” Int. J. Geotech. Eng. 13 (6): 525–537. https://doi.org/10.1080/19386362.2017.1370878.
Yu, F. 2019. “Influence of particle breakage on behavior of coral sands in triaxial tests.” Int. J. Geomech. 19 (12): 04019131. https://doi.org/10.1061/(asce)gm.1943-5622.0001524.
Yu, H. S. 1998. “CASM: A unified state parameter model for clay and sand.” Int. J. Numer. Anal. Methods Geomech. 22 (8): 621–653. https://doi.org/10.1002/(SICI)1096-9853(199808)22:8%26lt;621::AID-NAG937%3E3.0.CO;2-8.
Yu, H.-S., C. Khong, and J. Wang. 2007. “A unified plasticity model for cyclic behaviour of clay and sand.” Mech. Res. Commun. 34 (2): 97–114. https://doi.org/10.1016/j.mechrescom.2006.06.010.
Zeng, C., Y. Veenis, C. A. Hall, E. S. Young, R. L. van der Star Wouter, J.-j. Zheng, and L. A. van Paassen. 2021. “Experimental and numerical analysis of a field trial application of microbially induced calcite precipitation for ground stabilization.” J. Geotech. Geoenviron. Eng. 147 (7): 05021003. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002545.
Zhang, J., and M. Luo. 2020. “Dilatancy and critical state of calcareous sand incorporating particle breakage.” Int. J. Geomech. 20 (4): 04020030. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001637.
Zhao, C., Y. Xiao, X. He, H. Liu, Y. Liu, and J. Chu. 2023. “Influence of injection methods on bio-mediated precipitation of carbonates in fracture-mimicking microfluidic chip.” Géotechnique 1–13. https://doi.org/10.1680/jgeot.23.00155.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 24Issue 8August 2024

History

Received: Apr 6, 2023
Accepted: Mar 25, 2024
Published online: Jun 10, 2024
Published in print: Aug 1, 2024
Discussion open until: Nov 10, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Professor, Key Laboratory of New Technology for Construction of Cities in Mountain Area, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China (corresponding author). ORCID: https://orcid.org/0000-0002-9411-4660. Email: [email protected]
Hao Cui, S.M.ASCE [email protected]
Assistant Professor, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Musharraf Zaman, F.ASCE [email protected]
David Ross Boyd Professor and Aaron Alexander Professor, School of Civil Engineering and Environmental Science, and Alumni Chair Professor of Petroleum and Geological Engineering, Univ. of Oklahoma, 202 W. Boyd St., Rm. 334, Norman, OK 73019. Email: [email protected]
Jinquan Shi [email protected]
Associate Professor, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Associate Professor, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share