Abstract

Microbially induced carbonate precipitation (MICP) is an effective method for stabilizing sandy soil. However, this method is not effective for coarse sands. A kaolin-nucleating method was proposed in this study to improve the biotreatment of coarse sands. We comprehensively studied the effect of the kaolin concentration, the volume ratio of the bacterial solution to the cementation solution, the grouting interval between two slurry injections, and the bacterial density on the compressive strength of biotreated coarse sands. We found that the kaolin concentration and the bacterial density are positive factors for enhancing the compressive strength and there are also suitable values for the volume ratio of the bacterial solution to the cementation solution and the grouting interval to improve the biotreatment when other factors are specified. Interestingly, the biotreated condition for the specimen with the maximum strength was identical to that with the maximum ratio of the precipitate volume to the specimen void but different from that with the maximum calcium carbonate content.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and codes generated or used during the study appear in the published article. The detailed calculations on the fitting results, the additional test data on the mineral compositions of biotreated sands using the thermal gravity analysis, the detailed method for the determination of the kaolin content and calcium carbonate content, the scanning electron microscopy images of biotreated sands, and the optical images during the compressive strength tests are available from the corresponding author upon reasonable request.

Acknowledgments

The authors acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 51922024 and 52078085) and the Natural Science Foundation of Chongqing, China (Grant No. cstc2019jcyjjqX0014). The authors thank Mr. Y. Zhang for assisting in the preparation of clay, sand, bacteria, and cementation solution, the biotreatment of specimens, and compressive strength tests. In addition, the authors appreciate the thoughtful help from Dr. H. Wu during the preparation of the text. Finally, the valuable suggestions by Dr. J. Shi in discussions of the test results and the potential application in fields are also acknowledged.

References

Ahenkorah, I., M. M. Rahman, M. R. Karim, and P. R. Teasdale. 2020. “A comparison of mechanical responses for microbial- and enzyme-induced cemented sand.” Géotechnique Lett. 10 (4): 559–567. https://doi.org/10.1680/jgele.20.00061.
Akiyama, M., and S. Kawasaki. 2019. “Biogeochemical simulation of microbially induced calcite precipitation with Pararhodobacter sp. strain SO1.” Acta Geotech. 14 (3): 685–696. https://doi.org/10.1007/s11440-019-00784-z.
Al Imran, M., S. Kimura, K. Nakashima, N. Evelpidou, and S. Kawasaki. 2019. “Feasibility study of native ureolytic bacteria for biocementation towards coastal erosion protection by MICP method.” Appl. Sci. 9 (20): 4462. https://doi.org/10.3390/app9204462.
Al Imran, M., M. Shinmura, K. Nakashima, and S. Kawasaki. 2018. “Effects of various factors on carbonate particle growth using ureolytic bacteria.” Mater. Trans. 59 (9): 1520–1527. https://doi.org/10.2320/matertrans.M-M2018830.
Almajed, A., H. K. Tirkolaei, and E. Kavazanjian Jr. 2018. “Baseline investigation on enzyme-induced calcium carbonate precipitation.” J. Geotech. Geoenviron. Eng. 144 (11): 04018081. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001973.
Al Qabany, A., and K. Soga. 2013. “Effect of chemical treatment used in MICP on engineering properties of cemented soils.” Géotechnique 63 (4): 331–339. https://doi.org/10.1680/geot.SIP13.P.022.
Arab, M. G., H. Rohy, W. Zeiada, A. Almajed, and M. Omar. 2021. “One-phase EICP biotreatment of sand exposed to various environmental conditions.” J. Mater. Civ. Eng. 33 (3): 04020489. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003596.
Botusharova, S., D. Gardner, and M. Harbottle. 2020. “Augmenting microbially induced carbonate precipitation of soil with the capability to self-heal.” J. Geotech. Geoenviron. Eng. 146 (4): 04020010. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002214.
Buikema, N. D., B. E. Zwissler, E. A. Seagren, T. Oommen, and S. Vitton. 2018. “Stabilisation of iron mine tailings through biocalcification.” Environ. Geotech. 5 (2): 94–106. https://doi.org/10.1680/jenge.16.00006.
Burbank, M., T. Weaver, R. Lewis, T. Williams, B. Williams, and R. Crawford. 2013. “Geotechnical tests of sands following bioinduced calcite precipitation catalyzed by indigenous bacteria.” J. Geotech. Geoenviron. Eng. 139 (6): 928–936. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000781.
Burdalski, R. J., B. G. O. Ribeiro, M. G. Gomez, and D. Gorman-Lewis. 2022. “Mineralogy, morphology, and reaction kinetics of ureolytic bio-cementation in the presence of seawater ions and varying soil materials.” Sci. Rep. 12 (1): 17100. https://doi.org/10.1038/s41598-022-21268-3.
Cardoso, R., I. Pires, S. O. D. Duarte, and G. A. Monteiro. 2018. “Effects of clay’s chemical interactions on biocementation.” Appl. Clay Sci. 156: 96–103. https://doi.org/10.1016/j.clay.2018.01.035.
Chen, Y., Y. Gao, C. W. W. Ng, and H. Guo. 2021. “Bio-improved hydraulic properties of sand treated by soybean urease induced carbonate precipitation and its application Part 1: Water retention ability.” Transp. Geotech. 27: 100489. https://doi.org/10.1016/j.trgeo.2020.100489.
Cheng, L., and R. Cord-Ruwisch. 2012. “In situ soil cementation with ureolytic bacteria by surface percolation.” Ecol. Eng. 42: 64–72. https://doi.org/10.1016/j.ecoleng.2012.01.013.
Cheng, L., R. Cord-Ruwisch, and M. A. Shahin. 2013. “Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation.” Can. Geotech. J. 50 (1): 81–90. https://doi.org/10.1139/cgj-2012-0023.
Cheng, L., and M. A. Shahin. 2016. “Urease active bioslurry: A novel soil improvement approach based on microbially induced carbonate precipitation.” Can. Geotech. J. 53 (9): 1376–1385. https://doi.org/10.1139/cgj-2015-0635.
Cheng, L., M. A. Shahin, and J. Chu. 2019. “Soil bio-cementation using a new one-phase low-pH injection method.” Acta Geotech. 14 (3): 615–626. https://doi.org/10.1007/s11440-018-0738-2.
Cheng, L., M. A. Shahin, and R. Cord-Ruwisch. 2014. “Bio-cementation of sandy soil using microbially induced carbonate precipitation for marine environments.” Géotechnique 64 (12): 1010–1013. https://doi.org/10.1680/geot.14.T.025.
Cheng, L., M. A. Shahin, and D. Mujah. 2017. “Influence of key environmental conditions on microbially induced cementation for soil stabilization.” J. Geotech. Geoenviron. Eng. 143 (1): 04016083. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001586.
Chu, J., V. Ivanov, M. Naeimi, V. Stabnikov, and H.-L. Liu. 2014. “Optimization of calcium-based bioclogging and biocementation of sand.” Acta Geotech. 9 (2): 277–285. https://doi.org/10.1007/s11440-013-0278-8.
Clara Saracho, A., S. K. Haigh, T. Hata, K. Soga, S. Farsang, S. A. T. Redfern, and E. Marek. 2020. “Characterisation of CaCO3 phases during strain-specific ureolytic precipitation.” Sci. Rep. 10 (1): 10168. https://doi.org/10.1038/s41598-020-66831-y.
Cui, M.-J., H.-J. Lai, T. Hoang, and J. Chu. 2020. “One-phase-low-pH enzyme induced carbonate precipitation (EICP) method for soil improvement.” Acta Geotech. 16 (2): 481–489. https://doi.org/10.1007/s11440-020-01043-2.
Cui, M.-J., J.-J. Zheng, J. Chu, C.-C. Wu, and H.-J. Lai. 2021. “Bio-mediated calcium carbonate precipitation and its effect on the shear behaviour of calcareous sand.” Acta Geotech. 16 (5): 1377–1389. https://doi.org/10.1007/s11440-020-01099-0.
Cui, M.-J., J.-J. Zheng, R.-J. Zhang, H.-J. Lai, and J. Zhang. 2017. “Influence of cementation level on the strength behaviour of bio-cemented sand.” Acta Geotech. 12 (5): 971–986. https://doi.org/10.1007/s11440-017-0574-9.
DeJong, J. T., B. M. Mortensen, B. C. Martinez, and D. C. Nelson. 2010. “Bio-mediated soil improvement.” Ecol. Eng. 36: 197–210. https://doi.org/10.1016/j.ecoleng.2008.12.029.
DeJong, J. T., K. Soga, S. A. Banwart, W. R. Whalley, T. R. Ginn, D. C. Nelson, B. M. Mortensen, B. C. Martinez, and T. Barkouki. 2011. “Soil engineering in vivo: Harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions.” J. R. Soc. Interface 8 (54): 1–15. https://doi.org/10.1098/rsif.2010.0270.
Dhami, N. K., A. Mukherjee, and M. Sudhakara Reddy. 2013. “Viability of calcifying bacterial formulations in fly ash for applications in building materials.” J. Ind. Microbiol. Biotechnol. 40 (12): 1403–1413. https://doi.org/10.1007/s10295-013-1338-7.
Diao, Y., P. Li, J. Huang, S. Liu, X. Guo, and C. Jiao. 2023. “Investigation on mechanical properties of biomimetic mineralized mortar incorporated with boric acid modifier.” J. Build. Eng. 73: 106755. https://doi.org/10.1016/j.jobe.2023.106755.
Dick, J., W. De Windt, B. De Graef, H. Saveyn, P. Van der Meeren, N. De Belie, and W. Verstraete. 2006. “Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species.” Biodegradation 17 (4): 357–367. https://doi.org/10.1007/s10532-005-9006-x.
Dong, Z.-H., X.-H. Pan, C.-S. Tang, and B. Shi. 2022. “Microbial healing of nature-like rough sandstone fractures for rock weathering mitigation.” Environ. Earth Sci. 81: 394. https://doi.org/10.1007/s12665-022-10510-w.
El Mountassir, G., R. J. Lunn, H. Moir, and E. MacLachlan. 2014. “Hydrodynamic coupling in microbially mediated fracture mineralization: Formation of self-organized groundwater flow channels.” Water Resour. Res. 50 (1): 1–16. https://doi.org/10.1002/2013WR013578.
ElMouchi, A., S. Siddiqua, E. Salifu, and D. Wijewickreme. 2022. “Muskeg soil stabilization using the microbially induced calcite precipitation technique by the urease active bioslurry approach.” J. Geotech. Geoenviron. Eng. 148 (11): 04022092. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002910.
Erdmann, N., and D. Strieth. 2023. “Influencing factors on ureolytic microbiologically induced calcium carbonate precipitation for biocementation.” World J. Microbiol. Biotechnol. 39 (2): 61. https://doi.org/10.1007/s11274-022-03499-8.
Fu, T., A. C. Saracho, and S. K. Haigh. 2023. “Microbially induced carbonate precipitation (MICP) for soil strengthening: A comprehensive review.” Biogeotechnics 1: 100002. https://doi.org/10.1016/j.bgtech.2023.100002.
Gao, K., P. Bick, M. T. Muhannad, X. Li, J. Helm, D. G. Brown, and N. Zouari. 2023. “Wind erosion mitigation using microbial-induced carbonate precipitation.” J. Geotech. Geoenviron. Eng. 149 (8): 04023053. https://doi.org/10.1061/JGGEFK.GTENG-11140.
Gao, Y., L. Hang, J. He, and J. Chu. 2019a. “Mechanical behaviour of biocemented sands at various treatment levels and relative densities.” Acta Geotech. 14 (3): 697–707. https://doi.org/10.1007/s11440-018-0729-3.
Gao, Y., X. Tang, J. Chu, and J. He. 2019b. “Microbially induced calcite precipitation for seepage control in sandy soil.” Geomicrobiol. J. 36 (4): 366–375. https://doi.org/10.1080/01490451.2018.1556750.
Ghasemi, P., and B. M. Montoya Brina. 2022. “Field implementation of microbially induced calcium carbonate precipitation for surface erosion reduction of a coastal plain sandy slope.” J. Geotech. Geoenviron. Eng. 148 (9): 04022071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002836.
Gomez, M. G., C. M. R. Graddy, J. T. DeJong, D. C. Nelson, and M. Tsesarsky. 2018. “Stimulation of native microorganisms for biocementation in samples recovered from field-scale treatment depths.” J. Geotech. Geoenviron. Eng. 144 (1): 04017098. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001804.
Graddy, C. M. R., M. G. Gomez, J. T. DeJong, and D. C. Nelson. 2021. “Native bacterial community convergence in augmented and stimulated ureolytic MICP biocementation.” Environ. Sci. Technol. 55 (15): 10784–10793. https://doi.org/10.1021/acs.est.1c01520.
Guo, L., Q. Dai, X. Lin, Y. Jiang, B. Wang, X. Pan, Y. Peng, G. Zhao, Y. Ru, and L. Zhou. 2023. “Enhancing fiber–matrix interface permeability resistance of natural fiber-reinforced, bio-cemented sand by CaCO3 seed pretreatment.” Geomech. Energy Environ. 35: 100481. https://doi.org/10.1016/j.gete.2023.100481.
Han, Y., Y. Chen, R. Chen, H. Liu, and X. Yao. 2023. “Effect of incorporating discarded facial mask fiber on mechanical properties of MICP–treated sand.” Constr. Build. Mater. 395: 132299. https://doi.org/10.1016/j.conbuildmat.2023.132299.
Hang, L., Y. Gao, L. A. van Paassen, J. He, L. Wang, and C. Li. 2023. “Microbially induced carbonate precipitation for improving the internal stability of silty sand slopes under seepage conditions.” Acta Geotech. 18: 2719–2732. https://doi.org/10.1007/s11440-022-01712-4.
Harkes, M. P., L. A. van Paassen, J. L. Booster, V. S. Whiffin, and M. C. M. van Loosdrecht. 2010. “Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement.” Ecol. Eng. 36: 112–117. https://doi.org/10.1016/j.ecoleng.2009.01.004.
Harran, R., D. Terzis, and L. Laloui. 2022. “Characterizing the deformation evolution with stress and time of biocemented sands.” J. Geotech. Geoenviron. Eng. 148 (10): 04022074. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002871.
Hoang, T., J. Alleman, B. Cetin, and S.-G. Choi. 2020. “Engineering properties of biocementation coarse- and fine-grained sand catalyzed by bacterial cells and bacterial enzyme.” J. Mater. Civ. Eng. 32 (4): 04020030. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003083.
Jiang, N.-J., and K. Soga. 2017. “The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel–sand mixtures.” Géotechnique 67 (1): 42–55. https://doi.org/10.1680/jgeot.15.P.182.
Jiang, N.-J., H. Yoshioka, K. Yamamoto, and K. Soga. 2016. “Ureolytic activities of a urease-producing bacterium and purified urease enzyme in the anoxic condition: Implication for subseafloor sand production control by microbially induced carbonate precipitation (MICP).” Ecol. Eng. 90: 96–104. https://doi.org/10.1016/j.ecoleng.2016.01.073.
Khan, M. N. H., G. G. N. N. Amarakoon, S. Shimazaki, and S. Kawasaki. 2015. “Coral sand solidification test based on microbially induced carbonate precipitation using ureolytic bacteria.” Mater. Trans. 56 (10): 1725–1732. https://doi.org/10.2320/matertrans.M-M2015820.
Kim, D., N. Mahabadi, J. Jang, and L. A. van Paassen. 2020. “Assessing the kinetics and pore-scale characteristics of biological calcium carbonate precipitation in porous media using a microfluidic chip experiment.” Water Resour. Res. 56 (2): e2019WR025420. https://doi.org/10.1029/2019wr025420.
Kim, D., K. Park, and D. Kim. 2014. “Effects of ground conditions on microbial cementation in soils.” Materials 7 (1): 143–156. https://doi.org/10.3390/ma7010143.
Kim, Y.-M., and T.-H. Kwon. 2022. “Entrapment of clay particles enhances durability of bacterial biofilm-associated bioclogging in sand.” Acta Geotech. 17 (1): 119–129. https://doi.org/10.1007/s11440-021-01198-6.
Kou, H.-l., Z.-d. Li, J.-h. Liu, and Z.-t. An. 2023. “Effect of MICP-recycled shredded coconut coir (RSC) reinforcement on the mechanical behavior of calcareous sand for coastal engineering.” Appl. Ocean Res. 135: 103564. https://doi.org/10.1016/j.apor.2023.103564.
Lai, H.-J., M.-J. Cui, and J. Chu. 2023. “Stress–dilatancy behavior of biocementation-enhanced geogrid-reinforced sand.” Int. J. Geomech. 23 (5): 04023043. https://doi.org/10.1061/IJGNAI.GMENG-8252.
Lee, M., M. G. Gomez, M. El Kortbawi, and K. Ziotopoulou. 2022. “Effect of light biocementation on the liquefaction triggering and post-triggering behavior of loose sands.” J. Geotech. Geoenviron. Eng. 148 (1): 04021170. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002707.
Li, M., K. Wen, Y. Li, and L. Zhu. 2018. “Impact of oxygen availability on microbially induced calcite precipitation (MICP) treatment.” Geomicrobiol. J. 35 (1): 15–22. https://doi.org/10.1080/01490451.2017.1303553.
Li, Y., Z. Guo, L. Wang, Z. Ye, C. Shen, and W. Zhou. 2021. “Interface shear behavior between MICP-treated calcareous sand and steel.” J. Mater. Civ. Eng. 33 (2): 04020455. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003549.
Liao, Z., S. Wu, H. Xie, F. Chen, Y. Yang, and R. Zhu. 2023. “Effect of phosphate on cadmium immobilized by microbial-induced carbonate precipitation: Mobilization or immobilization?” J. Hazard. Mater. 443: 130242. https://doi.org/10.1016/j.jhazmat.2022.130242.
Lin, H., M. T. Suleiman, and D. G. Brown. 2020. “Investigation of pore-scale CaCO3 distributions and their effects on stiffness and permeability of sands treated by microbially induced carbonate precipitation (MICP).” Soils Found. 60 (4): 944–961. https://doi.org/10.1016/j.sandf.2020.07.003.
Lin, W., Y. Gao, W. Lin, Z. Zhuo, W. Wu, and X. Cheng. 2023. “Seawater-based bio-cementation of natural sea sand via microbially induced carbonate precipitation.” Environ. Technol. Innovation 29: 103010. https://doi.org/10.1016/j.eti.2023.103010.
Liu, B., C.-S. Tang, X.-H. Pan, C. Zhu, Y.-J. Cheng, J.-J. Xu, and B. Shi. 2021. “Potential drought mitigation through microbial induced calcite precipitation-MICP.” Water Resour. Res. 57 (9): e2020WR029434. https://doi.org/10.1029/2020WR029434.
Liu, Y., Y. Gao, J. He, Y. Zhou, and W. Geng. 2023. “An experimental investigation of wind erosion resistance of desert sand cemented by soybean-urease induced carbonate precipitation.” Geoderma 429: 116231. https://doi.org/10.1016/j.geoderma.2022.116231.
Ma, G., X. He, X. Jiang, H. Liu, J. Chu, and Y. Xiao. 2021a. “Strength and permeability of bentonite-assisted biocemented coarse sand.” Can. Geotech. J. 58 (7): 969–981. https://doi.org/10.1139/cgj-2020-0045.
Ma, G., X. He, H. Lu, H. Wu, H. Liu, J. Chu, and Y. Xiao. 2021b. “Strength of biocemented coarse sand with kaolin micro-particle improved nucleation.” Chin. J. Geotech. Eng. 43 (2): 290–299. https://doi.org/10.11779/CJGE202102009.
Ma, G., X. He, Y. Xiao, J. Chu, L. Cheng, and H. Liu. 2022a. “Influence of bacterial suspension type on the strength of biocemented sand.” Can. Geotech. J. 59 (11): 2014–2021. https://doi.org/10.1139/cgj-2021-0295.
Ma, G., X. He, Y. Xiao, J. Chu, H. Liu, A. W. Stuedlein, and T. M. Evans. 2023. “Spatiotemporal evolution of biomineralization in heterogeneous pore structure.” Can. Geotech. J. https://doi.org/10.1139/cgj-2022-0496.
Ma, G., Y. Xiao, W. Fan, J. Chu, and H. Liu. 2022b. “Mechanical properties of biocement formed by microbially induced carbonate precipitation.” Acta Geotech. 17 (11): 4905–4919. https://doi.org/10.1007/s11440-022-01584-8.
Ma, G., Y. Xiao, X. He, J. Li, J. Chu, and H. Liu. 2022c. “Kaolin-nucleation-based biotreated calcareous sand through unsaturated percolation method.” Acta Geotech. 17 (8): 3181–3193. https://doi.org/10.1007/s11440-022-01459-y.
Mahawish, A., A. Bouazza, and W. P. Gates. 2016. “Biogrouting coarse materials using soil-lift treatment strategy.” Can. Geotech. J. 53 (12): 2080–2085. https://doi.org/10.1139/cgj-2016-0167.
Mahawish, A., A. Bouazza, and W. P. Gates. 2018a. “Effect of particle size distribution on the bio-cementation of coarse aggregates.” Acta Geotech. 13 (4): 1019–1025. https://doi.org/10.1007/s11440-017-0604-7.
Mahawish, A., A. Bouazza, and W. P. Gates. 2018b. “Improvement of coarse sand engineering properties by microbially induced calcite precipitation.” Geomicrobiol. J. 35 (10): 887–897. https://doi.org/10.1080/01490451.2018.1488019.
Mahawish, A., A. Bouazza, and W. P. Gates. 2019. “Factors affecting the bio-cementing process of coarse sand.” Proc. Inst. Civ. Eng. Ground Improv. 172 (1): 25–36. https://doi.org/10.1680/jgrim.17.00039.
Martin, D., K. Dodds, B. T. Ngwenya, I. B. Butler, and S. C. Elphick. 2012. “Inhibition of sporosarcina pasteurii under anoxic conditions: Implications for subsurface carbonate precipitation and remediation via ureolysis.” Environ. Sci. Technol. 46 (15): 8351–8355. https://doi.org/10.1021/es3015875.
Martinez, A., L. Huang, and M. G. Gomez. 2019a. “Thermal conductivity of MICP-treated sands at varying degrees of saturation.” Géotechnique Lett. 9 (1): 15–21. https://doi.org/10.1680/jgele.18.00126.
Martinez, A., S. Palumbo, and B. D. Todd. 2019b. “Bioinspiration for anisotropic load transfer at soil–structure interfaces.” J. Geotech. Geoenviron. Eng. 145 (10): 04019074. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002138.
Martinez, B. C., J. T. DeJong, T. R. Ginn, B. M. Montoya, T. H. Barkouki, C. Hunt, B. Tanyu, and D. Major. 2013. “Experimental optimization of microbial-induced carbonate precipitation for soil improvement.” J. Geotech. Geoenviron. Eng. 139 (4): 587–598. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000787.
Minto, J. M., R. J. Lunn, and G. El Mountassir. 2019. “Development of a reactive transport model for field-scale simulation of microbially induced carbonate precipitation.” Water Resour. Res. 55 (8): 7229–7245. https://doi.org/10.1029/2019wr025153.
Minto, J. M., E. MacLachlan, G. El Mountassir, and R. J. Lunn. 2016. “Rock fracture grouting with microbially induced carbonate precipitation.” Water Resour. Res. 52 (11): 8827–8844. https://doi.org/10.1002/2016wr018884.
Montoya, B. M., and J. T. Dejong. 2013. “Healing of biologically induced cemented sands.” Géotechnique Lett. 3 (3): 147–151. https://doi.org/10.1680/geolett.13.00044.
Montoya, B. M., J. Do, and M. A. Gabr. 2021. “Distribution and properties of microbially induced carbonate precipitation in underwater sand bed.” J. Geotech. Geoenviron. Eng. 147 (10): 04021098. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002607.
Montoya, B. M., S. Safavizadeh, and M. A. Gabr. 2019. “Enhancement of coal ash compressibility parameters using microbial-induced carbonate precipitation.” J. Geotech. Geoenviron. Eng. 145 (5): 04019018. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002036.
Mortensen, B. M., M. J. Haber, J. T. DeJong, L. F. Caslake, and D. C. Nelson. 2011. “Effects of environmental factors on microbial induced calcium carbonate precipitation.” J. Appl. Microbiol. 111 (2): 338–349. https://doi.org/10.1111/j.1365-2672.2011.05065.x.
Mousavi, S., and M. Ghayoomi. 2021. “Liquefaction mitigation of sands with nonplastic fines via microbial-induced partial saturation.” J. Geotech. Geoenviron. Eng. 147 (2): 04020156. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002444.
Naeimi, M., J. Chu, M. Khosroshahi, and L. Kashi Zenouzi. 2023. “Soil stabilization for dunes fixation using microbially induced calcium carbonate precipitation.” Geoderma 429: 116183. https://doi.org/10.1016/j.geoderma.2022.116183.
Nafisi, A., B. M. Montoya, and T. M. Evans. 2020. “Shear strength envelopes of biocemented sands with varying particle size and cementation level.” J. Geotech. Geoenviron. Eng. 146 (3): 04020002. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002201.
Nafisi, A., S. Safavizadeh, and B. M. Montoya. 2019. “Influence of microbe and enzyme-induced treatments on cemented sand shear response.” J. Geotech. Geoenviron. Eng. 145 (9): 06019008. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002111.
Naveed, M., J. Duan, S. Uddin, M. Suleman, Y. Hui, and H. Li. 2020. “Application of microbially induced calcium carbonate precipitation with urea hydrolysis to improve the mechanical properties of soil.” Ecol. Eng. 153: 105885. https://doi.org/10.1016/j.ecoleng.2020.105885.
Neupane, D., H. Yasuhara, N. Kinoshita, and T. Unno. 2013. “Applicability of enzymatic calcium carbonate precipitation as a soil-strengthening technique.” J. Geotech. Geoenviron. Eng. 139 (12): 2201–2211. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000959.
Pan, X., J. Chu, Y. Yang, and L. Cheng. 2020. “A new biogrouting method for fine to coarse sand.” Acta Geotech. 15 (1): 1–16. https://doi.org/10.1007/s11440-019-00872-0.
Phillips, A. J., et al. 2016. “Fracture sealing with microbially-induced calcium carbonate precipitation: A field study.” Environ. Sci. Technol. 50 (7): 4111–4117. https://doi.org/10.1021/acs.est.5b05559.
Qian, C., X. Yu, T. Zheng, and Y. Chen. 2022. “Review on bacteria fixing CO2 and bio-mineralization to enhance the performance of construction materials.” J. CO2 Util. 55: 101849. https://doi.org/10.1016/j.jcou.2021.101849.
Ribeiro, B. G. O., M. Lee, and M. G. Gomez. 2023. “An examination of the effect of chemically induced damage on the monotonic and cyclic shearing behavior of biocemented sands.” Geotech. Test. J. 46 (2): 254–276. https://doi.org/10.1520/gtj20230302.
Riveros, G. A., and A. Sadrekarimi. 2020. “Effect of microbially induced cementation on the instability and critical state behaviours of Fraser River sand.” Can. Geotech. J. 57 (12): 1870–1880. https://doi.org/10.1139/cgj-2019-0514.
Safavizadeh, S., B. M. Montoya, and M. A. Gabr. 2019. “Microbial induced calcium carbonate precipitation in coal ash.” Géotechnique 69 (8): 727–740. https://doi.org/10.1680/jgeot.18.P.062.
Saracho, A. C., S. K. Haigh, and M. E. Jorat. 2021. “Flume study on the effects of microbial induced calcium carbonate precipitation (MICP) on the erosional behaviour of fine sand.” Géotechnique 71 (12): 1135–1149. https://doi.org/10.1680/jgeot.19.P.350.
Sasaki, T., and R. Kuwano. 2016. “Undrained cyclic triaxial testing on sand with non-plastic fines content cemented with microbially induced CaCO3.” Soils Found. 56 (3): 485–495. https://doi.org/10.1016/j.sandf.2016.04.014.
Shi, J., H. Li, Y. Xiao, J. Hu, W. Haegeman, and H. Liu. 2023a. “Small strain stiffness of graded sands with light biocementation.” Acta Geotech. 18: 5273–5284. https://doi.org/10.1007/s11440-023-01886-5.
Shi, J., Y. Xiao, J. A. H. Carraro, H. Li, H. Liu, and J. Chu. 2023b. “Anisotropic small-strain stiffness of lightly biocemented sand considering grain morphology.” Géotechnique. https://doi.org/10.1680/jgeot.22.00350.
Song, C. P., D. Elsworth, S. Zhi, and C. Y. Wang. 2021. “The influence of particle morphology on microbially induced CaCO3 clogging in granular media.” Mar. Georesour. Geotechnol. 39 (1): 74–81. https://doi.org/10.1080/1064119x.2019.1677828.
Soon, N. W., L. M. Lee, T. C. Khun, and H. S. Ling. 2014. “Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 140 (5): 04014006. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001089.
Stocks-Fischer, S., J. K. Galinat, and S. S. Bang. 1999. “Microbiological precipitation of CaCO3.” Soil Biol. Biochem. 31 (11): 1563–1571. https://doi.org/10.1016/s0038-0717(99)00082-6.
Su, F., and Y. Y. Yang. 2021. “Microbially induced carbonate precipitation via methanogenesis pathway by a microbial consortium enriched from activated anaerobic sludge.” J. Appl. Microbiol. 131 (1): 236–256. https://doi.org/10.1111/jam.14930.
Sun, X., L. Miao, R. Chen, H. Wang, L. Wu, and J. Xia. 2021. “Liquefaction resistance of biocemented loess soil.” J. Geotech. Geoenviron. Eng. 147 (11): 04021117. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002638.
Sun, X., L. Miao, T. Tong, and C. Wang. 2019. “Study of the effect of temperature on microbially induced carbonate precipitation.” Acta Geotech. 14 (3): 627–638. https://doi.org/10.1007/s11440-018-0758-y.
Tan, Y., H. Zhang, T. Zhang, G. Zhang, D. He, and Z. Ding. 2021. “Anisotropic hydro-mechanical behavior of full-scale compacted bentonite-sand blocks.” Eng. Geol. 287: 106093. https://doi.org/10.1016/j.enggeo.2021.106093.
Terzis, D., and L. Laloui. 2019. “Cell-free soil bio-cementation with strength, dilatancy and fabric characterization.” Acta Geotech. 14 (3): 639–656. https://doi.org/10.1007/s11440-019-00764-3.
Tobler, D. J., E. Maclachlan, and V. R. Phoenix. 2012. “Microbially mediated plugging of porous media and the impact of differing injection strategies.” Ecol. Eng. 42 (5): 270–278. https://doi.org/10.1016/j.ecoleng.2012.02.027.
Tsesarsky, M., D. Gat, and Z. Ronen. 2018. “Biological aspects of microbial-induced calcite precipitation.” Environ. Geotech. 5 (2): 69–78. https://doi.org/10.1680/jenge.15.00070.
van Paassen, L. A., R. Ghose, T. J. M. van der Linden, W. R. L. van der Star, and M. C. M. van Loosdrecht. 2010. “Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment.” J. Geotech. Geoenviron. Eng. 136 (12): 1721–1728. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382.
Wang, K., S. Wu, and J. Chu. 2023a. “Mitigation of soil liquefaction using microbial technology: An overview.” Biogeotechnics 1: 100005. https://doi.org/10.1016/j.bgtech.2023.100005.
Wang, L., J. Chu, S. Wu, and H. Wang. 2021a. “Stress–dilatancy behavior of cemented sand: Comparison between bonding provided by cement and biocement.” Acta Geotech. 16 (5): 1441–1456. https://doi.org/10.1007/s11440-021-01146-4.
Wang, X., and J. Tao. 2018. “Polymer-modified microbially induced carbonate precipitation for one-shot targeted and localized soil improvement.” Acta Geotech. 14 (3): 657–671. https://doi.org/10.1007/s11440-018-0757-z.
Wang, Y., C. Konstantinou, S. Tang, and H. Chen. 2023b. “Applications of microbial-induced carbonate precipitation: A state-of-the-art review.” Biogeotechnics 1: 100008. https://doi.org/10.1016/j.bgtech.2023.100008.
Wang, Y., K. Soga, J. T. DeJong, and A. J. Kabla. 2021b. “Effects of bacterial density on growth rate and characteristics of microbial-induced CaCO3 precipitates: Particle-scale experimental study.” J. Geotech. Geoenviron. Eng. 147 (6): 04021036. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002509.
Wang, Z., J. Zhang, Q. Li, N. Zhang, and W. Feng. 2022. “A theoretical thermal conductivity model for soils treated with microbially induced calcite precipitation (MICP).” Int. J. Heat Mass Transfer 183: 122091. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122091.
Wang, Z., N. Zhang, J. Ding, Q. Li, and J. Xu. 2020. “Thermal conductivity of sands treated with microbially induced calcite precipitation (MICP) and model prediction.” Int. J. Heat Mass Transfer 147: 118899. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118899.
Wen, K., Y. Li, S. Liu, C. Bu, and L. Li. 2019. “Development of an improved immersing method to enhance microbial induced calcite precipitation treated sandy soil through multiple treatments in low cementation media concentration.” Geotech. Geol. Eng. 37: 1015–1027. https://doi.org/10.1007/s10706-018-0669-6.
Whiffin, V. S., L. A. van Paassen, and M. P. Harkes. 2007. “Microbial carbonate precipitation as a soil improvement technique.” Geomicrobiol. J. 24 (5): 417–423. https://doi.org/10.1080/01490450701436505.
Won, J., B. Jeong, J. Lee, S. Dai, and S. E. Burns. 2021. “Facilitation of microbially induced calcite precipitation with kaolinite nucleation.” Géotechnique 71 (8): 728–734. https://doi.org/10.1680/jgeot.19.P.324.
Wu, C., J. Chu, L. Cheng, and S. Wu. 2019a. “Biogrouting of aggregates using premixed injection method with or without pH adjustment.” J. Mater. Civ. Eng. 31 (9): 06019008. https://doi.org/10.1061/(ASCE)mt.1943-5533.0002874.
Wu, C., J. Chu, S. Wu, L. Cheng, and L. A. van Paassen. 2019b. “Microbially induced calcite precipitation along a circular flow channel under a constant flow condition.” Acta Geotech. 14 (3): 673–683. https://doi.org/10.1007/s11440-018-0747-1.
Wu, C., J. Chu, S. Wu, and W. Guo. 2019c. “Quantifying the permeability reduction of biogrouted rock fracture.” Rock Mech. Rock Eng. 52 (3): 947–954. https://doi.org/10.1007/s00603-018-1669-9.
Wu, H., W. Wu, W. Liang, F. Dai, H. Liu, and Y. Xiao. 2023. “3D DEM modeling of biocemented sand with fines as cementing agents.” Int. J. Numer. Anal. Methods Geomech. 47: 212–240. https://doi.org/10.1002/nag.3466.
Wu, J., X.-B. Wang, H.-F. Wang, and R. J. Zeng. 2017. “Microbially induced calcium carbonate precipitation driven by ureolysis to enhance oil recovery.” RSC Adv. 7 (59): 37382–37391. https://doi.org/10.1039/c7ra05748b.
Wu, S., B. Li, and J. Chu. 2021. “Stress–dilatancy behavior of MICP-treated sand.” Int. J. Geomech. 21 (3): 04020264. https://doi.org/10.1061/(ASCE)gm.1943-5622.0001923.
Xiao, P., H. Liu, A. W. Stuedlein, T. M. Evans, and Y. Xiao. 2019a. “Effect of relative density and biocementation on cyclic response of calcareous sand.” Can. Geotech. J. 56 (12): 1849–1862. https://doi.org/10.1139/cgj-2018-0573.
Xiao, P., H. Liu, Y. Xiao, A. W. Stuedlein, and T. M. Evans. 2018. “Liquefaction resistance of bio-cemented calcareous sand.” Soil Dyn. Earthquake Eng. 107: 9–19. https://doi.org/10.1016/j.soildyn.2018.01.008.
Xiao, Y., B. Cao, J. Shi, H. Wu, X. He, C. Zhao, J. Chu, and H. Liu. 2023a. “State-of-the-art review on the application of microfluidics in biogeotechnology.” Transp. Geotech. 41: 101030. https://doi.org/10.1016/j.trgeo.2023.101030.
Xiao, Y., H. Chen, A. W. Stuedlein, T. M. Evans, J. Chu, L. Cheng, N. Jiang, H. Lin, H. Liu, and H. M. Aboel-Naga. 2020. “Restraint of particle breakage by biotreatment method.” J. Geotech. Geoenviron. Eng. 146 (11): 04020123. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002384.
Xiao, Y., X. He, T. M. Evans, A. W. Stuedlein, and H. Liu. 2019b. “Unconfined compressive and splitting tensile strength of basalt fiber-reinforced biocemented sand.” J. Geotech. Geoenviron. Eng. 145 (9): 04019048. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002108.
Xiao, Y., X. He, G. Ma, C. Zhao, J. Chu, and H. Liu. 2023b. “Biomineralization and mineralization using microfluidics: A comparison study.” J. Rock Mech. Geotech. Eng. https://doi.org/10.1016/j.jrmge.2023.03.019.
Xiao, Y., X. He, M. Zaman, G. Ma, and C. Zhao. 2022a. “Review of strength improvements of biocemented soils.” Int. J. Geomech. 22 (11): 03122001. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002565.
Xiao, Y., H. Li, J. Shi, J. Hu, L. Zhang, and H. Liu. 2023c. “Effect of particle size on small strain stiffness of biotreated sands.” Transp. Geotech. 41: 101027. https://doi.org/10.1016/j.trgeo.2023.101027.
Xiao, Y., A. W. Stuedlein, J. Ran, T. M. Evans, L. Cheng, H. Liu, L. A. van Paassen, and J. Chu. 2019c. “Effect of particle shape on strength and stiffness of biocemented glass beads.” J. Geotech. Geoenviron. Eng. 145 (11): 06019016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002165.
Xiao, Y., Y. Tang, G. Ma, J. S. McCartney, and J. Chu. 2021a. “Thermal conductivity of biocemented graded sands.” J. Geotech. Geoenviron. Eng. 147 (10): 04021106. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002621.
Xiao, Y., Y. Wang, C. S. Desai, X. Jiang, and H. Liu. 2019d. “Strength and deformation responses of biocemented sands using a temperature-controlled method.” Int. J. Geomech. 19 (11): 04019120. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001497.
Xiao, Y., W. Xiao, G. Ma, X. He, H. Wu, and J. Shi. 2022b. “Mechanical performance of biotreated sandy road bases.” J. Perform. Constr. Facil 36 (1): 04021111. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001671.
Xiao, Y., W. Xiao, H. Wu, H. Zhao, and H. Liu. 2023d. “Particle size effect on unconfined compressive strength of biotreated sand.” Transp. Geotech. 42: 101092. https://doi.org/10.1016/j.trgeo.2023.101092.
Xiao, Y., Z. Zhang, A. W. Stuedlein, and T. M. Evans. 2021b. “Liquefaction modeling for biocemented calcareous sand.” J. Geotech. Geoenviron. Eng. 147 (12): 04021149. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002666.
Xiao, Y., H. Zhao, H. Wu, X. Jiang, and H. Liu. 2023e. “Anisotropic fracture of sandstone with biotreated cracks.” Int. J. Geomech. 23 (8): 06023012. https://doi.org/10.1061/IJGNAI.GMENG-8821.
Yao, D., J. Wu, G. Wang, P. Wang, J.-J. Zheng, J. Yan, L. Xu, and Y. Yan. 2021. “Effect of wool fiber addition on the reinforcement of loose sands by microbially induced carbonate precipitation (MICP): Mechanical property and underlying mechanism.” Acta Geotech. 16 (5): 1401–1416. https://doi.org/10.1007/s11440-020-01112-6.
Yu, X., and H. Rong. 2022. “Seawater based MICP cements two/one-phase cemented sand blocks.” Appl. Ocean Res. 118: 102972. https://doi.org/10.1016/j.apor.2021.102972.
Yu, X., H. Yang, and H. Wang. 2022. “A cleaner biocementation method of soil via microbially induced struvite precipitation: A experimental and numerical analysis.” J. Environ. Manage. 316: 115280. https://doi.org/10.1016/j.jenvman.2022.115280.
Zamani, A., and B. M. Montoya. 2019. “Undrained cyclic response of silty sands improved by microbial induced calcium carbonate precipitation.” Soil Dyn. Earthquake Eng. 120: 436–448. https://doi.org/10.1016/j.soildyn.2019.01.010.
Zeng, Y., Z. Chen, Q. Lyu, Y. Cheng, C. Huan, X. Jiang, Z. Yan, and Z. Tan. 2023. “Microbiologically induced calcite precipitation for in situ stabilization of heavy metals contributes to land application of sewage sludge.” J. Hazard. Mater. 441: 129866. https://doi.org/10.1016/j.jhazmat.2022.129866.
Zhang, R., A. Ali, J. Su, J. Liu, Z. Wang, J. Li, and Y. Liu. 2022. “Synergistic removal of fluoride, calcium, and nitrate in a biofilm reactor based on anaerobic microbially induced calcium precipitation.” J. Hazard. Mater. 428: 128102. https://doi.org/10.1016/j.jhazmat.2021.128102.
Zhang, Y., X. Hu, Y. Wang, and N. Jiang. 2023. “A critical review of biomineralization in environmental geotechnics: Applications, trends, and perspectives.” Biogeotechnics 1: 100003. https://doi.org/10.1016/j.bgtech.2023.100003.
Zhao, Q., L. Li, C. Li, M. Li, F. Amini, and H. Zhang. 2014. “Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease.” J. Mater. Civ. Eng. 26 (12): 04014094. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001013.
Zhao, Y., C. Fan, P. Liu, H. Fang, and Z. Huang. 2018. “Effect of activated carbon on microbial-induced calcium carbonate precipitation of sand.” Environ. Earth Sci. 77 (17): 615. https://doi.org/10.1007/s12665-018-7797-4.
Zhao, Y., P. Zhang, H. Fang, C. Guo, B. Zhang, and F. Wang. 2021. “Bentonite-assisted microbial-induced carbonate precipitation for coarse soil improvement.” Bull. Eng. Geol. Environ. 80 (7): 5623–5632. https://doi.org/10.1007/s10064-021-02302-6.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 24Issue 5May 2024

History

Received: Apr 20, 2023
Accepted: Oct 30, 2023
Published online: Feb 20, 2024
Published in print: May 1, 2024
Discussion open until: Jul 20, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, Key Laboratory of New Technology for Construction of Cities in Mountain Area, State Key Laboratory of Coal Mine Disaster Dynamics and Control, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China (corresponding author). ORCID: https://orcid.org/0000-0002-9411-4660. Email: [email protected]
Guoliang Ma [email protected]
Graduate Student, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Graduate Student, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Hanlong Liu, M.ASCE [email protected]
Professor and Vice President, School of Civil Engineering, Chongqing Univ., 174, Shazheng St., Chongqing 400045, China. Email: [email protected]
Musharraf Zaman, F.ASCE [email protected]
David Ross Boyd Professor and Aaron Alexander Professor, School of Civil Engineering and Environmental Science, and Alumni Chair Professor of Petroleum and Geological Engineering, Univ. of Oklahoma, 202 W. Boyd St., Rm. 334, Norman, OK 73019. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share