Abstract

The present research aims to evaluate the potential of combining two wastes, finely ground waste glass (GWG) and carbide lime (CL), together with a sodium hydroxide solution (SHS) to form a new material which, when compacted, can develop cementitious properties over time. Such blends have potential application in the construction of stabilized rammed walls, as well as in earthworks such as beds of pipelines, spread footings, fill materials, and generally, as a new material for replacement of geomaterials of inadequate specifications in localized geotechnical works. Blends compacted exclusively with water were also produced in order to understand and differentiate, in a comparative manner, the effects of the addition of SHS on the mechanical, mineralogical, and microstructural properties resulting from alkaline reactions. The effects of the CL content, degree of compaction, and inclusion of a SHS on the evolution of strength and stiffness at 7 and 28 days under controlled curing conditions (23°C±2°C and 95% relative humidity) were determined. An original parameter, called the porosity/lime index (η/Liv), was used to normalize the behavior of unconfined compressive strength (qu) and shear modulus in small strains (G0) of the blends. The results have shown that the GWG-CL blends (compacted with water and SHS) developed an evolution of the mechanical properties over time with increasing CL content and degree of compaction. This results from the reaction between the dissolved aluminosilicates present in the GWG and the calcium (Ca2+) in CL, as a product of the pozzolanic and geopolymerization reactions in a high-alkalinity medium by the addition of CL and SHS, respectively. The formation of stable compounds, hydrated calcium silicate (C─ S─ H) type, analogous to those produced in the hydration processes of portland cement after 28 days of curing in alkali-activated blends with SHS, has been verified. Additionally, correlation equations were established between the mechanical response of the blends and the η/Liv index, as a function of the curing time and the type of activating solution, which can be considered as dosage curves for the prediction of a required mechanical response.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data from laboratory tests (unconfined compressive strength, maximum shear modulus, X-ray diffraction, and scanning electron microscopy), and the fitting procedure models used during the study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors wish to explicit their appreciation to FAPERGS/CNPq 12/2014–PRONEX (Project No. 16/2551-0000469-2), MCT-CNPq (Editais INCT-REAGEO, Universal & Produtividade em Pesquisa), and MEC-CAPES (PROEX) for the support to the research group.

References

ABNT (Associação Brasileira de Normas Técnicas). 2013. Quicklime and hydrated lime—Chemical analysis. NBR 6473. Rio de Janeiro, Brazil: Brazilian Association of Technical Standards.
Andersen, M. D., H. J. Jakobsen, and J. Skibsted. 2004. “Characterization of white portland cement hydration and the C─ S─ H structure in the presence of sodium aluminate by 27Al and 29Si MAS-NMR spectroscopy.” Cem. Concr. Res. 34 (5): 857–868. https://doi.org/10.1016/j.cemconres.2003.10.009.
Arulrajah, A., T. A. Kua, S. Horpibulsuk, M. Mirzababaei, and A. Chinkulkijniwat. 2017. “Recycled glass as a supplementary filler material in spent coffee grounds geopolymers.” Constr. Build. Mater. 151 (Oct): 18–27. https://doi.org/10.1016/j.conbuildmat.2017.06.050.
ASTM. 2008. Standard test method for laboratory determination of pulse velocities and ultrasonic elastic constants of rock. ASTM D2845. West Conshohocken, PA: ASTM.
ASTM. 2009. Standard test methods for laboratory determination of density (unit weight) of soil specimens. ASTM D7263. West Conshohocken, PA: ASTM.
ASTM. 2010. Standard test method for compressive strength of cylindrical concrete specimens. ASTM C39. West Conshohocken, PA: ASTM.
ASTM. 2012. Standard test methods for laboratory compaction characteristics of soil using standard effort (12.400 ft-lbf/ft3 (600 kN-m/m3)). ASTM D698. West Conshohocken, PA: ASTM.
ASTM. 2014. Standard test methods for specific gravity of soil solids by water pycnometer. ASTM D854. West Conshohocken, PA: ASTM.
ASTM. 2017a. Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM D2487. West Conshohocken, PA: ASTM.
ASTM. 2017b. Standard practice for making and curing soil-cement compression and flexure test specimens in the laboratory. ASTM D1632. West Conshohocken, PA: ASTM.
ASTM. 2017c. Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM D4318. West Conshohocken, PA: ASTM.
ASTM. 2017d. Standard test methods for precipitated silica—Surface area by single point B.E.T. nitrogen adsorption. ASTM D5604-96. West Conshohocken, PA: ASTM.
Bakharev, T., J. G. Sanjayan, and Y. B. Cheng. 1999. “Alkali activation of Australian slag cements.” Cem. Concr. Res. 29 (1): 113–120. https://doi.org/10.1016/S0008-8846(98)00170-7.
Basu, D., and A. J. Puppala. 2015. Principles of sustainability and their applications in geotechnical engineering. In Vol. 5 of Advances in soil mechanics and geotechnical engineering, 162–183. Amsterdam, Netherlands: IOS Press. https://doi.org/10.3233/978-1-61499-599-9-162.
Bazant, Z. P., G. Zi, and C. Meyer. 2000. “Fracture mechanics of ASR in concretes with waste glass particles of different sizes.” J. Eng. Mech. 126 (3): 226–232. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:3(226).
Bernal, S. A., R. Mejía de Gutiérrez, and E. D. Rodríguez. 2013a. “Alkali-activated materials: Cementing a sustainable future.” Ingeniería y Competitividad 15 (2): 211–223.
Bernal, S. A., J. L. Provis, B. Walkley, R. San Nicolas, J. D. Gehman, D. G. Brice, A. R. Kilcullen, P. Duxson, and J. S. J. van Deventer. 2013b. “Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation.” Cem. Concr. Res. 53 (Nov): 127–144. https://doi.org/10.1016/j.cemconres.2013.06.007.
Bicca Neto, V. 2015. Commitment business for recycling—Review. Brasilia, Brazil: Coca Cola Company.
Bilondi, M. P., M. M. Toufigh, and V. Toufigh. 2018. “Experimental investigation of using a recycled glass powder-based geopolymer to improve the mechanical behavior of clay soils.” Constr. Build. Mater. 170 (May): 302–313. https://doi.org/10.1016/j.conbuildmat.2018.03.049.
Byars, E. A., B. Morales-Hernandez, and H. Y. Zhu. 2004. “Waste glass as concrete aggregate and pozzolan: Laboratory and industrial projects.” Concrete 38 (1): 41–44.
Chang, T.-S., and R. D. Woods. 1992. “Effect of particle contact bond on shear modulus.” J. Geotech. Eng. 118 (8): 1216–1233. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:8(1216).
Chen, C. H., R. Huang, J. K. Wu, and C. C. Yang. 2006. “Waste E-glass particles used in cementitious mixtures.” Cem. Concr. Res. 36 (3): 449–456. https://doi.org/10.1016/j.cemconres.2005.12.010.
Consoli, N. C., M. S. Carretta, L. Festugato, H. B. Leon, L. F. Tomasi, and K. S. Heineck. 2020a. “Ground waste glass-carbide lime as sustainable binder stabilizing three different silica sands.” Géotechnique 1–41. https://doi.org/10.1680/jgeot.18.P.099.
Consoli, N. C., M. S. Carretta, H. B. Leon, H. C. Scheuermann, and L. F. Tomasi. 2019. “Strength and stiffness of ground waste glass-carbide lime blends.” J. Mater. Civ. Eng. 31 (10): 06019010. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002862.
Consoli, N. C., P. M. V. Ferreira, C. S. Tang, S. F. V. Marques, L. Festugato, and M. B. Corte. 2016. “A unique relationship determining strength of silty/clayey soils–portland cement mixes.” Soils and Found. 56 (6): 1082–1088. https://doi.org/10.1016/j.sandf.2016.11.011.
Consoli, N. C., L. Festugato, H. C. F. Scheuermann, G. D. Miguel, A. Tebechrani Neto, and D. H. Andreghetto. 2020b. “Durability assessment of soil-pozzolan-lime blends through ultrasonic pulse velocity test.” J. Mater. Civ. Eng. 32 (8): 04020223. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003298.
Consoli, N. C., D. Foppa, L. Festugato, and K. S. Heineck. 2007. “Key parameters for strength control of artificially cemented soils.” J. Geotech. Geoenviron. Eng. 133 (2): 197–205. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(197).
Consoli, N. C., L. D. Lopes, B. S. Consoli, and L. Festugato. 2014a. “Mohr-Coulomb failure envelopes of lime-treated soils.” Géotechnique 64 (2): 165–170. https://doi.org/10.1680/geot.12.P.168.
Consoli, N. C., L. S. Lopes Jr., and K. S. Heineck. 2009. “Key parameters for strength control of lime stabilized soils.” J. Mater. Civ. Eng. 21 (5): 210–216. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:5(210).
Consoli, N. C., T. M. Paula, M. S. Bortolotto, L. M. Barros, F. Pereira, and M. M. Rocha. 2017. “Coal fly ash—Carbide lime admixtures as an alternative to concrete masonry blocks: Influence of ash ground.” J. Mater. Civ. Eng. 29 (2): 04016224. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001747.
Consoli, N. C., C. G. Rocha, and R. B. Saldanha. 2014b. “Coal fly ash—Carbide lime bricks: An environment friendly building product.” Constr. Build. Mater. 69 (Oct): 301–309. https://doi.org/10.1016/j.conbuildmat.2014.07.067.
Consoli, N. C., D. A. Rosa, R. C. Cruz, and A. Dalla Rosa. 2011. “Water content, porosity and cement content as parameters controlling strength of artificially cemented silty soil.” Eng. Geol. 122 (3–4): 328–333. https://doi.org/10.1016/j.enggeo.2011.05.017.
Consoli, N. C., G. V. Rotta, and P. D. M. Prietto. 2000. “Influence of curing under stress on the triaxial response of cemented soils.” Géotechnique 50 (1): 99–105. https://doi.org/10.1680/geot.2000.50.1.99.
Consoli, N. C., G. V. Rotta, and P. D. M. Prietto. 2006. “Yielding–compressibility–strength relationship for an artificially cemented soil cured under stress.” Géotechnique 56 (1): 69–72. https://doi.org/10.1680/geot.2006.56.1.69.
Criado, M., A. Palomo, and A. Fernández-Jiménez. 2005. “Alkali activation of fly ashes. Part 1: Effect of curing conditions on the carbonation of the reaction products.” Fuel 84 (16): 2048–2054. https://doi.org/10.1016/j.fuel.2005.03.030.
Cyr, M., R. Idir, and T. Poinot. 2012. “Properties of inorganic polymer (geopolymer) mortars made of glass cullet.” J. Mater. Sci. 47 (6): 2782–2797. https://doi.org/10.1007/s10853-011-6107-2.
Daigo, I., S. Kiyohara, T. Okada, D. Okamoto, and Y. Goto. 2018. “Element-based optimization of waste ceramic materials and glasses recycling.” Resour. Conserv. Recycl. 133 (Jun): 375–384. https://doi.org/10.1016/j.resconrec.2017.11.012.
Davidovits, J. 2008. Geopolymer chemistry and applications. San Quentin, France: Institut Géopolymère.
Diamond, S., J. L. White, and W. L. Dolch. 1964. “Transformation of clay minerals by calcium hydroxide attack.” In Proc., 12th National Conf. on Clay and Clay Minerals, 359–378. West Lafayette, IN: Purdue Univ.
Disfani, M., A. Mohammadinia, G. A. Narsilio, and L. Aye. 2020. “Performance evaluation of semi-flexible permeable pavements under cyclic loads.” Int. J. Pavement Eng. 21 (3): 336–346. https://doi.org/10.1080/10298436.2018.1475666.
Duran Atiş, C., C. Bilim, Ö. Çelik, and O. Karahan. 2009. “Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar.” Constr. Build. Mater. 23 (1): 548–555. https://doi.org/10.1016/j.conbuildmat.2007.10.011.
Duxson, P., A. Fernández-Jiménez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S. J. van Deventer. 2006. “Geopolymer technology: The current state of the art.” J. Mater. Sci. 42 (9): 2917–2933. https://doi.org/10.1007/s10853-006-0637-z.
Ecovidrio. 2020. “Spanish society consolidates its commitment to recycling glass containers in 2020.” Accessed April 8, 2020. https://www.ecovidrio.es/.
Escalante-Garcia, J. I. 2015. “Overview of potential of urban waste glass as a cementitious material in alternative chemically activated binders.” J. Chin. Ceram. Soc. 43 (10): 1441–1448. https://doi.org/10.14062/j.issn.0454-5648.2015.10.14.
Fernández-Jiménez, A., E. Flores, O. Maltseva, I. Garcia Lodeiro, and A. Palomo. 2013. “Hybrid alkaline cements: Part III. Durability and industrial applications.” Rom. J. Mater. 43 (2): 195–200.
Fernández-Jiménez, A., A. Palomo, and M. Criado. 2006. “Alkali activated fly ash binders: A comparative study between sodium and potassium activators.” Mater. Constr. 56 (281): 51–65. https://doi.org/10.3989/mc.2006.v56.i281.92.
Fernández-Jiménez, A., F. Puertas, and L. J. Fernandez-Carrasco. 1996. “Alkaline—Sulphate activation processes of a Spanish blast furnace slag.” Constr. Mater. 46 (241): 53–65. https://doi.org/10.3989/mc.1996.v46.i241.538.
Fernández-Jiménez, A., F. Puertas, I. Sobrados, and J. Sanz. 2003. “Structure of calcium silicate hydrates formed in alkaline-activated slag: Influence of the type of alkaline activator.” J. Am. Ceram. Soc. 86 (8): 1389–1394. https://doi.org/10.1111/j.1151-2916.2003.tb03481.x.
Garcia-Lodeiro, I., A. Fernández-Jiménez, and A. Palomo. 2013a. “Hydration kinetics in hybrid binders: Early reaction stages.” Cem. Concr. Compos. 39 (May): 82–92. https://doi.org/10.1016/j.cemconcomp.2013.03.025.
Garcia-Lodeiro, I., A. Fernández-Jiménez, and A. Palomo. 2013b. “Variation in hybrid cements over time: Alkaline activation of fly ash–portland cement blends.” Cem. Concr. Res. 52 (Oct): 112–122. https://doi.org/10.1016/j.cemconres.2013.03.022.
Garcia-Lodeiro, I., O. Maltseva, A. Palomo, and A. Fernández-Jimenez. 2012. “Hybrid alkaline cements: Part I. Fundamentals.” Rom. J. Mater. 42 (4): 330–335.
Garcia-Lodeiro, I., A. Palomo, A. Fernández-Jiménez, and D. E. McPhee. 2011. “Compatibility studies between N─ A─ S─ H and C─ A─ S─ H gels: Study in the ternary diagram Na2OCaOAl2O3SiO2H2O.” Cem. Concr. Res. 41 (9): 923–931. https://doi.org/10.1016/j.cemconres.2011.05.006.
Glukhovsky, V. D., G. S. Rostovskaja, and G. V. Rumyna. 1980. “High strength slag-alkaline cements.” In Vol. 3 of Proc., 7th Int. Congress on the Chemistry of Cement, 164–168. New Delhi, India: Cement Research Institute of India.
Güllü, H., H. Canakci, and I. F. Al Zangana. 2017. “Use of cement based grout with glass powder for deep mixing.” Constr. Build. Mater. 137 (Apr): 12–20. https://doi.org/10.1016/j.conbuildmat.2017.01.070.
Harder, J. 2018. “Potential glass recycling—Current market trends.” Recovery Recycl. Technol. Worldwide 5: 36–48.
Hewlett, P. C. 2003. Lea’s chemistry of cement and concrete. 4th ed. Amsterdam, Netherlands: Elsevier.
Hrma, P. 1985. “Reaction between sodium carbonate and silica sand at 874°C< T< 1022°C.” J. Am. Ceram. Soc. 68 (6): 337–341. https://doi.org/10.1111/j.1151-2916.1985.tb15236.x.
Ibanez, A., and F. Sandoval. 1993. “LaWollastonita: Propiedades, síntesis y aplicaciones cerámicas.” Bol. Soc. Esp. Ceram. Vidr. 32 (6): 349–361.
Islam, G. M. S., M. H. Rahman, and N. Kazi. 2017. “Waste glass powder as partial replacement of cement for sustainable concrete practice.” Int. J. Sustainable Built Environ. 6 (1): 37–44. https://doi.org/10.1016/j.ijsbe.2016.10.005.
Jennings, H. M. 2008. “Refinements to colloid model of C─ S─ H in cement: CM-II.” Cem. Concr. Res. 38 (3): 275–289. https://doi.org/10.1016/j.cemconres.2007.10.006.
Khmiri, A., M. Chaabouni, and B. Samet. 2013. “Chemical behaviour of ground waste glass when used as partial cement replacement in mortars.” Constr. Build. Mater. 44 (Jul): 74–80. https://doi.org/10.1016/j.conbuildmat.2013.02.040.
Kirkpatrick, R. K., J. L. Yarger, P. F. McMillan, P. Yu, and X. Cong. 1997. “Raman spectroscopy of C─ S─ H, tobermorite, and jennite.” Adv. Cem. Based Mater. 5 (3–4): 93–99. https://doi.org/10.1016/S1065-7355(97)00001-1.
Krivenko, P. 2017. “Why alkaline activation—60 years of the theory and practice of alkali-activated materials.” J. Ceram. Sci. Technol. 8 (3): 323–334. https://doi.org/10.4416/JCST2017-00042.
Ladd, R. 1978. “Preparing test specimens using undercompaction.” Geotech. Test. J. 1: 16–23. https://doi.org/10.1520/GTJ10364J.
Liu, Y., C. Shia, Z. B. Zhanga, and N. Lia. 2019. “An overview on the reuse of waste glasses in alkali-activated materials.” Resour. Conserv. Recycl. 144 (2019): 297–309. https://doi.org/10.1016/j.resconrec.2019.02.007.
Lo, K.-W., K.-L. Lin, T.-W. Cheng, and H.-S. Shiu. 2018. “Effect of alkali activation thin film transistor-liquid crystal display waste glass on the mechanical behavior of geopolymers.” Constr. Build. Mater. 162 (Feb): 724–731. https://doi.org/10.1016/j.conbuildmat.2017.12.079.
Maraghechi, H., S. Salwocki, and F. Rajabipour. 2016. “Utilisation of alkali activated glass powder in binary mixtures with portland cement, slag, fly ash and hydrated lime.” Mater. Struct. 50 (1): 16. https://doi.org/10.1617/s11527-016-0922-5.
Martinez-Lopez, R., and I. Escalante-Garcia. 2016. “Alkali activated composite binders of waste silica soda lime glass and blast furnace slag: Strength as a function of the composition.” Constr. Build. Mater. 119 (Aug): 119–129. https://doi.org/10.1016/j.conbuildmat.2016.05.064.
Massazza, F. 1998. “Pozzolana and pozzolanic cements.” In Lea’s chemistry of cement and concrete, edited by P. C. Hewlett, 4th ed. London: Arnold.
Mastali, M., P. Kinnunen, A. Dalvand, R. M. Firouz, and M. Illikainen. 2018. “Drying shrinkage in alkali-activated binders—A critical review.” Constr. Build. Mater. 190 (Nov): 533–550. https://doi.org/10.1016/j.conbuildmat.2018.09.125.
Mitchell, J. K. 1981. “Soil improvement—State-of-the-art report.” In Vol. 4 of Proc., 10th Int. Conf. on Soil Mechanics and Foundation Engineering, 509–565. Rotterdam, Netherlands: A.A. Balkema.
Mohajerani, A., J. Vajna, T. H. H. Cheung, H. Kurmus, A. Arulrajah, and S. Horpibulsuk. 2017. “Practical recycling applications of crushed waste glass in construction materials: A review.” Constr. Build. Mater. 156 (Dec): 443–467. https://doi.org/10.1016/j.conbuildmat.2017.09.005.
Mohammadinia, A., A. Arulrajah, M. Disfani, and S. Darmawan. 2019a. “Small-strain behavior of cement-stabilized recycled concrete aggregate in pavement base layers.” J. Mater. Civ. Eng. 31 (5): 04019044. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002671.
Mohammadinia, A., A. Arulrajah, I. Phummiphan, S. Horpibulsuk, and M. Mirzababaei. 2019b. “Flexural fatigue strength of demolition aggregates stabilized with alkali-activated calcium carbide residue.” Constr. Build. Mater. 199 (Feb): 115–123. https://doi.org/10.1016/j.conbuildmat.2018.12.031.
Novais, R. M., G. Ascensão, M. P. Seabra, and J. A. Labrincha. 2016. “Waste glass from end-of-life fluorescent lamps as raw material in geopolymers.” Waste Manage. 52: 245–255. https://doi.org/10.1016/j.wasman.2016.04.003.
Pallagi, A., Á. Tasi1, A. Gácsi1, M. Csáti, I. Pálinkó, G. Peintler, and P. Sipos. 2012. “The solubility of Ca(OH)2 in extremely concentrated NaOH solutions at 25°C.” Cent. Eur. J. Chem. 10 (2): 332–337. https://doi.org/10.2478/s11532-011-0145-0.
Palomo, A., M. T. Blanco-Varela, M. L. Granizo, F. Puertas, T. Vazquez, and M. W. Grutzeck. 1999. “Chemical stability of cementitious materials based on metakaolin.” Cem. Concr. Res. 29 (7): 997–1004. https://doi.org/10.1016/S0008-8846(99)00074-5.
Palomo, A., A. Fernández Jiménez, G. Kovalchuk, L. M. Ordoñez, and M. C. Naranjo. 2007. “OPC-fly ash cementitious systems: Study of gel binders produced during alkaline hydration.” J. Mater. Sci. 42: 2958–2966. https://doi.org/10.1007/s10853-006-0585-7.
Palomo, A., O. Maltseva, I. Garcia Lodeiro, and A. Fernández-Jimenez. 2013. “Hybrid alkaline cements: Part II. Clinker factor.” Rom. J. Mater. 43 (1): 74–79.
Pascual, A. B., M. T. Tognonvi, and A. Tagnit-Hamou. 2014. “Waste glass powder-based alkaliactivated mortar.” Int. J. Res. Eng. Technol. 3 (25): 32–36. https://doi.org/10.15623/ijret.2014.0325006.
Pereira-de-Oliveira, L. A., J. P. Castro-Gomes, and P. M. S. Santos. 2012. “The potential pozzolanic activity of glass and red-clay ceramic waste as cement mortars components.” Constr. Build. Mater. 31 (Jun): 197–203. https://doi.org/10.1016/j.conbuildmat.2011.12.110.
Pollery, C., S. M. Cramer, and R. V. De la Cruz. 1998. “Potential for using waste glass in portland cement concrete.” J. Mater. Civ. Eng. 10 (4): 210–219. https://doi.org/10.1061/(ASCE)0899-1561(1998)10:4(210).
Provis, J. L. 2010. “A review: The comparison between alkali activated slag (Si+Ca) and metakaolin (Si+Al) cements.” Cem. Concr. Res. 40 (12): 1766–1767. https://doi.org/10.1016/j.cemconres.2010.08.005.
Provis, J. L., and J. S. J. van Deventer. 2014. Alkali activated materials state-of-the-art report. Berlin: Springer.
Puertas, F., M. Palacios, H. Manzano, J. S. Dolado, A. Rico, and J. Rodríguez. 2011. “A model of the C-S-A-H gel formed in alkali-activated slag cements.” J. Eur. Ceram. Soc. 31 (12): 2043–2056. https://doi.org/10.1016/j.jeurceramsoc.2011.04.036.
Rangaraju, P. R., H. Rashidian-Dezfouli, G. Nameni, and G. Q. Amekuedi. 2016. “Properties and performance of ground glass fiber as a pozzolan in portland cement concrete.” In Proc., 11th Int. Concrete Sustainability Conf. Washington, DC: National Ready Mixed Concrete Association.
Redden, R., and N. Neithalath. 2014. “Microstructure, strength, and moisture stability of alkali-activated glass powder-based binders.” Cem. Concr. Compos. 45 (1): 46–56. https://doi.org/10.1016/j.cemconcomp.2013.09.011.
Richardson, I. G. 2008. “The calcium silicate hydrates.” Cem. Concr. Res. 38 (2): 137–158. https://doi.org/10.1016/j.cemconres.2007.11.005.
Richardson, I. G., and J. G. Cabrera. 2000. “The nature of C─ S─ H in model slag cements.” Cem. Concr. Compos. 22 (4): 259–266. https://doi.org/10.1016/S0958-9465(00)00022-6.
Rivera, J. F., Z. I. Cuarán-Cuarán, N. Vanegas-Bonilla, and R. Mejía de Gutiérrez. 2018. “Novel use of waste glass powder: Production of geopolymeric tiles.” Adv. Powder Technol. 29 (12): 3448–3454. https://doi.org/10.1016/j.apt.2018.09.023.
Roy, A., P. J. Schilling, and H. C. Eaton. 1994. “Activation of ground blast-furnace slag by alkali-metal and alkaline-earth hydroxides.” J. Am. Ceram. Soc. 75 (12): 3233–3240. https://doi.org/10.1111/j.1151-2916.1992.tb04416.x.
Saldanha, R. B., and N. C. Consoli. 2016. “Accelerated mix design of lime stabilized materials.” J. Mater. Civ. Eng. 28 (3): 06015012. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001437.
Saldanha, R. B., J. E. C. Mallmann, and N. C. Consoli. 2016. “Salts accelerating strength increase of coal fly ash–carbide lime compacted blends.” Géotech. Lett. 6 (1): 23–27. https://doi.org/10.1680/jgele.15.00111.
Saldanha, R. B., H. C. F. Scheuermann, J. E. C. Mallmann, N. C. Consoli, and K. Reddy. 2018. “Physical-mineralogical-chemical characterization of carbide lime: An environment-friendly chemical additive for soil stabilization.” J. Mater. Civ. Eng. 30 (6): 06018004. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002283.
Schneider, M., A. Cincotto, and H. Panepucci. 2001. “29Si and 27Al high-resolution NMR characterization of calcium silicate hydrate phases in activated blast furnace slag pastes.” Cem. Concr. Res. 31 (7): 993–1001. https://doi.org/10.1016/S0008-8846(01)00530-0.
Shi, C., Z. Shi, X. Hu, R. Zhao, and L. Chong. 2015. “A review on alkali-aggregate reactions in alkali-activated mortars/concretes made with alkali-reactive aggregates.” Mater. Struct. 48 (3): 621–628. https://doi.org/10.1617/s11527-014-0505-2.
Shi, C., Y. Wu, C. Riefler, and H. Wang. 2005. “Characteristics and pozzolanic reactivity of glass powders.” Cem. Concr. Res. 35 (5): 987–993. https://doi.org/10.1016/j.cemconres.2004.05.015.
Shi, C., and K. Zheng. 2007. “A review on the use of waste glasses in the production of cement and concrete.” Resour. Conserv. Recycl. 52 (2): 234–247. https://doi.org/10.1016/j.resconrec.2007.01.013.
Soroushian, P. 2012. “Strength and durability of recycled aggregate concrete containing milled glass as partial replacement for cement.” Constr. Build. Mater. 29 (Apr): 368–377. https://doi.org/10.1016/j.conbuildmat.2011.10.061.
Taylor, H. F. W. 1993. “Nanostructure of C─ S─ H: Current status.” Adv. Cem. Based Mater. 1 (1): 38–46. https://doi.org/10.1016/1065-7355(93)90006-A.
Taylor, W. H. 1967. Concrete technology and practice. Shepherdstown, WV: American Elsevier Publishing Company.
Torres-Carrasco, M., J. G. Palomo, and F. Puertas. 2014. “Sodium silicate solutions form dissolution of glass wastes: Statistical analysis.” Mater. Constr. 64 (314: e014. https://doi.org/10.3989/mc.2014.05213.
Torres-Carrasco, M., and F. Puertas. 2015. “Waste glass in the geopolymer preparation. Mechanical and microstructural characterization.” J. Cleaner Prod. 90 (1): 397–408. https://doi.org/10.1016/j.jclepro.2014.11.074.
Torres-Carrasco, M., and F. Puertas. 2017a. “Alkaline activation of different aluminosilicates as an alternative to portland cement: Alkali activated cements or geopolymers.” Rev. Ing. de Construcción. 32 (2): 5–12. https://doi.org/10.4067/S0718-50732017000200001.
Torres-Carrasco, M., and F. Puertas. 2017b. “Waste glass as a precursor in alkaline activation: Chemical process and hydration products.” Constr. Build. Mater. 139 (May): 342–354. https://doi.org/10.1016/j.conbuildmat.2017.02.071.
Torres-Carrasco, M., F. Puertas, and M. T. Blanco-Varela. 2012. “Preparacion de cementos alcalinos a partir de residuos vitreos. Solubilidad de residuos vitreos en medios fuertemente basicos” [Preparation of alkaline cements from waste glass. Solubility of waste glass in basic media]. In Vol. 35 of Proc., XII Congreso Nacional de Materiales, 113. Madrid, Spain: Sociemat.
Vafaei, M., and A. Allahverdi. 2016. “High strength geopolymer binder based on waste-glass powder.” Adv. Powder Technol. 28 (1): 215–222. https://doi.org/10.1016/j.apt.2016.09.034.
Wang, C. C., H. Y. Wang, B. T. Chen, and Y. C. Peng. 2017. “Study on the engineering properties and prediction models of an alkali-activated mortar material containing recycled waste glass.” Constr. Build. Mater. 132 (Feb): 130–141. https://doi.org/10.1016/j.conbuildmat.2016.11.103.
Xie, Z., and Y. Xi. 2002. “Use of recycled glass as a raw material in the manufacture of Portland cement.” Mater. Struct. 35 (Sep–Oct): 510–515. https://doi.org/10.1007/BF02483139.
Yip, C. K., G. C. Lukey, and J. S. J. van Deventer. 2005. “The coexistence of geopolymeric and calcium silicate hydrate at the early stage of alkaline activation.” Cem. Concr. Res. 35 (9): 1688–1697. https://doi.org/10.1016/j.cemconres.2004.10.042.
Zhang, S., A. Keulen, K. Arbi, and G. Ye. 2017. “Waste glass as partial mineral precursor in alkali-activated slag/fly ash system.” Cem. Concr. Res. 102 (Dec): 29–40. https://doi.org/10.1016/j.cemconres.2017.08.012.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 33Issue 10October 2021

History

Received: Apr 29, 2020
Accepted: Mar 2, 2021
Published online: Jul 28, 2021
Published in print: Oct 1, 2021
Discussion open until: Dec 28, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Student, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-190, Brazil (corresponding author). ORCID: https://orcid.org/0000-0002-2843-8384. Email: [email protected]
Professor of Civil Engineering, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-190, Brazil. ORCID: https://orcid.org/0000-0002-6408-451X. Email: [email protected]
Cindy Johanna Moncaleano [email protected]
Ph.D. Student, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-190, Brazil. Email: [email protected]
Ph.D. Student, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-190, Brazil. ORCID: https://orcid.org/0000-0002-6580-3184. Email: [email protected]
Professor of Geosciences, Dept. of Geology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil. ORCID: https://orcid.org/0000-0002-4424-4782. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Effect of Cement Type on Compacted Iron Ore Tailings-Binder Response Blends: Comparative Study, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-17486, 36, 8, (2024).
  • Mechanical, Rheological, and Microstructural Study of Ternary Alkali-Activated Pastes Using BOF Slag, Metakaolin, and Glass Powder as Precursors, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-17132, 36, 6, (2024).
  • Mechanical Behavior of a Granular Soil Stabilized with Alkali-Activated Waste, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-15641, 36, 1, (2024).
  • Stabilization of Dredging Material from Rio Grande Harbor with Alkali-Activated Cements to Produce Masonry Elements, Journal of Materials in Civil Engineering, 10.1061/(ASCE)MT.1943-5533.0004677, 35, 4, (2023).
  • Rice husk ash as an alternative soluble silica source for alkali-activated metakaolin systems applied to recycled asphalt pavement stabilization, Transportation Geotechnics, 10.1016/j.trgeo.2023.100940, 39, (100940), (2023).
  • Alkali-activated red ceramic wastes-carbide lime blend: An alternative alkaline cement manufactured at room temperature, Journal of Building Engineering, 10.1016/j.jobe.2022.105663, 65, (105663), (2023).
  • Potential use of iron ore tailings for binder production: A life cycle assessment, Construction and Building Materials, 10.1016/j.conbuildmat.2022.130008, 365, (130008), (2023).
  • Evaluation of mechanical and microstructural properties of eggshell lime/rice husk ash alkali-activated cement, Construction and Building Materials, 10.1016/j.conbuildmat.2022.129931, 364, (129931), (2023).
  • Alkali-activated system of carbide lime and rice husk for granular soil stabilisation, Proceedings of the Institution of Civil Engineers - Ground Improvement, 10.1680/jgrim.21.00048, (1-16), (2022).
  • Stabilization of gold mining tailings with alkali-activated carbide lime and sugarcane bagasse ash, Transportation Geotechnics, 10.1016/j.trgeo.2021.100704, 32, (100704), (2022).
  • See more

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share