Technical Papers
Jul 29, 2021

Review of the Properties of Fiber-Reinforced Polymer-Reinforced Seawater–Sea Sand Concrete

Publication: Journal of Materials in Civil Engineering
Volume 33, Issue 10

Abstract

Fiber-reinforced polymer (FRP)–reinforced seawater–sea sand concrete (SWSSC) is a new structure form for coastal infrastructure, especially for island construction. The degradation mechanism of FRP bars in SWSSC involves water molecules, hydroxide ions, chloride ions, high temperature, and stress. In general, water molecules and hydroxide and chloride ions react with some ingredients in FRP bars, destroy the interface between fiber and resin, and reduce the properties of FRP bars. In the environment of water molecules, hydroxide ions, and chloride ions, the strength retentions of FRP bars were 71%–77%, 26%–98%, and 49%–77%, respectively, depending on composition and manufacturing techniques of fiber. High temperature and stress accelerate the degradation of FRP bars. Under different temperatures and stress levels, the strength retentions of FRP bars were 0.6%–98% and 43%–93%, respectively, depending on the fiber type, temperature, and stress levels. The presence of chloride ions accelerates the hydration of cement and improves the properties of SWSSC at early age. However, the conclusions on the properties of SWSSC at later age are still controversial. Based on previous studies, some future needs on FRP-reinforced SWSSC are also recommended.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This study was funded by the National Key R&D Program of China (2018YFC0705400).

References

Ahmed, A., S. C. Guo, Z. H. Zhang, C. J. Shi, and D. J. Zhu. 2020. “A review on durability of fiber reinforced polymer (FRP) bars reinforced seawater sea sand concrete.” Constr. Build. Mater. 256 (Sep): 119484. https://doi.org/10.1016/j.conbuildmat.2020.119484.
Almusallam, T. H., Y. A. Al-Salloum, S. H. Alsayed, S. El-Gamal, and M. Aqel. 2012. “Tensile properties of glass fiber-reinforced polymer bars embedded in concrete under severe laboratory and field environmental conditions.” J. Compos. Mater. 47 (4): 393–407. https://doi.org/10.1177/0021998312440473.
Altalmas, A., A. El Refai, and F. Abed. 2015. “Bond degradation of basalt fiber-reinforced polymer (BFRP) bars exposed to accelerated aging conditions.” Constr. Build. Mater. 81 (Apr): 162–171. https://doi.org/10.1016/j.conbuildmat.2015.02.036.
Aydin, F. 2018. “Experimental investigation of thermal expansion and concrete strength effects on FRP bars behavior embedded in concrete.” Constr. Build. Mater. 163 (Feb): 1–8. https://doi.org/10.1016/j.conbuildmat.2017.12.101.
Bethencourt, M., F. J. Botana, M. J. Cano, M. Marcos, J. M. Sánchez-Amaya, and L. González-Rovira. 2009. “Behaviour of the alloy AA2017 in aqueous solutions of NaCl. Part I: Corrosion mechanisms.” Corros. Sci. 51 (3): 518–524. https://doi.org/10.1016/j.corsci.2008.12.027.
Cang, Y. Q. 2010. “Study on the axial compression and hysteretic behavior of steel–GFRP–sea sand concrete columns based on unified theory.” [In Chinese.] Master’s thesis, School of Civil Engineering, Harbin Institute of Technology.
Cao, X. Q., Y. Zhang, Y. J. He, Y. C. Jiang, and X. J. Yuan. 2008. “Retrospect and discussion of surveys for construction sand in China offshore area, Marine.” [In Chinese.] Geol. Quat. Geol. 28 (3): 121–125. https://doi.org/10.16562/j.cnki.0256-1492.2008.03.006.
Ceroni, F., E. Cosenza, M. Gaetano, and M. Pecce. 2006. “Durability issues of FRP rebars in reinforced concrete members.” Cem. Concr. Comp. 28 (10): 857–868. https://doi.org/10.1016/j.cemconcomp.2006.07.004.
Chapman, G. P. 1968. “The sea-dredged sand and gravel industry of Great Britain.” In Proc., Symp.: Sea-Dredged Aggregates for Concrete. Buckinghamshire, UK: Sand and Gravel Association Great Britain.
Chen, Y., J. F. Davalos, and I. Ray. 2006. “Durability prediction for GFRP reinforcing bars using short-term data of accelerated aging tests.” J. Compos. Constr. 10 (4): 279–286. https://doi.org/10.1061/(ASCE)1090-0268(2006)10:4(279).
Chen, Y., J. F. Davalos, I. Ray, and H. Y. Kim. 2007. “Accelerated aging tests for evaluations of durability performance of FRP reinforcing bars for concrete structures.” Compos. Struct. 78 (1): 101–111. https://doi.org/10.1016/j.compstruct.2005.08.015.
Cheng, S. K., Z. H. Shui, T. Sun, Y. Huang, and K. Z. Liu. 2018. “Effects of seawater and supplementary cementitious materials on the durability and microstructure of lightweight aggregate concrete.” Constr. Build. Mater. 190 (Nov): 1081–1090. https://doi.org/10.1016/j.conbuildmat.2018.09.178.
D’Antino, T., M. A. Pisani, and C. Poggi. 2018. “Effect of the environment on the performance of GFRP reinforcing bars.” Composites, Part B 141 (May): 123–136. https://doi.org/10.1016/j.compositesb.2017.12.037.
Dhand, V., G. Mittal, K. Y. Rhee, S. J. Park, and D. Hui. 2015. “A short review on basalt fiber reinforced polymer composites.” Composites, Part B 73 (May): 166–180. https://doi.org/10.1016/j.compositesb.2014.12.011.
Dong, Z. Q., G. Wu, B. Xu, X. Wang, and L. Taerwe. 2016a. “Bond durability of BFRP bars embedded in concrete under seawater conditions and the long-term bond strength prediction.” Mater. Des. 92 (Feb): 552–562. https://doi.org/10.1016/j.matdes.2015.12.066.
Dong, Z. Q., G. Wu, and Y. Q. Xu. 2016b. “Experimental study on the bond durability between steel-FRP composite bars (SFCBs) and sea sand concrete in ocean environment.” Constr. Build. Mater. 115 (Jul): 277–284. https://doi.org/10.1016/j.conbuildmat.2016.04.052.
Dong, Z. Q., G. Wu, X. L. Zhao, H. Zhu, and J. L. Lian. 2018a. “Bond durability of steel-FRP composite bars embedded in seawater sea-sand concrete under constant bending and shearing stress.” Constr. Build. Mater. 192 (Dec): 808–817. https://doi.org/10.1016/j.conbuildmat.2018.10.154.
Dong, Z. Q., G. Wu, X. L. Zhao, H. Zhu, and J. L. Lian. 2018b. “Durability test on the flexural performance of seawater sea-sand concrete beams completely reinforced with FRP bars.” Constr. Build. Mater. 192 (Dec): 671–682. https://doi.org/10.1016/j.conbuildmat.2018.10.166.
Dong, Z.-Q., G. Wu, X.-L. Zhao, and J.-L. Lian. 2018c. “Long-term bond durability of fiber-reinforced polymer bars embedded in seawater sea-sand concrete under ocean environments.” J. Compos. Constr. 22 (5): 04018042. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000876.
Du, R. L., K. Wu, D. A. Xu, C. Y. Chao, L. Zhang, and X. D. Du. 2016. “A modified Arrhenius equation to predict the reaction rate constant of Anyuan pulverized-coal pyrolysis at different heating rates.” Fuel Process. Technol. 148 (Jul): 295–301. https://doi.org/10.1016/j.fuproc.2016.03.011.
Earl, J. S., and R. A. Shenoi. 2004. “Hygrothermal ageing effects on FRP laminate and structural foam materials.” Composites, Part A 35 (11): 1237–1247. https://doi.org/10.1016/S1359-835X(04)00121-6.
El-Hassan, H., T. El-Maaddawy, A. Al-Sallamin, and A. Al-Saidy. 2017. “Performance evaluation and microstructural characterization of GFRP bars in seawater-contaminated concrete.” Constr. Build. Mater. 147 (Aug): 66–78. https://doi.org/10.1016/j.conbuildmat.2017.04.135.
Erniati, M. W. Tjaronge, Zulharnah, and U. R. Irfan. 2015. “Porosity, pore size and compressive strength of self compacting concrete using sea water.” Procedia Eng. 125: 832–837. https://doi.org/10.1016/j.proeng.2015.11.045.
Etxeberria, M., J. M. Fernandez, and J. Limeira. 2016. “Secondary aggregates and seawater employment for sustainable concrete dyke blocks production: Case study.” Constr. Build. Mater. 113 (Jun): 586–595. https://doi.org/10.1016/j.conbuildmat.2016.03.097.
Feng, P., J. Wang, Y. Wang, D. Loughery, and D. T. Niu. 2014. “Effects of corrosive environments on properties of pultruded GFRP plates.” Composites, Part B 67 (Dec): 427–433. https://doi.org/10.1016/j.compositesb.2014.08.021.
Figueira, R. B., R. Sousa, L. Coelho, M. Azenha, J. M. D. Almeida, P. A. S. Jorge, and C. J. R. Silva. 2019. “Alkali-silica reaction in concrete: Mechanisms, mitigation and test methods.” Constr. Build. Mater. 222 (Oct): 903–931. https://doi.org/10.1016/j.conbuildmat.2019.07.230.
Foster, S. K., and L. A. Bisby. 2008. “Fire survivability of externally bonded FRP strengthening systems.” J. Compos. Constr. 12 (5): 553–561. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:5(553).
Fu, C. Q., H. L. Ye, X. Y. Jin, D. M. Yan, N. G. Jin, and Z. X. Peng. 2016. “Chloride penetration into concrete damaged by uniaxial tensile fatigue loading.” Constr. Build. Mater. 125 (Oct): 714–723. https://doi.org/10.1016/j.conbuildmat.2016.08.096.
Fu, K., W. Wang, and W. Xue. 2013. “Accelerated aging test for evaluation of compressive properties of GFRP rebars under simulated concrete environment.” [In Chinese.] J. Build. Struct. 34 (1): 117–122. https://doi/org/10.14006/j.jzjgxb.2013.01.016.
Ghorab, H. Y., M. S. Hilal, and E. A. Kishar. 1990. “Effect of mixing and curing waters on the behaviour of cement pastes and concrete. Part II: Properties of cement paste and concrete.” Cem. Concr. Res. 20 (1): 69–72. https://doi.org/10.1016/0008-8846(90)90117-G.
Guo, F., S. Al-Saadi, R. K. Singh Raman, and X. L. Zhao. 2018. “Durability of fiber reinforced polymer (FRP) in simulated seawater sea sand concrete (SWSSC) environment.” Corros. Sci. 141 (Aug): 1–13. https://doi.org/10.1016/j.corsci.2018.06.022.
Guo, M. H., B. Hu, F. Xing, X. Q. Zhou, M. Sun, L. L. Sui, and Y. W. Zhou. 2020. “Characterization of the mechanical properties of eco-friendly concrete made with untreated sea sand and seawater based on statistical analysis.” Constr. Build. Mater. 234 (Feb): 117339. https://doi.org/10.1016/j.conbuildmat.2019.117339.
Hashida, M., N. Matsunaga, and T. Komatsu. 1992. “Present situation of sea-sand mining in Kyushu Island, Japan and its influence on coastal environment.” In Proc., 23rd Coastal Engineering, 3331–3342. Reston, VA: ASCE.
Huang, B. T., J. Yu, J. Q. Wu, J. G. Dai, and C. K. Y. Leung. 2020. “Seawater sea-sand engineered cementitious composites (SS-ECC) for marine and coastal applications.” Compos. Commun. 20 (Aug): 100353. https://doi.org/10.1016/j.coco.2020.04.019.
James, J. W. C., C. D. R. Evans, D. J. Harrison, K. Ooms, C. M. G. Vivian, and S. E. Boyd. 1999. The effective development of offshore aggregates in south-east Asia., Nottingham, UK: British Geological Survey.
Kaushik, S. K., and S. Islam. 1995. “Suitability of sea water for mixing structural concrete exposed to a marine environment.” Cem. Concr. Compos. 17 (3): 177–185. https://doi.org/10.1016/0958-9465(95)00015-5.
Larsen, O. D. 1993. “Denmark’s great belt link.” J. Coast. Res. 9 (3): 766–784.
Leone, M., S. Matthys, and M. A. Aiello. 2009. “Effect of elevated service temperature on bond between FRP EBR systems and concrete.” Composites, Part B 40 (1): 85–93. https://doi.org/10.1016/j.compositesb.2008.06.004.
Li, C., D. Gao, Y. Wang, and J. Tang. 2017a. “Effect of high temperature on the bond performance between basalt fibre reinforced polymer (BFRP) bars and concrete.” Constr. Build. Mater. 141 (Jun): 44–51. https://doi.org/10.1016/j.conbuildmat.2017.02.125.
Li, C. Q. 2000. “Corrosion initiation of reinforcing steel in concrete under natural salt spray and service loading—Results and analysis.” ACI Struct. J. 97 (6): 690–697.
Li, G. X., A. Zhang, Z. P. Song, C. Shi, Y. Wang, and J. J. Zhang. 2017b. “Study on the resistance to seawater corrosion of the cementitious systems containing ordinary portland cement or/and calcium aluminate cement.” Constr. Build. Mater. 157 (Dec): 852–859. https://doi.org/10.1016/j.conbuildmat.2017.09.175.
Li, H., N. Farzadnia, and C. J. Shi. 2018a. “The role of seawater in interaction of slag and silica fume with cement in low water-to-binder ratio pastes at the early age of hydration.” Constr. Build. Mater. 185 (Oct): 508–518. https://doi.org/10.1016/j.conbuildmat.2018.07.091.
Li, H. J. 2012. “The study on emergency management of ‘sea sand house.’” [In Chinese.] Master’s thesis, College of Civil Engineering, Huaqiao Univ.
Li, J. L., B. Hou, Z. Y. Lu, and F. Liu. 2018b. “Fatigue behaviour of sea sand concrete beams reinforced with basalt fibre-reinforced polymer bars.” Constr. Build. Mater. 179 (Aug): 160–171. https://doi.org/10.1016/j.conbuildmat.2018.05.218.
Li, J. L., J. H. Xie, F. Liu, and Z. Y. Lu. 2019. “A critical review and assessment for FRP-concrete bond systems with epoxy resin exposed to chloride environments.” Compos. Struct. 229 (Dec): 111372. https://doi.org/10.1016/j.compstruct.2019.111372.
Limeira, J., L. Agullo, and M. Etxeberria. 2010. “Dredged marine sand in concrete: An experimental section of a harbor pavement.” Constr. Build. Mater. 24 (6): 863–870. https://doi.org/10.1016/j.conbuildmat.2009.12.011.
Limeira, J., M. Etxeberria, L. Agulló, and D. Molina. 2011. “Mechanical and durability properties of concrete made with dredged marine sand.” Constr. Build. Mater. 25 (11): 4165–4174. https://doi.org/10.1016/j.conbuildmat.2011.04.053.
Liu, T. Q., X. Liu, and P. Feng. 2020. “A comprehensive review on mechanical properties of pultruded FRP composites subjected to long-term environmental effects.” Composites, Part B 191 (Jun): 107958. https://doi.org/10.1016/j.compositesb.2020.107958.
Liu, W., R. H. Huang, J. Y. Fu, W. C. Tang, Z. J. Dong, and H. Z. Cui. 2018. “Discussion and experiments on the limits of chloride, sulphate and shell content in marine fine aggregates for concrete.” Constr. Build. Mater. 159: 725–733. https://doi.org/10.1016/j.conbuildmat.2017.10.078.
Lu, Y. Y., G. Y. Shi, Y. Q. Liu, Z. Ding, J. L. Pan, D. D. Qin, B. Q. Dong, and H. Y. Shao. 2018. “Study on the effect of chloride ion on the early age hydration process of concrete by a non-contact monitoring method.” Constr. Build. Mater. 172 (May): 499–508. https://doi.org/10.1016/j.conbuildmat.2018.03.206.
Lu, Z. Y., L. Z. Su, S. R. Tan, Y. C. Li, J. H. Xie, and F. Liu. 2020a. “Long-term shear performance of bare and cement mortar-coated BFRP bars in corrosive environments.” Constr. Build. Mater. 237 (Mar): 117658. https://doi.org/10.1016/j.conbuildmat.2019.117658.
Lu, Z. Y., L. Z. Su, G. J. Xian, B. H. Lu, and J. H. Xie. 2020b. “Durability study of concrete-covered basalt fiber-reinforced polymer (BFRP) bars in marine environment.” Compos. Struct. 234 (Feb): 111650. https://doi.org/10.1016/j.compstruct.2019.111650.
Lu, Z. Y., S. R. Tan, P. H. Huang, Z. P. Lei, F. Liu, and J. H. Xie. 2020c. “Durability of cement mortar-covered BFRP bars in simulated seawater environment.” Constr. Build. Mater. 234 (Feb): 117803. https://doi.org/10.1016/j.conbuildmat.2019.117803.
Manalo, A., G. Maranan, B. Benmokrane, P. Cousin, O. Alajarmeh, W. Ferdous, R. Liang, and G. Hota. 2020. “Comparative durability of GFRP composite reinforcing bars in concrete and in simulated concrete environments.” Cem. Concr. Compos. 109 (May): 103564. https://doi.org/10.1016/j.cemconcomp.2020.103564.
Mehta, P. K., and P. J. M. Monteiro. 1986. Concrete: Microstructure, properties, and materials. New York: McGraw-Hill.
Meulen, M. V. D., S. V. Gessel, and J. Veldkamp. 2005. “Aggregate resources in the Netherlands.” Geol. Mijnbouw 84 (4): 379. https://doi.org/10.1017/S0016774600021193.
Micelli, F., and A. Nanni. 2004. “Durability of FRP rods for concrete structures.” Constr. Build. Mater. 18 (7): 491–503. https://doi.org/10.1016/j.conbuildmat.2004.04.012.
Mikols, W. J., J. C. Seferis, A. Apicella, and L. Nicolais. 1982. “Evaluation of structural changes in epoxy systems by moisture sorption-desorption and dynamic mechanical studies.” Polym. Compos. 3 (3): 118–124. https://doi.org/10.1002/pc.750030304.
Mohammed, T. U., H. Hamada, and T. Yamaji. 2004. “Performance of seawater-mixed concrete in the tidal environment.” Cem. Concr. Res. 34 (4): 593–601. https://doi.org/10.1016/j.cemconres.2003.09.020.
Ngono, Y., Y. Maréchal, and N. Mermilliod. 1999. “Epoxy-amine reticulates observed by infrared spectrometry. I: Hydration process and interaction configurations of embedded H2O molecules.” J. Phys. Chem. B 103 (24): 4979–4985. https://doi.org/10.1021/jp984809y.
Rifai, M. A., H. El-Hassan, T. El-Maaddawy, and F. Abed. 2020. “Durability of basalt FRP reinforcing bars in alkaline solution and moist concrete environments.” Constr. Build. Mater. 243 (May): 118258. https://doi.org/10.1016/j.conbuildmat.2020.118258.
Robert, M., and B. Benmokrane. 2013. “Combined effects of saline solution and moist concrete on long-term durability of GFRP reinforcing bars.” Constr. Build. Mater. 38 (1): 274–284. https://doi.org/10.1016/j.conbuildmat.2012.08.021.
Rosa, I. C., J. P. Firmo, J. R. Correia, and J. A. O. Barros. 2019. “Bond behaviour of sand coated GFRP bars to concrete at elevated temperature: Definition of bond vs. slip relations.” Composites, Part B 160 (Mar): 329–340. https://doi.org/10.1016/j.compositesb.2018.10.020.
Rybin, V., А. Utkin, and N. Baklanova. 2013. “Alkali resistance, microstructural and mechanical performance of zirconia-coated basalt fibers.” Cem. Concr. Res. 53 (Nov): 1–8. https://doi.org/10.1016/j.cemconres.2013.06.002.
Santhanam, M., M. Cohen, and J. Olek. 2006. “Differentiating seawater and groundwater sulfate attack in portland cement mortars.” Cem. Concr. Res. 36 (12): 2132–2137. https://doi.org/10.1016/j.cemconres.2006.09.011.
Sherif, E.-S. M. 2011. “Corrosion and corrosion inhibition of aluminum in Arabian Gulf seawater and sodium chloride solutions by 3-amino-5-mercapto-1,2,4-triazole.” Int. J. Electrochem. Sci. 6 (5): 1479–1492.
Shi, Y. H., D. F. Wang, and Z. J. Wu. 2010. “Durability protection of sea-sand concrete.” [In Chinese.] Supplement, Eng. Mech. 27 (S2): 212–216.
Shi, Z. G., Z. H. Shui, Q. Li, and H. N. Geng. 2015. “Combined effect of metakaolin and sea water on performance and microstructures of concrete.” Constr. Build. Mater. 74 (Jan): 57–64. https://doi.org/10.1016/j.conbuildmat.2014.10.023.
Sun, L., S. Wu, C. Zhu, and X. Mi. 2017. “Experimental study on the compression performance of GFRP bars in artificial marine environment.” [In Chinese.] Eng. Mech. 34: 94–98. https://doi.org/10.6052/j.issn.1000-4750.2016.03.S011.
Sustainable Development. 2015. “UN projects world population to reach 8.5 billion by 2030, driven by growth in developing countries.” Accessed July 29, 2015. https://www.un.org/sustainabledevelopment/blog/2015/07/un-projects-world-population-to-reach-8-5-billion-by-2030-driven-by-growth-in-developing-countries/.
Taha, A., W. Alnahhal, and N. Alnuaimi. 2020. “Bond durability of basalt FRP bars to fiber reinforced concrete in a saline environment.” Compos. Struct. 243 (Jul): 112277. https://doi.org/10.1016/j.compstruct.2020.112277.
Tam, L. H., A. Zhou, and C. Wu. 2019. “Nanomechanical behavior of carbon fiber/epoxy interface in hygrothermal conditioning: A molecular dynamics study.” Mater. Today Commun. 19 (Jun): 495–505. https://doi.org/10.1016/j.mtcomm.2019.04.002.
Teng, J. G., T. Yu, J. G. Dai, and G. M. Chen. 2011. “FRP composites in new construction: Current status and opportunities.” In Proc., 7th National Conf. on FRP Composition. Beijing: Industrial Construction.
Tulashie, S. K., F. Kotoka, D. Mensah, and A. K. Kwablah. 2017. “Investigation of the compressive strength of pit sand, and sea sand mortar prisms produced with rice husk ash as additive.” Constr. Build. Mater. 151 (Oct): 383–387. https://doi.org/10.1016/j.conbuildmat.2017.06.082.
Velegrakis, A. F., A. Ballay, S. E. Poulos, R. Radzevičius, V. K. Bellec, and F. Manso. 2010. “European marine aggregates resources: Origins, usage, prospecting and dredging techniques.” J. Coastal. Res. 51: 1–14.
Wang, J. J., E. G. Liu, and L. Li. 2018a. “Multiscale investigations on hydration mechanisms in seawater OPC paste.” Constr. Build. Mater. 191 (Dec): 891–903. https://doi.org/10.1016/j.conbuildmat.2018.10.010.
Wang, L., Y. D. Mao, H. B. Lv, S. Chen, and W. Li. 2018b. “Bond properties between FRP bars and coral concrete under seawater conditions at 30°C, 60°C, and 80°C.” Constr. Build. Mater. 162 (Feb): 442–449. https://doi.org/10.1016/j.conbuildmat.2017.12.058.
Wang, Z. K., X. L. Zhao, G. J. Xian, G. Wu, R. K. Singh Raman, and S. Al-Saadi. 2017a. “Durability study on interlaminar shear behaviour of basalt-, glass- and carbon-fibre reinforced polymer (B/G/CFRP) bars in seawater sea sand concrete environment.” Constr. Build. Mater. 156 (Dec): 985–1004. https://doi.org/10.1016/j.conbuildmat.2017.09.045.
Wang, Z. K., X. L. Zhao, G. J. Xian, G. Wu, R. K. Singh Raman, and S. Al-Saadi. 2018c. “Effect of sustained load and seawater and sea sand concrete environment on durability of basalt- and glass-fibre reinforced polymer (B/GFRP) bars.” Corros. Sci. 138 (Jul): 200–218. https://doi.org/10.1016/j.corsci.2018.04.002.
Wang, Z. K., X. L. Zhao, G. J. Xian, G. Wu, R. K. Singh Raman, S. Al-Saadi, and A. Haque. 2017b. “Long-term durability of basalt- and glass-fibre reinforced polymer (BFRP/GFRP) bars in seawater and sea sand concrete environment.” Constr. Build. Mater. 139 (May): 467–489. https://doi.org/10.1016/j.conbuildmat.2017.02.038.
Weerdt, K. D., and H. Justnes. 2015. “The effect of sea water on the phase assemblage of hydrated cement paste.” Cem. Concr. Compos. 55 (Jan): 215–222. https://doi.org/10.1016/j.cemconcomp.2014.09.006.
Wei, B., H. L. Cao, and S. H. Song. 2011. “Degradation of basalt fibre and glass fibre/epoxy resin composites in seawater.” Corros. Sci. 53 (1): 426–431. https://doi.org/10.1016/j.corsci.2010.09.053.
Wei, W., F. Liu, Z. Xiong, F. Yang, L. Li, and H. Luo. 2020. “Effect of loading rates on bond behaviour between basalt fibre reinforced polymer bars and concrete.” Constr. Build. Mater. 231 (Jan): 117138. https://doi.org/10.1016/j.conbuildmat.2019.117138.
Xiao, J. Z., C. B. Qiang, A. Nanni, and K. J. Zhang. 2017. “Use of sea-sand and seawater in concrete construction: Current status and future opportunities.” Constr. Build. Mater. 155 (Nov): 1101–1111. https://doi.org/10.1016/j.conbuildmat.2017.08.130.
Xie, J. H., M. W. Wei, P. Y. Huang, H. Zhang, and P. S. Chen. 2019. “Fatigue behavior of the basalt fiber-reinforced polymer/concrete interface under wet-dry cycling in a marine environment.” Constr. Build. Mater. 228 (Dec): 117065. https://doi.org/10.1016/j.conbuildmat.2019.117065.
Yin, H. G., Y. Li, H. L. Lv, and Q. Gao. 2011. “Durability of sea-sand containing concrete: Effects of chloride ion penetration.” Min. Sci. Technol. (China) 21 (1): 123–127. https://doi.org/10.1016/j.mstc.2010.07.003.
Yoo, S. W., and S. J. Kwon. 2016. “Effects of cold joint and loading conditions on chloride diffusion in concrete containing GGBFS.” Constr. Build. Mater. 115 (Jul): 247–255. https://doi.org/10.1016/j.conbuildmat.2016.04.010.
Younis, A., U. Ebead, P. Suraneni, and A. Nanni. 2018. “Fresh and hardened properties of seawater-mixed concrete.” Constr. Build. Mater. 190 (Nov): 276–286. https://doi.org/10.1016/j.conbuildmat.2018.09.126.
Zafar, A., F. Bertocco, J. Schjodt-Thomsen, and J. C. Rauhe. 2012. “Investigation of the long term effects of moisture on carbon fibre and epoxy matrix composites.” Compos. Sci. Technol. 72 (6): 656–666. https://doi.org/10.1016/j.compscitech.2012.01.010.
Zha, X. X., Y. Q. Cang, X. L. Wang, and S. T. Zhong. 2010. “Investigation of steel-FRP-sea sand concrete stubs under axial compressive loading.” [In Chinese.] Supplement, Build. Struct. 40 (S2): 351–354.
Zhang, X. L., and Z. C. Deng. 2019. “Durability of GFRP bars in the simulated marine environment and concrete environment under sustained compressive stress.” Constr. Build. Mater. 223 (Oct): 299–309. https://doi.org/10.1016/j.conbuildmat.2019.06.212.
Zhu, D., and W. J. van Ooij. 2003. “Corrosion protection of AA 2024-T3 by bis-[3-(triethoxysilyl) propyl]tetrasulfide in neutral sodium chloride solution. Part 1: Corrosion of AA 2024-T3.” Corros. Sci. 45 (10): 2163–2175. https://doi.org/10.1016/S0010-938X(03)00060-X.
Zhu, N. S., F. N. Jin, X. L. Kong, Y. Xu, J. N. Zhou, B. Wang, and H. Wu. 2018. “Interface and anti-corrosion properties of sea-sand concrete with fumed silica.” Constr. Build. Mater. 188 (Nov): 1085–1091. https://doi.org/10.1016/j.conbuildmat.2018.08.040.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 33Issue 10October 2021

History

Received: Sep 29, 2020
Accepted: Feb 18, 2021
Published online: Jul 29, 2021
Published in print: Oct 1, 2021
Discussion open until: Dec 29, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Associate Professor, College of Civil Engineering, Fuzhou Univ., Fuzhou 350116, China. Email: [email protected]
Qingnan Gong [email protected]
Master Student, College of Civil Engineering, Fuzhou Univ., Fuzhou 350116, China. Email: [email protected]
Professor, College of Civil Engineering, Central South Univ., Changsha 410075, China. Email: [email protected]
Professor, College of Civil Engineering, Fuzhou Univ., Fuzhou 350116, China (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Seawater aging effect on fiber-reinforced polymer composites: Mechanical properties, aging mechanism, and life prediction, Textile Research Journal, 10.1177/00405175231152666, (004051752311526), (2023).
  • Novel FRP interlocking multi-spiral reinforced-seawater sea-sand concrete square columns with longitudinal hybrid FRP–steel bars: Monotonic and cyclic axial compressive behaviours, Composite Structures, 10.1016/j.compstruct.2022.116487, 305, (116487), (2023).
  • Experimental Study on Flexural Behavior of Seawater Sea-Sand Concrete Beams Reinforced with Superelastic Shape Memory Alloy Bars, Buildings, 10.3390/buildings12122127, 12, 12, (2127), (2022).
  • Durability of FRP bars and FRP bar reinforced seawater sea sand concrete structures in marine environments, Construction and Building Materials, 10.1016/j.conbuildmat.2022.128898, 350, (128898), (2022).
  • Compression-shear performance and failure criteria of seawater sea-sand engineered cementitious composites with polyethylene fibers, Construction and Building Materials, 10.1016/j.conbuildmat.2022.128386, 345, (128386), (2022).
  • Mechanical properties of fibre reinforced seawater sea-sand recycled aggregate concrete under axial compression, Construction and Building Materials, 10.1016/j.conbuildmat.2022.127338, 331, (127338), (2022).
  • Flexural behavior and modelling of FRP-bar reinforced seawater sea sand concrete beams exposed to subtropical coastal environment, Construction and Building Materials, 10.1016/j.conbuildmat.2021.125071, 309, (125071), (2021).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share