Abstract

This paper presents the results of a study on the evolution of particle shape in carbonate sands that underwent different degrees of particle breakage. Carbonate sand specimens with three different initial particle sizes were subjected to impact loadings with different input energies. The particle sizes and shapes of the tested sands were analyzed by dynamic image analysis both before and after each loading. An increase in the input energy resulted in increases in particle breakage, aspect ratio, sphericity, and roundness to steady-state values, whereas convexity was barely influenced in the tests. It was found that the Weibull distribution could be used to describe the cumulative distributions of the particle-shape parameters. A relative shape-variation index for quantitatively describing the change in particle shape was correlated with the relative breakage index, which quantitatively describes the extent of particle breakage. Based on microscopic images of the particles at different loading states, the dominant particle-breakage mode gradually transited from the initial fracture mode to the attrition and abrasion mode with an increase in input energy, leading to the production of much more rounded and spherical particles.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors would like to acknowledge the financial support of the National Nature Science Foundation of China (Grant Nos. 51922024 and 41831282), the Natural Science Foundation of Chongqing, China (Grant No. cstc2019jcyjjqX0014), and the Fundamental Research Funds for the Central Universities (Grant No. 2020CDJQY-A068).

References

Altuhafi, F., C. O’Sullivan, and I. Cavarretta. 2013. “Analysis of an image-based method to quantify the size and shape of sand particles.” J. Geotech. Geoenviron. Eng. 139 (8): 1290–1307. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000855.
Bandini, V., and M. R. Coop. 2011. “The influence of particle breakage on the location of the critical state line of sands.” Soils Found. 51 (4): 591–600. https://doi.org/10.3208/sandf.51.591.
Cao, Z., J. Chen, X. Ye, C. Gu, Z. Guo, and Y. Cai. 2021. “Experimental study on particle breakage of carbonate gravels under cyclic loadings through large-scale triaxial tests.” Transp. Geotech. 30: 100632. https://doi.org/10.1016/j.trgeo.2021.100632.
Cavarretta, I., M. Coop, and C. O’Sullivan. 2010. “The influence of particle characteristics on the behaviour of coarse grained soils.” Géotechnique 60 (6): 413–423. https://doi.org/10.1680/geot.2010.60.6.413.
Cil, M. B., C. Sohn, and G. Buscarnera. 2020. “DEM modeling of grain size effect in brittle granular soils.” J. Eng. Mech. 146 (3): 04019138. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001713.
Coop, M. R., and J. H. Atkinson. 1993. “The mechanics of cemented carbonate sands.” Geotechnique 43(1), 53–67. https://doi.org/10.1680/geot.1993.43.1.53.
Coop, M. R., K. K. Sorensen, T. Bodas Freitas, and G. Georgoutsos. 2004. “Particle breakage during shearing of a carbonate sand.” Geotechnique 54 (3): 157–163. https://doi.org/10.1680/geot.2004.54.3.157.
Cui, M.-J., J.-J. Zheng, J. Chu, C.-C. Wu, and H.-J. Lai. 2021. “Bio-mediated calcium carbonate precipitation and its effect on the shear behaviour of calcareous sand.” Acta Geotech. 16 (8): 1377–1389. https://doi.org/10.1007/s11440-020-01099-0.
Daouadji, A., and P.-Y. Hicher. 2010. “An enhanced constitutive model for crushable granular materials.” Int. J. Numer. Anal. Methods Geomech. 34 (6): 555–580. https://doi.org/10.1002/nag.815.
Daouadji, A., P.-Y. Hicher, and A. Rahma. 2001. “An elastoplastic model for granular materials taking into account grain breakage.” Eur. J. Mech. A. Solids 20 (1): 113–137. https://doi.org/10.1016/S0997-7538(00)01130-X.
DeJong, J. T., M. B. Fritzges, and K. Nüsslein. 2006. “Microbially induced cementation to control sand response to undrained shear.” J. Geotech. Geoenviron. Eng. 132 (11): 1381–1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381).
Ding, Z., S.-H. He, Y. Sun, T.-D. Xia, and Q.-F. Zhang. 2021. “Comparative study on cyclic behavior of marine calcareous sand and terrigenous siliceous sand for transportation infrastructure applications.” Constr. Build. Mater. 283: 122740. https://doi.org/10.1016/j.conbuildmat.2021.122740.
Donohue, S., C. O’Sullivan, and M. Long. 2009. “Particle breakage during cyclic triaxial loading of a carbonate sand.” Géotechnique 59 (5): 477–482. https://doi.org/10.1680/geot.2008.T.003.
Einav, I. 2007. “Breakage mechanics––Part I: Theory.” J. Mech. Phys. Solids 55 (6): 1274–1297. https://doi.org/10.1016/j.jmps.2006.11.003.
Farshbaf Aghajani, H., H. Salehzadeh, and R. Rezvani. 2016. “Energy equilibrium during crushing of sandy soils under isotropic compression.” Arabian J. Sci. Eng. 41 (4): 1531–1542. https://doi.org/10.1007/s13369-016-2063-0.
Feng, K., and B. M. Montoya. 2016. “Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading.” J. Geotech. Geoenviron. Eng. 142 (1): 04015057. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001379.
Ganju, E., F. Han, M. Prezzi, R. Salgado, and J. S. Pereira. 2020. “Quantification of displacement and particle crushing around a penetrometer tip.” Geosci. Front. 11 (2): 389–399. https://doi.org/10.1016/j.gsf.2019.05.007.
Hasanlourad, M., H. Salehzadeh, and H. Shahnazari. 2008. “Dilation and particle breakage effects on the shear strength of calcareous sands based on energy aspects.” Int. J. Civ. Eng. 6 (2): 108–119.
He, S.-H., H.-F. Shan, T.-D. Xia, Z.-J. Liu, Z. Ding, and F. Xia. 2020a. “The effect of temperature on the drained shear behavior of calcareous sand.” Acta Geotech. 16 (2): 613–633.
He, S.-H., Z. Ding, T.-D. Xia, W.-H. Zhou, X.-L. Gan, Y.-Z. Chen, and F. Xia. 2020b. “Long-term behaviour and degradation of calcareous sand under cyclic loading.” Eng. Geol. 276 (1): 105756. https://doi.org/10.1016/j.enggeo.2020.105756.
Huang, J. T., and D. W. Airey. 1998. “Properties of artificially cemented carbonate sand.” J. Geotech. Geoenviron. Eng. 124 (6): 492–499. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(492).
Indraratna, B., Y. Sun, and S. Nimbalkar. 2016. “Laboratory assessment of the role of particle size distribution on the deformation and degradation of ballast under cyclic loading.” J. Geotech. Geoenviron. Eng. 142 (7): 04016016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001463.
Khan, M. N. H., G. G. N. N. Amarakoon, S. Shimazaki, and S. Kawasaki. 2015. “Coral sand solidification test based on microbially induced carbonate precipitation using ureolytic bacteria.” Mater. Trans. 56 (10): 115–122.
Kuwajima, K., M. Hyodo, and A. F. L. Hyde. 2009. “Pile bearing capacity factors and soil crushability.” J. Geotech. Geoenviron. Eng. 135 (7): 901–913. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000057.
Lade, P. V., J. Nam, and C. D. Liggio Jr. 2010. “Effects of particle crushing in stress drop-relaxation experiments on crushed coral sand.” J. Geotech. Geoenviron. Eng. 136 (3): 500–500. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000212.
Li, C., S. Bai, T. Zhou, H. Liu, X. Qin, S. Liu, X. Liu, and Y. Xiao. 2020. “Strength-increase mechanism and microstructural characteristics of a biotreated geomaterial.” Front. Struct. Civ. Eng. 14 (3): 599–608. https://doi.org/10.1007/s11709-020-0606-7.
Li, L., R. D. Beemer, and M. Iskander. 2021a. “Granulometry of two marine calcareous sands.” J. Geotech. Geoenviron. Eng. 147 (3): 04020171. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002431.
Li, Y., Z. Guo, L. Wang, Z. Ye, C. Shen, and W. Zhou. 2021b. “Interface shear behavior between MICP-treated calcareous sand and steel.” J. Mater. Civ. Eng. 33 (2): 04020455. https://doi.org/10.1061/(ASCE)MT.1943%E2%80%935533.0003549.
Li, Y., Z. Lin, B. Li, L. He, and J. Gong. 2021c. “Effects of gradation and grain crushing on the liquefaction resistance of calcareous sand.” Geomech. Geophys. Geo-Energy Geo-Resour. 7 (1): 12. https://doi.org/10.1007/s40948-020-00208-3.
Lin, L., S. Li, L. Sun, X. Liu, and W. Chen. 2020. “Evolution of particle size distribution for carbonate sand under impact load.” Powder Technol. 376: 549–564. https://doi.org/10.1016/j.powtec.2020.08.046.
Liu, H., K. Zeng, and Y. Zou. 2020a. “Particle breakage of calcareous sand and its correlation with input energy.” Int. J. Geomech. 20 (2): 04019151. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001541.
Liu, L., H. Liu, A. W. Stuedlein, T. M. Evans, and Y. Xiao. 2019. “Strength, stiffness, and microstructure characteristics of biocemented calcareous sand.” Can. Geotech. J. 56 (10): 1502–1513. https://doi.org/10.1139/cgj-2018-0007.
Liu, P., M. Meng, Y. Xiao, H. Liu, and G. Yang. 2020b. “Dynamic properties of polyurethane foam adhesive-reinforced gravels.” Sci. China Technol. Sci. 64 (3): 535–547. https://doi.org/10.1007/s11431-020-1707-5.
López-Querol, S., and M. R. Coop. 2012. “Drained cyclic behaviour of loose Dogs Bay sand.” Géotechnique 62 (4): 281–289. https://doi.org/10.1680/geot.8.P.105.
Lu, D., J. Liang, X. Du, C. Ma, and Z. Gao. 2019. “Fractional elastoplastic constitutive model for soils based on a novel 3D fractional plastic flow rule.” Comput. Geotech. 105: 277–290. https://doi.org/10.1016/j.compgeo.2018.10.004.
Lv, Y., X. Li, and Y. Wang. 2020. “Particle breakage of calcareous sand at high strain rates.” Powder Technol. 366: 776–787. https://doi.org/10.1016/j.powtec.2020.02.062.
Ma, G., X. He, X. Jiang, H. Liu, J. Chu, and Y. Xiao. 2021. “Strength and permeability of bentonite-assisted biocemented coarse sand.” Can. Geotech. J. 57 (7): 969–981. https://doi.org/10.1139/cgj-2020-0045.
Ma, L., Z. Li, M. Wang, H. Wei, and P. Fan. 2019. “Effects of size and loading rate on the mechanical properties of single coral particles.” Powder Technol. 342: 961–971. https://doi.org/10.1016/j.powtec.2018.10.037.
Mao, W., Y. Yang, W. Lin, S. Aoyama, and I. Towhata. 2018. “High frequency acoustic emissions observed during model pile penetration in sand and implications for particle breakage behavior.” Int. J. Geomech. 18 (11): 04018143. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001287.
Miao, G., and D. Airey. 2013. “Breakage and ultimate states for a carbonate sand.” Geotechnique 63 (14): 1221–1229. https://doi.org/10.1680/geot.12.P.111.
Mun, W., and J. S. McCartney. 2017. “Roles of particle breakage and drainage in the isotropic compression of sand to high pressures.” J. Geotech. Geoenviron. Eng. 143 (10): 04017071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001770.
Murff, J. D. 1987. “Pile capacity in calcareous sands: State of the art.” J. Geotech. Eng. 113 (5): 490–507. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:5(490).
Nakata, Y., A. F. L. Hyde, M. Hyodo, and H. Murata. 1999. “A probabilistic approach to sand particle crushing in the triaxial test.” Geotechnique 49 (5): 567–583. https://doi.org/10.1680/geot.1999.49.5.567.
Peng, Y., X. Ding, Y. Xiao, X. Deng, and W. Deng. 2019. “Detailed amount of particle breakage in non-uniformly graded sands under one-dimensional compression.” Can. Geotech. J. 57 (8): 1239–1246. https://doi.org/10.1139/cgj-2019-0283.
Peng, Y., H. Liu, C. Li, X. Ding, X. Deng, and C. Wang. 2021. “The detailed particle breakage around the pile in coral sand.” Acta Geotech. 16 (6): 1971–1981. https://doi.org/10.1007/s11440-020-01089-2.
Qadimi, A., and M. R. Coop. 2007. “The undrained cyclic behaviour of a carbonate sand.” Géotechnique 57 (9): 739–750. https://doi.org/10.1680/geot.2007.57.9.739.
Rui, S., Z. Guo, T. Si, W. Zhou, and X. Zha. 2021. “Particle shape influence on the deformation resistance of carbonate sands under drained condition.” Soil Dyn. Earthquake Eng. 144: 106688. https://doi.org/10.1016/j.soildyn.2021.106688.
Shahnazari, H., and R. Rezvani. 2013. “Effective parameters for the particle breakage of calcareous sands: An experimental study.” Eng. Geol. 159: 98–105. https://doi.org/10.1016/j.enggeo.2013.03.005.
Shi, J., Y. Xiao, J. Hu, H. Wu, H. Liu, and W. Haegeman. 2021. “Small-strain shear modulus of calcareous sand under anisotropic consolidation.” Can. Geotech. J. https://doi.org/10.1139/cgj-2021-0329.
Steacy, S. J., and C. G. Sammis. 1991. “An automaton for fractal patterns of fragmentation.” Nature 353 (6341): 250–252. https://doi.org/10.1038/353250a0.
Sun, Z., J. Chu, and Y. Xiao. 2021. “Formulation and implementation of an elastoplastic constitutive model for sand-fines mixtures.” Int. J. Numer. Anal. Methods Geomech. 45 (18): 2682–2708. https://doi.org/10.1002/nag.3282.
Tong, C.-X., G. J. Burton, S. Zhang, and D. Sheng. 2020. “Particle breakage of uniformly graded carbonate sands in dry/wet condition subjected to compression/shear tests.” Acta Geotech. 15 (9): 2379–2394. https://doi.org/10.1007/s11440-020-00931-x.
Turcotte, D. L. 1986. “Fractals and fragmentation.” J. Geophys. Res. 91 (B2): 1921–1926. https://doi.org/10.1029/JB091iB02p01921.
Tyler, S. W., and S. W. Wheatcraft. 1992. “Fractal scaling of soil particle-size distributions: Analysis and limitations.” Soil Sci. Soc. Am. J. 56 (2): 362–369. https://doi.org/10.2136/sssaj1992.03615995005600020005x.
Valdes, J. R., and E. Koprulu. 2007. “Characterization of fines produced by sand crushing.” J. Geotech. Geoenviron. Eng. 133 (12): 1626–1630. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:12(1626).
van Paassen, L. A., R. Ghose, T. J. M. van der Linden, W. R. L. van der Star, and M. C. M. van Loosdrecht. 2010. “Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment.” J. Geotech. Geoenviron. Eng. 136 (12): 1721–1728. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382.
Wang, C., X. Ding, Y. Xiao, Y. Peng, and H. Liu. 2021a. “Effects of relative densities on particle breaking behaviour of non-uniform grading coral sand.” Powder Technol. 382: 524–531. https://doi.org/10.1016/j.powtec.2021.01.015.
Wang, G., Z. Wang, Q. Ye, and X. Wei. 2020. “Particle breakage and deformation behavior of a carbonate sand under drained and undrained triaxial compression.” Int. J. Geomech. 20 (3): 04020012. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001601.
Wang, G., Z. Wang, Q. Ye, and J. Zha. 2021b. “Particle breakage evolution of coral sand using triaxial compression tests.” J. Rock Mech. Geotech. Eng. 13 (2): 321–334. https://doi.org/10.1016/j.jrmge.2020.06.010.
Wang, G., and J. Zha. 2020. “Particle breakage evolution during cyclic triaxial shearing of a carbonate sand.” Soil Dyn. Earthquake Eng. 138: 106326. https://doi.org/10.1016/j.soildyn.2020.106326.
Wang, X., C.-Q. Zhu, X.-Z. Wang, and Y. Qin. 2018. “Study of dilatancy behaviors of calcareous soils in a triaxial test.” Mar. Georesour. Geotechnol. 37 (9): 1057–1070. https://doi.org/10.1080/1064119X.2018.1526236.
Wang, X., Y. Jiao, R. Wang, M. Hu, Q. Meng, and F. Tan. 2011. “Engineering characteristics of the calcareous sand in Nansha Islands, South China Sea.” Eng. Geol. 120 (1–4): 40–47. https://doi.org/10.1016/j.enggeo.2011.03.011.
Wang, X., J.-Q. Liu, J. Cui, X.-Z. Wang, J.-H. Shen, and C.-Q. Zhu. 2021c. “Particle breakage characteristics of a foundation filling material on island-reefs in the South China Sea.” Constr. Build. Mater. 306: 124690. https://doi.org/10.1016/j.conbuildmat.2021.124690.
Wei, H., X. Li, S. Zhang, T. Zhao, M. Yin, and Q. Meng. 2021. “Influence of particle breakage on drained shear strength of calcareous sands.” Int. J. Geomech. 21 (7): 04021118.
Wei, H., Z. Tao, J. He, Q. Meng, and X. Wang. 2018a. “Evolution of particle breakage for calcareous sands during ring shear tests.” Int. J. Geomech. 18 (2): 04017153. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001073.
Wei, H. Z., T. Zhao, Q. S. Meng, X. Z. Wang, and J. Q. He. 2018b. “Experimental evaluation of the shear behavior of fiber-reinforced calcareous sands.” Int. J. Geomech. 18 (12): 04018175. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001307.
Wei, H., T. Zhao, Q. Meng, X. Wang, and B. Zhang. 2020. “Quantifying the morphology of calcareous sands by dynamic image analysis.” Int. J. Geomech. 20 (4): 04020020. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001640.
Weibull, W. 1951. “A statistical distribution function of wide applicability.” J. Appl. Mech. 18 (3): 293–297. https://doi.org/10.1115/1.4010337.
Wu, S., B. Li, and J. Chu. 2021a. “Stress-dilatancy behavior of MICP-treated sand.” Int. J. Geomech. 21 (3): 04020264. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001923.
Wu, Y., N. Li, X. Wang, J. Cui, Y. Chen, Y. Wu, and H. Yamamoto. 2021b. “Experimental investigation on mechanical behavior and particle crushing of calcareous sand retrieved from South China Sea.” Eng. Geol. 280: 105932. https://doi.org/10.1016/j.enggeo.2020.105932.
Xiao, P., H. Liu, A. W. Stuedlein, T. M. Evans, and Y. Xiao. 2019a. “Effect of relative density and biocementation on the cyclic response of calcareous sand.” Can. Geotech. J. 56 (12): 1849–1862. https://doi.org/10.1139/cgj-2018-0573.
Xiao, P., H. Liu, Y. Xiao, A. W. Stuedlein, and T. M. Evans. 2018. “Liquefaction resistance of bio-cemented calcareous sand.” Soil Dyn. Earthquake Eng. 107: 9–19. https://doi.org/10.1016/j.soildyn.2018.01.008.
Xiao, Y., C. S. Desai, A. Daouadji, A. W. Stuedlein, H. Liu, and H. Abuel-Naga. 2020a. “Grain crushing in geoscience materials––Key issues on crushing measure, testing and modelling: Review and preface.” Geosci. Front. 11 (2): 363–374. https://doi.org/10.1016/j.gsf.2019.11.006.
Xiao, Y., and H. Liu. 2017. “Elastoplastic constitutive model for rockfill materials considering particle breakage.” Int. J. Geomech. 17 (1): 04016041. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000681.
Xiao, Y., H. Liu, P. Xiao, and J. Xiang. 2016. “Fractal crushing of carbonate sands under impact loading.” Geotech. Lett. 6 (3): 199–204. https://doi.org/10.1680/jgele.16.00056.
Xiao, Y., L. Long, T. M. Evans, H. Zhou, H. Liu, and A. W. Stuedlein. 2019b. “Effect of particle shape on stress-dilatancy responses of medium-dense sands.” J. Geotech. Geoenviron. Eng. 145 (2): 04018105. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001994.
Xiao, Y., Z. Sun, A. M. Stuedlein, C. Wang, Z. Wu, and Z. Zhang. 2020b. “Bounding surface plasticity model for stress-strain and grain-crushing behaviors of rockfill materials.” Geosci. Front. 11 (2): 495–510. https://doi.org/10.1016/j.gsf.2019.06.010.
Xiao, Y., L. Wang, X. Jiang, T. M. Evans, A. W. Stuedlein, and H. Liu. 2019c. “Acoustic emission and force drop in grain crushing of carbonate sands.” J. Geotech. Geoenviron. Eng. 145 (9): 04019057. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002141.
Xiao, Y., C. Wang, Z. Zhang, H. Liu, and Z.-y. Yin. 2021a. “Constitutive modeling for two sands under high pressure.” Int. J. Geomech. 21 (5): 04021042. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001987.
Xiao, Y., W. Xiao, G. Ma, X. He, H. Wu, and J. Shi. 2022. “Mechanical performances of biotreated sandy road bases.” J. Perform. Constr. Facil. 36 (1): 04021111. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001671.
Xiao, Y., Z. Yuan, J. Chu, H. Liu, J. Huang, S. N. Luo, S. Wang, and J. Lin. 2019d. “Particle breakage and energy dissipation of carbonate sands under quasi-static and dynamic compression.” Acta Geotech. 14 (6): 1741–1755. https://doi.org/10.1007/s11440-019-00790-1.
Xiao, Y., Z. Yuan, C. S. Desai, M. Zaman, Q. Ma, Q. Chen, and H. Liu. 2020c. “Effects of load duration and stress level on deformation and particle breakage of carbonate sands.” Int. J. Geomech. 20 (7): 06020014. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001731.
Xiao, Y., Z. Zhang, A. W. Stuedlein, and T. M. Evans. 2021b. “Liquefaction modeling for biocemented calcareous sand.” J. Geotech. Geoenviron. Eng. 147 (12): 04021149. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002666.
Xu, D., M. Huang, and Y. Zhou. 2020. “One-dimensional compression behavior of calcareous sand and marine clay mixtures.” Int. J. Geomech. 20 (9): 04020137. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001763.
Xu, D., Z. Zhang, Y. Qin, and Y. Yang. 2021a. “Effect of particle size on the failure behavior of cemented coral sand under impact loading.” Soil Dyn. Earthquake Eng. 149: 106884. https://doi.org/10.1016/j.soildyn.2021.106884.
Xu, L.-J., X.-z. Wang, R. Wang, C.-q. Zhu, and X.-p. Liu. 2021b. “Physical and mechanical properties of calcareous soils: A review.” Mar. Georesour. Geotechnol. https://doi.org/10.1080/1064119X.1062021.1927270.
Yang, J., and X. D. Luo. 2017. “The critical state friction angle of granular materials: Does it depend on grading?” Acta Geotech. 12 (6): 1–13.
Yasufuku, N., and A. F. L. Hyde. 1995. “Pile end-bearing capacity in crushable sands.” Geotechnique 45 (4): 663–676. https://doi.org/10.1680/geot.1995.45.4.663.
Yu, F. 2017. “Particle breakage and the drained shear behavior of sands.” Int. J. Geomech. 17 (8): 04017041. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000919.
Yu, F. 2018. “Particle breakage in triaxial shear of a coral sand.” Soils Found. 58 (4): 866–880. https://doi.org/10.1016/j.sandf.2018.04.001.
Yu, F. 2019. “Influence of particle breakage on behavior of coral sands in triaxial tests.” Int. J. Geomech. 19 (12): 04019131. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001524.
Yu, J., C. Shen, S. Liu, and Y. P. Cheng. 2020. “Exploration of the survival probability and shape evolution of crushable particles during one-dimensional compression using dyed gypsum particles.” J. Geotech. Geoenviron. Eng. 146 (11): 04020121. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002371.
Yu, W., and B. C. Hancock. 2008. “Evaluation of dynamic image analysis for characterizing pharmaceutical excipient particles.” Int. J. Pharm. 361 (1–4): 150–157. https://doi.org/10.1016/j.ijpharm.2008.05.025.
Zhang, C., G. D. Nguyen, and I. Einav. 2013. “The end-bearing capacity of piles penetrating into crushable soils.” Geotechnique 63 (5): 341–354. https://doi.org/10.1680/geot.11.P.117.
Zhang, J., and M. Luo. 2020. “Dilatancy and critical state of calcareous sand incorporating particle breakage.” Int. J. Geomech. 20 (4): 04020030. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001637.
Zhang, X., Y. Chen, H. Liu, Z. Zhang, and X. Ding. 2020. “Performance evaluation of a MICP-treated calcareous sandy foundation using shake table tests.” Soil Dyn. Earthquake Eng. 129: 105959. https://doi.org/10.1016/j.soildyn.2019.105959.
Zhang, X., W. Hu, G. Scaringi, B. A. Baudet, and W. Han. 2018. “Particle shape factors and fractal dimension after large shear strains in carbonate sand.” Geotech. Lett. 8 (1): 73–79. https://doi.org/10.1680/jgele.17.00150.
Zhu, C. Q., X. Z. Wang, R. Wang, H. Y. Chen, and Q. S. Meng. 2014. “Experimental microscopic study of inner pores of calcareous sand.” Mater. Res. Innovations 18 (Suppl. 2): 207–214.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 22Issue 4April 2022

History

Received: Sep 29, 2021
Accepted: Nov 30, 2021
Published online: Jan 27, 2022
Published in print: Apr 1, 2022
Discussion open until: Jun 27, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, Key Laboratory of New Technology for the Construction of Cities in Mountain Areas, State Key Laboratory of Coal Mine Disaster Dynamics and Control, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China (corresponding author). ORCID: https://orcid.org/0000-0002-9411-4660. Email: [email protected]
Graduate Student, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Graduate Student, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Jinquan Shi [email protected]
Assistant Professor, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Chandrakant S. Desai, Dist.M.ASCE [email protected]
Regents Professor (Emeritus), Dept. of Civil and Architectural Engineering Mechanics, Univ. of Arizona, Tucson, AZ 85721. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Particle Breakage Model for Granular Geomaterials Considering Stress Paths, International Journal of Geomechanics, 10.1061/IJGNAI.GMENG-8776, 23, 12, (2023).
  • Effect of Particle Morphology on Strength of Glass Sands, International Journal of Geomechanics, 10.1061/IJGNAI.GMENG-8661, 23, 8, (2023).
  • Breakage-Dependent Fractional Plasticity Model for Sands, International Journal of Geomechanics, 10.1061/IJGNAI.GMENG-8140, 23, 3, (2023).
  • Effect of Inherent Anisotropy on the Triaxial Compression Behavior of Coral Sand, International Journal of Geomechanics, 10.1061/IJGNAI.GMENG-8003, 23, 5, (2023).
  • State-dependent behavior of weathered sands incorporating progressive particle breakage in drained triaxial tests, Acta Geotechnica, 10.1007/s11440-023-01822-7, (2023).
  • Breakage and Morphology of Sands in Drained Shearing, International Journal of Geomechanics, 10.1061/(ASCE)GM.1943-5622.0002522, 22, 9, (2022).
  • Fracturing and Ultimate State of Binary Carbonate Sands, International Journal of Geomechanics, 10.1061/(ASCE)GM.1943-5622.0002450, 22, 7, (2022).
  • Numerical investigation of the effect of particle gradation on the lateral response of pile in coral sand, Computers and Geotechnics, 10.1016/j.compgeo.2022.105012, 152, (105012), (2022).
  • Influence of particle breakage on the isotropic compressibility of sands, Journal of Mountain Science, 10.1007/s11629-022-7390-x, 19, 7, (2086-2099), (2022).
  • Experimental measurement of particle crushing around model piles jacked in a calibration chamber, Acta Geotechnica, 10.1007/s11440-022-01681-8, (2022).
  • See more

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share