Technical Papers
Dec 20, 2022

Breakage-Dependent Fractional Plasticity Model for Sands

Publication: International Journal of Geomechanics
Volume 23, Issue 3

Abstract

Particle breakage could significantly influence the shear strength, volumetric deformation, stress–dilatancy relationship, and plastic-flow rule of crushable sands. A breakage-dependent fractional-plasticity (BDFP) model was proposed in this paper to capture the evolution of the stress–strain relationship for crushable sands by using a general plastic-flow rule, which is obtained from the Riemann–Liouville fractional derivative on the modified Cam-Clay yield surface and the incorporation of the breakage-dependent void-ratio–pressure state parameter in the framework of a kinetic breakage-dependent critical state line. The BDFP model can well predict the state- and breakage-dependent strength and deformation of crushable sands. Specifically under higher confining pressures, the prediction for the evolution of the volumetric strain of crushable sands by the BDFP model is much better than that by the model not considering particle breakage.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 51922024, 52078085, and 41831282) and Chongqing Talents Program (Grant No. cstc2021ycjh-bgzxm0051).

References

Bandini, V., and M. R. Coop. 2011. “The influence of particle breakage on the location of the critical state line of sands.” Soils Found. 51 (4): 591–600. https://doi.org/10.3208/sandf.51.591.
Bardet, J. P. 1986. “Bounding surface plasticity model for sands.” J. Eng. Mech. 112 (11): 1198–1217. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:11(1198).
Bauer, E. 1996. “Calibration of a comprehensive hypoplastic model for granular materials.” Soils Found. 36 (1): 13–26. https://doi.org/10.3208/sandf.36.13.
Been, K., and M. G. Jefferies. 1985. “A state parameter for sands.” Geotechnique 35 (2): 99–112. https://doi.org/10.1680/geot.1985.35.2.99.
Chang, D., Y. Lai, and F. Yu. 2019. “An elastoplastic constitutive model for frozen saline coarse sandy soil undergoing particle breakage.” Acta Geotech. 14 (6): 1757–1783. https://doi.org/10.1007/s11440-019-00775-0.
Ciantia, M. O., and C. O’Sullivan. 2020. “Calculating the state parameter in crushable sands.” Int. J. Geomech. 20 (7): 04020095. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001707.
Cil, M. B., R. C. Hurley, and L. Graham-Brady. 2020. “Constitutive model for brittle granular materials considering competition between breakage and dilation.” J. Eng. Mech. 146 (1): 04019110. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001690.
Coop, M. R., K. K. Sorensen, T. Bodas Freitas, and G. Georgoutsos. 2004. “Particle breakage during shearing of a carbonate sand.” Geotechnique 54 (3): 157–163. https://doi.org/10.1680/geot.2004.54.3.157.
Dafalias, Y. F., and M. T. Manzari. 2004. “Simple plasticity sand model accounting for fabric change effects.” J. Eng. Mech. 130 (6): 622–634. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:6(622).
Daouadji, A., and P.-Y. Hicher. 2010. “An enhanced constitutive model for crushable granular materials.” Int. J. Numer. Anal. Methods Geomech. 34 (6): 555–580. https://doi.org/10.1002/nag.815.
Ghafghazi, M., D. A. Shuttle, and J. T. DeJong. 2014. “Particle breakage and the critical state of sand.” Soils Found. 54 (3): 451–461. https://doi.org/10.1016/j.sandf.2014.04.016.
Hardin, B. O. 1985. “Crushing of soil particles.” J. Geotech. Eng. 111 (10): 1177–1192. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:10(1177).
Hardin, B. O., and F. E. Richart. 1963. “Elastic wave velocities in granular soils.” J. Soil Mech. Found. Div. 89 (1): 33–66. https://doi.org/10.1061/JSFEAQ.0000493.
Hashiguchi, K. 1989. “Subloading surface model in unconventional plasticity.” Int. J. Solids Struct. 25 (8): 917–945. https://doi.org/10.1016/0020-7683(89)90038-3.
Hashiguchi, K., and S. Tsutsumi. 2007. “Gradient plasticity with the tangential-subloading surface model and the prediction of shear-band thickness of granular materials.” Int. J. Plast. 23 (5): 767–797. https://doi.org/10.1016/j.ijplas.2006.08.005.
He, S.-H., H.-F. Shan, T.-D. Xia, Z.-J. Liu, Z. Ding, and F. Xia. 2020. “The effect of temperature on the drained shear behavior of calcareous sand.” Acta Geotech. 16 (2): 613–633. https://doi.org/10.1007/s11440-020-01030-7.
Hu, W., Z. Y. Yin, C. Dano, and P.-Y. Hicher. 2011. “A constitutive model for granular materials considering grain breakage.” Sci. China Technol. Sci. 54 (8): 2188–2196. https://doi.org/10.1007/s11431-011-4491-0.
Huang, J., S. Xu, and S. Hu. 2013. “Effects of grain size and gradation on the dynamic responses of quartz sands.” Int. J. Impact Eng. 59: 1–10. https://doi.org/10.1016/j.ijimpeng.2013.03.007.
Huang, J. Y., S. S. Hu, S. L. Xu, and S. N. Luo. 2017. “Fractal crushing of granular materials under confined compression at different strain rates.” Int. J. Impact Eng. 106: 259–265. https://doi.org/10.1016/j.ijimpeng.2017.04.021.
Javanmardi, Y., S. M. R. Imam, M. Pastor, and D. Manzanal. 2018. “A reference state curve to define the state of soils over a wide range of pressures and densities.” Géotechnique 68 (2): 95–106. https://doi.org/10.1680/jgeot.16.P.136.
Jefferies, M. G. 1993. “Nor-sand: A simple critical state model for sand.” Geotechnique 43 (1): 91–103. https://doi.org/10.1680/geot.1993.43.1.91.
Jia, Y., B. Xu, S. Chi, B. Xiang, and Y. Zhou. 2017. “Research on the particle breakage of rockfill materials during triaxial tests.” Int. J. Geomech. 17 (10): 04017085. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000977.
Jin, Y.-F., Z.-Y. Yin, Z.-X. Wu, and A. Daouadji. 2018a. “Numerical modeling of pile penetration in silica sands considering the effect of grain breakage.” Finite Elem. Anal. Des. 144: 15–29. https://doi.org/10.1016/j.finel.2018.02.003.
Jin, Y.-F., Z.-Y. Yin, Z.-X. Wu, and W.-H. Zhou. 2018b. “Identifying parameters of easily crushable sand and application to offshore pile driving.” Ocean Eng. 154: 416–429. https://doi.org/10.1016/j.oceaneng.2018.01.023.
Kikumoto, M., D. M. Wood, and A. Russell. 2010. “Particle crushing and deformation behaviour.” Soils Found. 50 (4): 547–563. https://doi.org/10.3208/sandf.50.547.
Lade, P. V., and S. Inel. 1997. “Rotational kinematic hardening model for sand. Part I concept of rotating yield and plastic potential surfaces.” Comput. Geotech. 21 (3): 183–216. https://doi.org/10.1016/S0266-352X(97)00022-0.
Li, X. S., and Y. F. Dafalias. 2000. “Dilatancy for cohesionless soils.” Geotechnique 50 (4): 449–460. https://doi.org/10.1680/geot.2000.50.4.449.
Li, X. S., Y. F. Dafalias, and Z. L. Wang. 1999. “State-dependent dilatancy in critical-state constitutive modelling of sand.” Can. Geotech. J. 36 (4): 599–611. https://doi.org/10.1139/t99-029.
Li, Y., Z. Lin, B. Li, L. He, and J. Gong. 2021. “Effects of gradation and grain crushing on the liquefaction resistance of calcareous sand.” Geomech. Geophys. Geo-Energy Geo-Resour. 7: 12. https://doi.org/10.1007/s40948-020-00208-3.
Liang, J., D. Lu, X. Du, W. Wu, and C. Ma. 2020. “Non-orthogonal elastoplastic constitutive model for sand with dilatancy.” Comput. Geotech. 118: 103329. https://doi.org/10.1016/j.compgeo.2019.103329.
Liang, J., D. Lu, X. Zhou, X. Du, and W. Wu. 2019. “Non-orthogonal elastoplastic constitutive model with the critical state for clay.” Comput. Geotech. 116: 103200. https://doi.org/10.1016/j.compgeo.2019.103200.
Ling, H. I., and S. Yang. 2006. “Unified sand model based on the critical state and generalized plasticity.” J. Eng. Mech. 132 (12): 1380–1391. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:12(1380).
Liu, H., and D. Zou. 2013. “Associated generalized plasticity framework for modeling gravelly soils considering particle breakage.” J. Eng. Mech. 139 (5): 606–615. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000513.
Liu, M., and Y. Gao. 2017. “Constitutive modeling of coarse-grained materials incorporating the effect of particle breakage on critical state behavior in a framework of generalized plasticity.” Int. J. Geomech. 17 (5): 04016113. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000759.
Lu, D., J. Liang, X. Du, C. Ma, and Z. Gao. 2019a. “Fractional elastoplastic constitutive model for soils based on a novel 3D fractional plastic flow rule.” Comput. Geotech. 105: 277–290. https://doi.org/10.1016/j.compgeo.2018.10.004.
Lu, D., X. Zhou, X. Du, and G. Wang. 2019b. “A 3D fractional elastoplastic constitutive model for concrete material.” Int. J. Solids Struct. 165: 160–175. https://doi.org/10.1016/j.ijsolstr.2019.02.004.
Lu, D., X. Zhou, X. Du, and G. Wang. 2020. “3D dynamic elastoplastic constitutive model of concrete within the framework of rate-dependent consistency condition.” J. Eng. Mech. 146 (11): 04020124. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001854.
Luo, T., Z. Qin, X. Feng, F. Xia, Y. Yao, and D. Sheng. 2013. “A symmetrisation method for non-associated unified hardening model.” Comput. Geotech. 52: 38–45. https://doi.org/10.1016/j.compgeo.2013.03.004.
Luzzani, L., and M. R. Coop. 2002. “On the relationship between particle breakage and the critical state of sands.” Soils Found. 42 (2): 71–82. https://doi.org/10.3208/sandf.42.2_71.
Lv, Y., X. Li, and Y. Wang. 2020. “Particle breakage of calcareous sand at high strain rates.” Powder Technol. 366: 776–787. https://doi.org/10.1016/j.powtec.2020.02.062.
Meng, M., Z. Sun, C. Wang, X. He, and Y. Xiao. 2022. “Size effect on mudstone strength during freezing–thawing cycle.” Environ. Geotech. https://doi.org/10.1680/jenge.18.00160.
Mun, W., and J. S. McCartney. 2017. “Roles of particle breakage and drainage in the isotropic compression of sand to high pressures.” J. Geotech. Geoenviron. Eng. 143 (10): 04017071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001770.
Pastor, M., O. C. Zienkiewicz, and A. H. C. Chan. 1990. “Generalized plasticity and the modelling of soil behaviour.” Int. J. Numer. Anal. Methods Geomech. 14 (3): 151–190. https://doi.org/10.1002/nag.1610140302.
Russell, A. R., and N. Khalili. 2004. “A bounding surface plasticity model for sands exhibiting particle crushing.” Can. Geotech. J. 41 (6): 1179–1192. https://doi.org/10.1139/t04-065.
Salim, W., and B. Indraratna. 2004. “A new elastoplastic constitutive model for coarse granular aggregates incorporating particle breakage.” Can. Geotech. J. 41 (4): 657–671. https://doi.org/10.1139/t04-025.
Shi, J., Y. Xiao, J. Hu, H. Wu, H. Liu, and W. Haegeman. 2022. “Small-strain shear modulus of calcareous sand under anisotropic consolidation.” Can. Geotech. J. 59 (6): 878–888. https://doi.org/10.1139/cgj-2021-0329.
Sumelka, W. 2014. “Fractional viscoplasticity.” Mech. Res. Commun. 56: 31–36. https://doi.org/10.1016/j.mechrescom.2013.11.005.
Sun, Y., Y. Gao, and C. Chen. 2019. “Critical-state fractional model and its numerical scheme for isotropic granular soil considering state dependence.” Int. J. Geomech. 19 (3): 04019001. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001353.
Sun, Y., Y. Gao, and Q. Zhu. 2018. “Fractional order plasticity modelling of state-dependent behaviour of granular soils without using plastic potential.” Int. J. Plast. 102: 53–69. https://doi.org/10.1016/j.ijplas.2017.12.001.
Sun, Y., and Y. Shen. 2017. “Constitutive model of granular soils using fractional-order plastic-flow rule.” Int. J. Geomech. 17 (8): 04017025. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000904.
Sun, Z. C., J. Chu, and Y. Xiao. 2021. “Formulation and implementation of an elastoplastic constitutive model for sand-fines mixtures.” Int. J. Numer. Anal. Methods Geomech. 45 (18): 2682–2708. https://doi.org/10.1002/nag.3282.
Wan, R. G., and P. J. Guo. 1998. “A simple constitutive model for granular soils: Modified stress-dilatancy approach.” Comput. Geotech. 22 (2): 109–133. https://doi.org/10.1016/S0266-352X(98)00004-4.
Wang, G., D. Lu, X. Du, X. Zhou, and S. Cao. 2018. “A true 3D frictional hardening elastoplastic constitutive model of concrete based on a unified hardening/softening function.” J. Mech. Phys. Solids 119: 250–273. https://doi.org/10.1016/j.jmps.2018.06.019.
Wang, G., Z. Wang, Q. Ye, and X. Wei. 2020. “Particle breakage and deformation behavior of a carbonate sand under drained and undrained triaxial compression.” Int. J. Geomech. 20 (3): 04020012. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001601.
Wang, S., and W. Wu. 2021. “A simple hypoplastic model for overconsolidated clays.” Acta Geotech. 16 (1): 21–29. https://doi.org/10.1007/s11440-020-01000-z.
Wang, X. Z., Y. L. Weng, H. Z. Wei, Q. S. Meng, and M. J. Hu. 2019. “Particle obstruction and crushing of dredged calcareous soil in the Nansha Islands, South China Sea.” Eng. Geol. 261: 105274. https://doi.org/10.1016/j.enggeo.2019.105274.
Wang, Z. L., Y. F. Dafalias, X. S. Li, and F. I. Makdisi. 2002. “State pressure index for modeling sand behavior.” J. Geotech. Geoenviron. Eng. 128 (6): 511–519. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:6(511).
Wu, W., E. Bauer, and D. Kolymbas. 1996. “Hypoplastic constitutive model with critical state for granular materials.” Mech. Mater. 23 (1): 45–69. https://doi.org/10.1016/0167-6636(96)00006-3.
Wu, Y., H. Yamamoto, J. Cui, and H. Y. Cheng. 2020. “Influence of load mode on particle crushing characteristics of silica sand at high stresses.” Int. J. Geomech. 20 (3): 04019194. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001600.
Xiao, H., F. H. Lee, and Y. Liu. 2017. “Bounding surface cam-clay model with cohesion for cement-admixed clay.” Int. J. Geomech. 17 (1): 04016026. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000671.
Xiao, Y., H. Chen, A. W. Stuedlein, T. M. Evans, J. Chu, L. Cheng, N. Jiang, H. Lin, H. Liu, and H. M. Aboel-Naga. 2020a. “Restraint of particle breakage by biotreatment method.” J. Geotech. Geoenviron. Eng. 146 (11): 04020123. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002384.
Xiao, Y., C. S. Desai, A. Daouadji, A. W. Stuedlein, H. Liu, and H. Abuel-Naga. 2020b. “Grain crushing in geoscience materials—Key issues on crushing measure, testing and modelling: Review and preface.” Geosci. Front. 11 (2): 363–374. https://doi.org/10.1016/j.gsf.2019.11.006.
Xiao, Y., and H. Liu. 2017. “Elastoplastic constitutive model for rockfill materials considering particle breakage.” Int. J. Geomech. 17 (1): 04016041. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000681.
Xiao, Y., H. Liu, X. Ding, Y. Chen, J. Jiang, and W. Zhang. 2016. “Influence of particle breakage on critical state line of rockfill material.” Int. J. Geomech. 16 (1): 04015031. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000538.
Xiao, Y., L. Long, T. M. Evans, H. Zhou, H. Liu, and A. W. Stuedlein. 2019a. “Effect of particle shape on stress–dilatancy responses of medium-dense sands.” J. Geotech. Geoenviron. Eng. 145 (2): 04018105. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001994.
Xiao, Y., M. Meng, A. Daouadjie, Q. Chen, Z. Wu, and X. Jiang. 2020c. “Effect of particle size on crushing and deformation behaviors of rockfill materials.” Geosci. Front. 11 (2): 375–388. https://doi.org/10.1016/j.gsf.2018.10.010.
Xiao, Y., Z. Sun, C. S. Desai, and M. Meng. 2019b. “Strength and surviving probability in grain crushing under acidic erosion and compression.” Int. J. Geomech. 19 (11): 04019123. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001508.
Xiao, Y., Y. Sun, and K. F. Hanif. 2015. “A particle-breakage critical state model for rockfill material.” Sci. China Technol. Sci. 58 (7): 1125–1136. https://doi.org/10.1007/s11431-015-5831-2.
Xiao, Y., Z. Sun, A. M. Stuedlein, C. Wang, Z. Wu, and Z. Zhang. 2020d. “Bounding surface plasticity model for stress–strain and grain-crushing behaviors of rockfill materials.” Geosci. Front. 11 (2): 495–510. https://doi.org/10.1016/j.gsf.2019.06.010.
Xiao, Y., Y. Sun, W. Zhou, J. Shi, and C. S. Desai. 2022. “Evolution of particle shape produced by sand breakage.” Int. J. Geomech. 22 (4): 04022003. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002333.
Xiao, Y., L. Wang, X. Jiang, T. M. Evans, A. W. Stuedlein, and H. Liu. 2019c. “Acoustic emission and force drop in grain crushing of carbonate sands.” J. Geotech. Geoenviron. Eng. 145 (9): 04019057. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002141.
Xiao, Y., C. Wang, H. Wu, and C. S. Desai. 2021a. “New simple breakage index for crushable granular soils.” Int. J. Geomech. 21 (8): 04021136. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002091.
Xiao, Y., C. Wang, Z. Zhang, H. Liu, and Z.-Y. Yin. 2021b. “Constitutive modeling for two sands under high pressure.” Int. J. Geomech. 21 (5): 04021042. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001987.
Yamamuro, J. A., P. A. Bopp, and P. V. Lade. 1996. “One-dimensional compression of sands at high pressures.” J. Geotech. Geoenviron. Eng. 122 (2): 147–154. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:2(147).
Yang, J., and X. S. Li. 2004. “State-dependent strength of sands from the perspective of unified modeling.” J. Geotech. Geoenviron. Eng. 130 (2): 186–198. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:2(186).
Yang, Z. X., T. T. Xu, and X. S. Li. 2019. “J2-deformation type model coupled with state dependent dilatancy.” Comput. Geotech. 105: 129–141. https://doi.org/10.1016/j.compgeo.2018.09.018.
Yao, Y. P., W. Hou, and A. N. Zhou. 2009. “UH model: Three-dimensional unified hardening model for overconsolidated clays.” Geotechnique 59 (5): 451–469. https://doi.org/10.1680/geot.2007.00029.
Yu, F. 2017. “Characteristics of particle breakage of sand in triaxial shear.” Powder Technol. 320: 656–667. https://doi.org/10.1016/j.powtec.2017.08.001.
Yu, F. 2018. “Particle breakage in triaxial shear of a coral sand.” Soils Found. 58 (4): 866–880. https://doi.org/10.1016/j.sandf.2018.04.001.
Yu, J., C. Shen, S. Liu, and Y. P. Cheng. 2020. “Exploration of the survival probability and shape evolution of crushable particles during one-dimensional compression using dyed gypsum particles.” J. Geotech. Geoenviron. Eng. 146 (11): 04020121. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002371.
Zhang, F., M. An, L. Zhang, Y. Fang, and D. Elsworth. 2019. “Effect of mineralogy on friction-dilation relationships for simulated faults: Implications for permeability evolution in caprock faults.” Geosci. Front. 11 (2): 439–450. https://doi.org/10.1016/j.gsf.2019.05.014.
Zhang, X., W. Hu, G. Scaringi, B. A. Baudet, and W. Han. 2018. “Particle shape factors and fractal dimension after large shear strains in carbonate sand.” Geotech. Lett. 8 (1): 73–79. https://doi.org/10.1680/jgele.17.00150.
Zhou, A., and Y. Zhang. 2015. “Explicit integration scheme for a non-isothermal elastoplastic model with convex and nonconvex subloading surfaces.” Comput. Mech. 55 (5): 943–961. https://doi.org/10.1007/s00466-015-1144-3.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 23Issue 3March 2023

History

Received: Jun 24, 2022
Accepted: Sep 6, 2022
Published online: Dec 20, 2022
Published in print: Mar 1, 2023
Discussion open until: May 20, 2023

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Yang Xiao, M.ASCE [email protected]
Professor, Key Laboratory of New Technology for Construction of Cities in Mountain Area, State Key Laboratory of Coal Mine Disaster Dynamics and Control, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Xuanming Zhang [email protected]
Master’s Candidate, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Chenggui Wang [email protected]
Ph.D. Candidate, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China (corresponding author). Email: [email protected]; [email protected]
Ph.D. Candidate, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Hanlong Liu, M.ASCE [email protected]
P.E.
Professor and Vice President, School of Civil Engineering, Chongqing Univ., Chongqing 400450, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Effect of Particle Morphology on Strength of Glass Sands, International Journal of Geomechanics, 10.1061/IJGNAI.GMENG-8661, 23, 8, (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share