Abstract

Carbonate sand has been widely used as the building materials for land reclamation in marine areas in the recent decades. The complex inner structures and particle characteristics of carbonate sand increase the difficulty and complexity in foundation treatment. In this study, the particle breakage and ultimate state of binary carbonate sands with different small-grain contents and size ratios were investigated through impact loading tests. The results showed that the particle breakage and ultimate state are influenced by the small-grain content and size ratio. The breakage of the carbonate sands shows significant differences for different small-grain contents due to the fabric state varies between a coarse-sand-dominated state and a finer-sand-dominated state except for the size ratio of 1.92 where the effect of small-grain content is negligible. A hyperbolic function was proposed to establish the relationship between the input work and particle breakage. The evolution of the particle size distribution of the sand with the size ratio of 1.92 under impact loading follows a monofractal pattern as the uniformly graded soil behaves. The multifractal or bimodal phenomenon becomes more obvious when the size ratio increases. The particle shape, size effect, and coordination number on the fabric of the binary carbonate sand could affect the particle breakage and ultimate state of the specimens.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors acknowledge the financial support from the National Nature Science Foundation of China (Grant Nos. 51922024 and 52078085), Natural Science Foundation of Chongqing, China (Grant No. cstc2019jcyjjqX0014), and the Fundamental Research Funds for the Central Universities (Grant No. 2020CDJQY-A068).

References

Ahmadi, M., T. Shire, A. Mehdizadeh, and M. Disfani. 2020. “DEM modelling to assess internal stability of gap-graded assemblies of spherical particles under various relative densities, fine contents and gap ratios.” Comput. Geotech. 126: 103710. https://doi.org/10.1016/j.compgeo.2020.103710.
Altuhafi, F. N., and M. R. Coop. 2011. “Changes to particle characteristics associated with the compression of sands.” Geotechnique 61 (6): 459–471. https://doi.org/10.1680/geot.9.P.114.
Bandini, V., and M. R. Coop. 2011. “The influence of particle breakage on the location of the critical state line of sands.” Soils Found. 51 (4): 591–600. https://doi.org/10.3208/sandf.51.591.
Bolton, M. D., Y. Nakata, and Y. P. Cheng. 2008. “Micro- and macro-mechanical behaviour of DEM crushable materials.” Geotechnique 58 (6): 471–480. https://doi.org/10.1680/geot.2008.58.6.471.
Cabalar, A. F., and R. A. Hasan. 2013. “Compressional behaviour of various size/shape sand–clay mixtures with different pore fluids.” Eng. Geol. 164: 36–49. https://doi.org/10.1016/j.enggeo.2013.06.011.
Cao, Z., J. Chen, X. Ye, C. Gu, Z. Guo, and Y. Cai. 2021. “Experimental study on particle breakage of carbonate gravels under cyclic loadings through large-scale triaxial tests.” Transp. Geotech. 30: 100632. https://doi.org/10.1016/j.trgeo.2021.100632.
Carraro, J. A. H., M. Prezzi, and R. Salgado. 2009. “Shear strength and stiffness of sands containing plastic or nonplastic fines.” J. Geotech. Geoenviron. Eng. 135 (9): 1167–1178. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:9(1167).
Ciantia, M. O., and C. O’Sullivan. 2020. “Calculating the state parameter in crushable sands.” Int. J. Geomech. 20 (7): 04020095. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001707.
Coop, M. R. 1990. “The mechanics of uncemented carbonate sands.” Geotechnique 40 (4): 607–626. https://doi.org/10.1680/geot.1990.40.4.607.
Coop, M. R., and J. H. Atkinson. 1993. “The mechanics of cemented carbonate sands.” Géotechnique 43 (1): 53–67. https://doi.org/10.1680/geot.1993.43.1.53.
Coop, M. R., K. K. Sorensen, T. Bodas Freitas, and G. Georgoutsos. 2004. “Particle breakage during shearing of a carbonate sand.” Geotechnique 54 (3): 157–163. https://doi.org/10.1680/geot.2004.54.3.157.
Daouadji, A., and P.-Y. Hicher. 2010. “An enhanced constitutive model for crushable granular materials.” Int. J. Numer. Anal. Met. 34 (6): 555–580. https://doi.org/10.1002/nag.815.
Daouadji, A., P.-Y. Hicher, and A. Rahma. 2001. “An elastoplastic model for granular materials taking into account grain breakage.” Eur. J. Mech. A. Solids 20 (1): 113–137. https://doi.org/10.1016/S0997-7538(00)01130-X.
Dash, H. K., T. G. Sitharam, and B. A. Baudet. 2010. “Influence of non-plastic fines on the response of a silty sand to cyclic loading.” Soils Found. 50 (5): 695–704. https://doi.org/10.3208/sandf.50.695.
de Frias Lopez, R., J. Silfwerbrand, D. Jelagin, and B. Birgisson. 2016. “Force transmission and soil fabric of binary granular mixtures.” Géotechnique 66 (7): 578–583. https://doi.org/10.1680/jgeot.14.P.199.
Ding, Z., S.-H. He, Y. Sun, T.-D. Xia, and Q.-F. Zhang. 2021. “Comparative study on cyclic behavior of marine calcareous sand and terrigenous siliceous sand for transportation infrastructure applications.” Constr. Build. Mater. 283: 122740. https://doi.org/10.1016/j.conbuildmat.2021.122740.
Donohue, S., C. O’Sullivan, and M. Long. 2009. “Particle breakage during cyclic triaxial loading of a carbonate sand.” Géotechnique 59 (5): 477–482. https://doi.org/10.1680/geot.2008.T.003.
Einav, I. 2007. “Breakage mechanics—Part I: Theory.” J. Mech. Phys. Solids 55 (6): 1274–1297. https://doi.org/10.1016/j.jmps.2006.11.003.
Farshbaf Aghajani, H., H. Salehzadeh, and R. Rezvani. 2016. “Energy equilibrium during crushing of sandy soils under isotropic compression.” Arab. J. Sci. Eng. 41 (4): 1531–1542. https://doi.org/10.1007/s13369-016-2063-0.
Fatemiaghda, M., H. Shahnazari, H. R. Karami, and M. Talkhablu. 2017. “Effect of texture of carbonate soils in South Iran coasts on aggregate crushing.” Mar. Georesour. Geotechnol. 35 (7): 986–998. https://doi.org/10.1080/1064119X.2016.1275893.
Hardin, B. O. 1985. “Crushing of soil particles.” J. Geotech. Eng. 111 (10): 1177–1192. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:10(1177).
Hasanlourad, M., H. Salehzadeh, and H. Shahnazari. 2008. “Dilation and particle breakage effects on the shear strength of calcareous sands based on energy aspects.” Int. J. Civ. Eng. 6 (2): 108–119.
He, S.-H., Z. Ding, T.-D. Xia, W.-H. Zhou, X.-L. Gan, Y.-Z. Chen, and F. Xia. 2020. “Long-term behaviour and degradation of calcareous sand under cyclic loading.” Eng. Geol. 276: 105756. https://doi.org/10.1016/j.enggeo.2020.105756.
Huang, J. Y., S. S. Hu, S. L. Xu, and S. N. Luo. 2017. “Fractal crushing of granular materials under confined compression at different strain rates.” Int. J. Impact. Eng. 106: 259–265. https://doi.org/10.1016/j.ijimpeng.2017.04.021.
Kuang, D., Z. Long, R. Guo, and P. Yu. 2021. “Experimental and numerical investigation on size effect on crushing behaviors of single calcareous sand particles.” Mar. Georesour. Geotechnol. 39 (5): 543–553. https://doi.org/10.1080/1064119X.2020.1725194.
Kuwajima, K., M. Hyodo, and A. F. Hyde. 2009. “Pile bearing capacity factors and soil crushability.” J. Geotech. Geoenviron. Eng. 135 (7): 901–913. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000057.
Lade, P. V., J. Nam, and C. D. Liggio Jr. 2010. “Effects of particle crushing in stress drop-relaxation experiments on crushed coral sand.” J. Geotech. Geoenviron. Eng. 136 (3): 500–509. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000212.
Lade, P. V., J. A. Yamamuro, and P. A. Bopp. 1996. “Significance of particle crushing in granular materials.” J. Geotech. Eng. 122 (4): 309–316. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:4(309).
Lashkari, A. 2014. “Recommendations for extension and re-calibration of an existing sand constitutive model taking into account varying non-plastic fines content.” Soil Dyn. Earthquake Eng. 61-62: 212–238. https://doi.org/10.1016/j.soildyn.2014.02.012.
Lee, K. L., and I. Farhoomand. 1967. “Compressibility and crushing of granular soil.” Can. Geotech. J. 4 (1): 68–86. https://doi.org/10.1139/t67-012.
Leleu, S. L., and J. R. Valdes. 2007. “Experimental study of the influence of mineral composition on sand crushing.” Géotechnique 57 (3): 313–317. https://doi.org/10.1680/geot.2007.57.3.313.
Li, H. Y., H. W. Chai, X. H. Xiao, J. Y. Huang, and S. N. Luo. 2020. “Fractal breakage of porous carbonate sand particles: Microstructures and mechanisms.” Powder Technol. 363: 112–121. https://doi.org/10.1016/j.powtec.2020.01.007.
Li, Y., Z. Lin, B. Li, L. He, and J. Gong. 2021. “Effects of gradation and grain crushing on the liquefaction resistance of calcareous sand.” Geomech. Geophys. Geo-Energy Geo-Resour. 7 (1): 12. https://doi.org/10.1007/s40948-020-00208-3.
Lin, L., S. Li, L. Sun, X.L. Liu, and W.W. Chen. 2020. “Evolution of particle size distribution for carbonate sand under impact load.” Powder Technol. 376: 549–564. https://doi.org/10.1016/j.powtec.2020.08.046.
Liu, H., K. Zeng, and Y. Zou. 2020. “Particle breakage of calcareous sand and its correlation with input energy.” Int. J. Geomech. 20 (2): 04019151. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001541.
Liu, L., H. Liu, A. W. Stuedlein, T. M. Evans, and Y. Xiao. 2019. “Strength, stiffness, and microstructure characteristics of biocemented calcareous sand.” Can. Geotech. J. 56 (10): 1502–1513. https://doi.org/10.1139/cgj-2018-0007.
Lobo-Guerrero, S., L. E. Vallejo, and L. F. Vesga. 2006. “Visualization of crushing evolution in granular materials under compression using DEM.” Int. J. Geomech. 6 (3): 195–200. https://doi.org/10.1061/(ASCE)1532-3641(2006)6:3(195).
López-Querol, S., and M. R. Coop. 2012. “Drained cyclic behaviour of loose Dogs Bay sand.” Géotechnique 62 (4): 281–289. https://doi.org/10.1680/geot.8.P.105.
Luo, T., C. Zhang, F. Liu, Y. Zuo, H. Qiu, and J. Hou. 2021. “Role of particle breakage in rockfill materials: Investigated by using combined SBFEM/DEM with two different breakage models.” Int. J. Geomech. 21 (9): 04021174. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002131.
Lv, Y., X. Li, and Y. Wang. 2020. “Particle breakage of calcareous sand at high strain rates.” Powder Technol. 366: 776–787. https://doi.org/10.1016/j.powtec.2020.02.062.
Ma, G., X. He, X. Jiang, H. Liu, J. Chu, and Y. Xiao. 2021a. “Strength and permeability of bentonite-assisted biocemented coarse sand.” Can. Geotech. J. 58 (7): 969–981. https://doi.org/10.1139/cgj-2020-0045.
Ma, G., W. Zhou, and X.-L. Chang. 2014. “Modeling the particle breakage of rockfill materials with the cohesive crack model.” Comput. Geotech. 61: 132–143. https://doi.org/10.1016/j.compgeo.2014.05.006.
Ma, G., W. Zhou, T.-T. Ng, Y.-G. Cheng, and X.-L. Chang. 2015. “Microscopic modeling of the creep behavior of rockfills with a delayed particle breakage model.” Acta Geotech. 10 (4): 481–496. https://doi.org/10.1007/s11440-015-0367-y.
Ma, L., A. C. F. Chiu, Y. P. Cheng, and Y. Z. Ren. 2021b. “Effects of particle breakage on the compression behaviour of gap graded carbonate sand–silt mixtures.” Geotech. Lett. 11 (1): 1–17. https://doi.org/10.1680/jgele.20.00033.
Ma, L., Z. Li, M. Wang, H. Wei, and P. Fan. 2019. “Effects of size and loading rate on the mechanical properties of single coral particles.” Powder Technol. 342: 961–971. https://doi.org/10.1016/j.powtec.2018.10.037.
Mao, W., Y. Yang, W. Lin, S. Aoyama, and I. Towhata. 2018. “High frequency acoustic emissions observed during model pile penetration in sand and implications for particle breakage behavior.” Int. J. Geomech. 18 (11): 04018143. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001287.
Marsal, R. J. 1967. “Large scale testing of rockfill materials.” J. Soil Mech. Found. Div. 93 (2): 27–43. https://doi.org/10.1061/JSFEAQ.0000958.
McDowell, G. R. 2005. “A physical justification for log e–log σ based on fractal crushing and particle kinematics.” Géotechnique 55 (9): 697–698. https://doi.org/10.1680/geot.2005.55.9.697.
McDowell, G. R., and M. D. Bolton. 1998. “On the micromechanics of crushable aggregates.” Geotechnique 48 (5): 667–679. https://doi.org/10.1680/geot.1998.48.5.667.
McDowell, G. R., M. D. Bolton, and D. Robertson. 1996. “The fractal crushing of granular materials.” J. Mech. Phys. Solids 44 (12): 2079–2101. https://doi.org/10.1016/S0022-5096(96)00058-0.
McDowell, G. R., and C. M. Daniell. 2001. “Fractal compression of soil.” Geotechnique 51 (2): 173–176. https://doi.org/10.1680/geot.2001.51.2.173.
Miao, G., and D. Airey. 2013. “Breakage and ultimate states for a carbonate sand.” Geotechnique 63 (14): 1221–1229. https://doi.org/10.1680/geot.12.P.111.
Muir Wood, D., and K. Maeda. 2008. “Changing grading of soil: Effect on critical states.” Acta Geotech. 3 (1): 3–14. https://doi.org/10.1007/s11440-007-0041-0.
Nakata, Y., A. F. L. Hyde, M. Hyodo, and H. Murata. 1999. “A probabilistic approach to sand particle crushing in the triaxial test.” Geotechnique 49 (5): 567–583. https://doi.org/10.1680/geot.1999.49.5.567.
Peng, Y., H. Liu, C. Li, X. Ding, X. Deng, and C. Wang. 2021. “The detailed particle breakage around the pile in coral sand.” Acta Geotech. 16 (6): 1971–1981. https://doi.org/10.1007/s11440-020-01089-2.
Perfect, E. 1997. “Fractal models for the fragmentation of rocks and soils: A review.” Eng. Geol. 48 (3-4): 185–198. https://doi.org/10.1016/S0013-7952(97)00040-9.
Qadimi, A., and M. R. Coop. 2007. “The undrained cyclic behaviour of a carbonate sand.” Géotechnique 57 (9): 739–750. https://doi.org/10.1680/geot.2007.57.9.739.
Rieu, M., and G. Sposito. 1991. “Fractal fragmentation, soil porosity, and soil water properties: I. Theory.” Soil Sci. Soc. Am. J. 55 (5): 1231–1238. https://doi.org/10.2136/sssaj1991.03615995005500050006x.
Rui, S., Z. Guo, T. Si, W. Zhou, and X. Zha. 2021. “Particle shape influence on the deformation resistance of carbonate sands under drained condition.” Soil Dyn. Earthquake Eng. 144: 106688. https://doi.org/10.1016/j.soildyn.2021.106688.
Salem, M., H. Elmamlouk, and S. Agaiby. 2013. “Static and cyclic behavior of North Coast calcareous sand in Egypt.” Soil Dyn. Earthquake Eng. 55: 83–91. https://doi.org/10.1016/j.soildyn.2013.09.001.
Sarkar, D., M. Goudarzy, D. Köenig, and T. Wichtmann. 2020. “Influence of particle shape and size on the threshold fines content and the limit index void ratios of sands containing non-plastic fines.” Soils Found. 60 (3): 621–633. https://doi.org/10.1016/j.sandf.2020.02.006.
Shahnazari, H., and R. Rezvani. 2013. “Effective parameters for the particle breakage of calcareous sands: An experimental study.” Eng. Geol. 159: 98–105. https://doi.org/10.1016/j.enggeo.2013.03.005.
Shahnazari, H., R. Rezvani, and M. A. Tutunchian. 2017. “Experimental study on the phase transformation point of crushable and noncrushable soils.” Mar. Georesour. Geotechnol. 35 (2): 176–185. https://doi.org/10.1080/1064119X.2015.1126773.
Sharma, S. S., and M. A. Ismail. 2006. “Monotonic and cyclic behavior of two calcareous soils of different origins.” J. Geotech. Geoenviron. Eng. 132 (12): 1581–1591. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:12(1581).
Shi, J., Y. Xiao, J. Hu, H. Wu, H. Liu, and W. Haegeman. 2022. “Small-strain shear modulus of calcareous sand under anisotropic consolidation.” Can. Geotech. J. https://doi.org/10.1139/cgj-2021-0329.
Shire, T., C. O’Sullivan, and K. J. Hanley. 2016. “The influence of fines content and size-ratio on the micro-scale properties of dense bimodal materials.” Granul. Matter. 18 (3): 52. https://doi.org/10.1007/s10035-016-0654-9.
Shire, T., C. O’Sullivan, K. J. Hanley, and R. J. Fannin. 2014. “Fabric and effective stress distribution in internally unstable soils.” J. Geotech. Geoenviron. Eng. 140 (12): 04014072. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001184.
Skempton, A. W., and J. M. Brogan. 1994. “Experiments on piping in sandy gravels.” Géotechnique 44 (3): 449–460. https://doi.org/10.1680/geot.1994.44.3.449.
Steacy, S. J., and C. G. Sammis. 1991. “An automaton for fractal patterns of fragmentation.” Nature 353 (6341): 250–252. https://doi.org/10.1038/353250a0.
Sun, Z. C., J. Chu, and Y. Xiao. 2021. “Formulation and implementation of an elastoplastic constitutive model for sand–fines mixtures.” Int. J. Numer. Anal. Met. 45 (18): 2682–2708. https://doi.org/10.1002/nag.3282.
Thevanayagam, S., T. Shenthan, S. Mohan, and J. Liang. 2002. “Undrained fragility of clean sands, silty sands, and sandy silts.” J. Geotech. Geoenviron. Eng. 128 (10): 849–859. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(849).
Tong, C.-X., G. J. Burton, S. Zhang, and D. Sheng. 2020. “Particle breakage of uniformly graded carbonate sands in dry/wet condition subjected to compression/shear tests.” Acta Geotech. 15 (9): 2379–2394. https://doi.org/10.1007/s11440-020-00931-x.
Turcotte, D. L. 1986. “Fractals and fragmentation.” J. Geophys. Res. 91 (B2): 1921–1926. https://doi.org/10.1029/JB091iB02p01921.
Valdes, J. R., and E. Koprulu. 2007. “Characterization of fines produced by sand crushing.” J. Geotech. Geoenviron. Eng. 133 (12): 1626–1630. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:12(1626).
Vinopal, R. J., and A. H. Coogan. 1978. “Effect of particle shape on packing of carbonate sands and gravels.” J. Sediment. Petrol. 48 (1): 7–24.
Wang, G., Z. Wang, Q. Ye, and X. Wei. 2020. “Particle breakage and deformation behavior of a carbonate sand under drained and undrained triaxial compression.” Int. J. Geomech. 20 (3): 04020012. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001601.
Wang, G., Z. Wang, Q. Ye, and J. Zha. 2021a. “Particle breakage evolution of coral sand using triaxial compression tests.” J. Rock Mech. Geotech. Eng. 13 (2): 321–334. https://doi.org/10.1016/j.jrmge.2020.06.010.
Wang, S., X.-W. Lei, Q.-S. Meng, J.-L. Xu, L.-F. Xie, and Y.-J. Li. 2019a. “Influence of particle shape on the density and compressive performance of calcareous sand.” KSCE J. Sediment. Petrol. 24 (1): 49–62.
Wang, X., J. Cui, C.-Q. Zhu, Y. Wu, and X.-Z. Wang. 2021b. “Experimental study of the mechanical behavior of calcareous sand under repeated loading–unloading.” Bull. Eng. Geol. Environ. 80 (4): 3097–3113. https://doi.org/10.1007/s10064-021-02119-3.
Wang, X.-Z., Y.-Y. Jiao, R. Wang, M.-J. Hu, Q.-S. Meng, and F.-Y. Tan. 2011. “Engineering characteristics of the calcareous sand in Nansha Islands, South China Sea.” Eng. Geol. 120: 40–47. https://doi.org/10.1016/j.enggeo.2011.03.011.
Wang, X., J.-Q. Liu, J. Cui, X.-Z. Wang, J.-H. Shen, and C.-Q. Zhu. 2021c. “Particle breakage characteristics of a foundation filling material on island-reefs in the South China Sea.” Constr. Build. Mater. 306: 124690. https://doi.org/10.1016/j.conbuildmat.2021.124690.
Wang, X., C.-Q. Zhu, X.-Z. Wang, and Y. Qin. 2019b. “Study of dilatancy behaviors of calcareous soils in a triaxial test.” Mar. Georesour. Geotechnol. 37 (9): 1057–1070. https://doi.org/10.1080/1064119X.2018.1526236.
Wang, X. Z., Y. L. Weng, H. Z. Wei, Q. S. Meng, and M. J. Hu. 2019c. “Particle obstruction and crushing of dredged calcareous soil in the Nansha Islands, South China Sea.” Eng. Geol. 261: 105274. https://doi.org/10.1016/j.enggeo.2019.105274.
Wei, H., X. Li, S. Zhang, T. Zhao, M. Yin, and Q. Meng. 2021. “Influence of particle breakage on drained shear strength of calcareous sands.” Int. J. Geomech. 21 (7): 04021118.
Wei, H., Z. Tao, J. He, Q. Meng, and X. Wang. 2018a. “Evolution of particle breakage for calcareous sands during ring shear tests.” Int. J. Geomech. 18 (2): 04017153. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001073.
Wei, H., T. Zhao, Q. Meng, X. Wang, and B. Zhang. 2020. “Quantifying the morphology of calcareous sands by dynamic image analysis.” Int. J. Geomech. 20 (4): 04020020. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001640.
Wei, H. Z., T. Zhao, Q. S. Meng, X. Z. Wang, and J. Q. He. 2018b. “Experimental evaluation of the shear behavior of fiber-reinforced calcareous sands.” Int. J. Geomech. 18 (12): 04018175. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001307.
Wu, X., Y. Cai, S. Xu, Y. Zhuang, Q. Wang, and Z. Wang. 2020. “Effects of size and shape on the crushing strength of coral sand particles under diametral compression test.” Bull. Eng. Geol. Environ. 80 (2): 1829–1839.
Wu, Y., N. Li, X. Wang, J. Cui, Y. Chen, Y. Wu, and H. Yamamoto. 2021. “Experimental investigation on mechanical behavior and particle crushing of calcareous sand retrieved from South China Sea.” Eng. Geol. 280: 105932. https://doi.org/10.1016/j.enggeo.2020.105932.
Xiao, P., H. Liu, A. W. Stuedlein, T. M. Evans, and Y. Xiao. 2019a. “Effect of relative density and biocementation on the cyclic response of calcareous sand.” Can. Geotech. J. 56 (12): 1849–1862. https://doi.org/10.1139/cgj-2018-0573.
Xiao, P., H. Liu, Y. Xiao, A. W. Stuedlein, and T. M. Evans. 2018a. “Liquefaction resistance of bio-cemented calcareous sand.” Soil Dyn. Earthquake Eng. 107: 9–19. https://doi.org/10.1016/j.soildyn.2018.01.008.
Xiao, Y., H. Chen, A. W. Stuedlein, T. M. Evans, J. Chu, L. Cheng, N. Jiang, H. Lin, H. Liu, and H. M. Aboel-Naga. 2020a. “Restraint of particle breakage by biotreatment method.” J. Geotech. Geoenviron. Eng. 146 (11): 04020123. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002384.
Xiao, Y., C. S. Desai, A. Daouadji, A. W. Stuedlein, H. Liu, and H. Abuel-Naga. 2020b. “Grain crushing in geoscience materials—Key issues on crushing measure, testing and modelling: Review and preface.” Geosci. Front. 11 (2): 363–374. https://doi.org/10.1016/j.gsf.2019.11.006.
Xiao, Y., H. Liu, Q. Chen, L. Long, and J. Xiang. 2017. “Evolution of particle breakage and volumetric deformation of binary granular soils under impact load.” Granul. Matter. 19 (4): 71. https://doi.org/10.1007/s10035-017-0756-z.
Xiao, Y., H. Liu, P. Xiao, and J. Xiang. 2016. “Fractal crushing of carbonate sands under impact loading.” Geotech. Lett. 6 (3): 199–204. https://doi.org/10.1680/jgele.16.00056.
Xiao, Y., Y. Sun, W. Zhou, J. Shi, and C. S. Desai. 2022. “Evolution of particle shape produced by sand breakage.” Int. J. Geomech. 22 (4): 04022003. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002333.
Xiao, Y., C. Wang, H. Wu, and C. S. Desai. 2021a. “New simple breakage index for crushable granular soils.” Int. J. Geomech. 21 (8): 04021136. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002091.
Xiao, Y., L. Wang, X. Jiang, T. M. Evans, A. W. Stuedlein, and H. Liu. 2019b. “Acoustic emission and force drop in grain crushing of carbonate sands.” J. Geotech. Geoenviron. Eng. 145 (9): 04019057. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002141.
Xiao, Y., Z. Yuan, J. Chu, H. Liu, J. Huang, S. N. Luo, S. Wang, and J. Lin. 2019c. “Particle breakage and energy dissipation of carbonate sands under quasi-static and dynamic compression.” Acta Geotech. 14 (6): 1741–1755. https://doi.org/10.1007/s11440-019-00790-1.
Xiao, Y., Z. Yuan, Y. Lv, L. Wang, and H. Liu. 2018b. “Fractal crushing of carbonate and quartz sands along the specimen height under impact loading.” Constr. Build. Mater. 182: 188–199. https://doi.org/10.1016/j.conbuildmat.2018.06.112.
Xiao, Y., C. Zhao, Y. Sun, S. Wang, H. Wu, H. Chen, and H. Liu. 2021b. “Compression behavior of MICP-treated sand with various gradations.” Acta Geotech. 16 (5): 1391–1400. https://doi.org/10.1007/s11440-020-01116-2.
Xu, D.-s., M. Huang, and Y. Zhou. 2020. “One-dimensional compression behavior of calcareous sand and marine clay mixtures.” Int. J. Geomech. 20 (9): 04020137. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001763.
Xu, Y., X. Feng, H. Zhu, and F. Chu. 2015. “Fractal model for rockfill shear strength based on particle fragmentation.” Granul. Matter. 17 (6): 753–761. https://doi.org/10.1007/s10035-015-0591-z.
Yang, S., S. Lacasse, and R. Sandven. 2006. “Determination of the transitional fines content of mixtures of sand and non-plastic fines.” Geotech. Test. J. 29 (2): 102–107.
Yasufuku, N., and A. F. L. Hyde. 1995. “Pile end-bearing capacity in crushable sands.” Geotechnique 45 (4): 663–676. https://doi.org/10.1680/geot.1995.45.4.663.
Yilmaz, Y., Y. Deng, C. S. Chang, and A. Gokce. 2021. “Strength–dilatancy and critical state behaviours of binary mixtures of graded sands influenced by particle size ratio and fines content.” Géotechnique 1–16. https://doi.org/10.1680/jgeot.20.P.320.
Yu, F. 2018. “Particle breakage in triaxial shear of a coral sand.” Soils Found. 58 (4): 866–880. https://doi.org/10.1016/j.sandf.2018.04.001.
Zhang, C., G. D. Nguyen, and I. Einav. 2013. “The end-bearing capacity of piles penetrating into crushable soils.” Geotechnique 63 (5): 341–354. https://doi.org/10.1680/geot.11.P.117.
Zhang, J., M. Li, Z. Liu, and N. Zhou. 2017a. “Fractal characteristics of crushed particles of coal gangue under compaction.” Powder Technol. 305: 12–18. https://doi.org/10.1016/j.powtec.2016.09.049.
Zhang, T., W. Yang, C. Zhang, and C. Hu. 2021. “Particle breakage effect on compression behavior of realistic granular assembly.” Int. J. Geomech. 21 (7): 04021105.
Zhang, X., and B. A. Baudet. 2013. “Particle breakage in gap-graded soil.” Geotech. Lett. 3 (2): 72–77. https://doi.org/10.1680/geolett.13.00022.
Zhang, X., B. A. Baudet, W. Hu, and Q. Xu. 2017b. “Characterisation of the ultimate particle size distribution of uniform and gap-graded soils.” Soils Found. 57 (4): 603–618. https://doi.org/10.1016/j.sandf.2017.04.002.
Zuo, L., and B. A. Baudet. 2015. “Determination of the transitional fines content of sand-non plastic fines mixtures.” Soils Found. 55 (1): 213–219. https://doi.org/10.1016/j.sandf.2014.12.017.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 22Issue 7July 2022

History

Received: Dec 18, 2021
Accepted: Feb 25, 2022
Published online: Apr 29, 2022
Published in print: Jul 1, 2022
Discussion open until: Sep 29, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Yang Xiao, M.ASCE [email protected]
Professor, Key Laboratory of New Technology for Construction of Cities in Mountain Area, State Key Laboratory of Coal Mine Disaster Dynamics and Control, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Chenggui Wang, S.M.ASCE [email protected]
Ph.D. Candidate, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Jinquan Shi [email protected]
Assistant Researcher, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China (corresponding author). Email: [email protected]
Leihang Long [email protected]
Graduate, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Hanlong Liu [email protected]
Professor and Vice President, School of Civil Engineering, Chongqing Univ., Chongqing 400450, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Particle Breakage Model for Granular Geomaterials Considering Stress Paths, International Journal of Geomechanics, 10.1061/IJGNAI.GMENG-8776, 23, 12, (2023).
  • Morphology characterization and discrete element modeling of coral sand with intraparticle voids, Engineering Geology, 10.1016/j.enggeo.2023.107023, 315, (107023), (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share