Open access
Technical Papers
Oct 6, 2023

Pitfalls and Potentials of Microclimate Simulations in Urban Planning

Publication: Journal of Urban Planning and Development
Volume 149, Issue 4

Abstract

In the face of climate change and rising mean global temperature, urban planning is required to transform cities into resilient living areas for present and future generations. Within this task, microclimate simulation models are an important tool to assess the impact of nature-based solutions (NBSs), building morphology, design of urban quarters, and other measures on the local microclimate. As simulation tools are open to be applied by different user groups, the utilization of the software is often kept as easy as possible. This seeming simplicity bears the risk for users to fall into traps during the model configuration, interpretation of results, or not making use of the full potential of simulations. While scientific literature mainly describes successful application of case studies, it does not cover potential misapplication and related consequences. The present study contributes to closing this research gap and supports the urban planning community with a selection of pitfalls in the model setup and interpretation of results. Clear examples of wrong configuration of wind direction, inaccurate evaluation of mean radiant temperature (MRT), and improper selection of performance indicators are presented by the means of sensitivity experiments and case studies with the modeling software ENVI-Met. The prevailing study demonstrates why MRT values are not suitable to explain effects of NBS during nighttime and contrasts the effects of façade greening on air temperature (0.85°C) with building surface temperature (6.1°C or even 27.5°C with substrate layer). In addition, it highlights the potentials of the multitude of possible performance indicators of microclimate simulations. The selection of avoidable mistakes in the assessment of the local microclimate supports users of microclimate models to promote effective and impactful climate adaption and mitigation measures in urban planning.

Formats available

You can view the full content in the following formats:

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This work was supported by the research project GreenDeal4Real, funded by the Austrian Research Promotion Agency (FFG), the promotional bank of the Austrian federal government (AWS), and the Austrian Society for Environment and Technology (OEGUT) on behalf of the Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation, and Technology (BMK) in the research and technology program “City of the Future” (ger. “Stadt der Zukunft”) [Grant No. 879456].
Author contributions: Martin Schneider: Conceptualization, Methodology, Formal analysis, Investigation, Writing – Original Draft, Visualization; Tanja Tötzer: Conceptualization, Writing – Review and Editing, Supervision, Project administration, Funding acquisition; Marianne Bügelmayer-Blaschek: Writing – Review and Editing; Romana Stollnberger: Writing – Review and Editing, Project administration, Funding acquisition.

References

Abdollahzadeh, N., and N. Biloria. 2021. “Outdoor thermal comfort: Analyzing the impact of urban configurations on the thermal performance of street canyons in the humid subtropical climate of Sydney.” Front. Archit. Res. 10 (2): 394–409. https://doi.org/10.1016/j.foar.2020.11.006.
Albdour, M. S., and B. Baranyai. 2019. “An overview of microclimate tools for predicting the thermal comfort, meteorological parameters and design strategies in outdoor spaces.” Pollack Periodica 14 (2): 109–118. https://doi.org/10.1556/606.2019.14.2.10.
Ali-Toudert, F. 2005. “Dependence of outdoor thermal comfort on street design in hot and dry climate.” Ph.D. thesis, Faculty of Environment and Natural Resources, Univ. Freiburg.
Ali-Toudert, F., and H. Mayer. 2006. “Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate.” Build. Environ. 41 (2): 94–108. https://doi.org/10.1016/j.buildenv.2005.01.013.
Ambrosini, D., G. Galli, B. Mancini, I. Nardi, and S. Sfarra. 2014. “Evaluating mitigation effects of urban heat islands in a historical small center with the ENVI-met® climate model.” Sustainability 6 (10): 7013–7029. https://doi.org/10.3390/su6107013.
Arkon, C. A., and Ü. Özkol. 2014. “Effect of urban geometry on pedestrian-level wind velocity.” Archit. Sci. Rev. 57 (1): 4–19. https://doi.org/10.1080/00038628.2013.835709.
Arnfield, A. J. 1990. “Street design and urban canyon solar access.” Energy Build. 14 (2): 117–131. https://doi.org/10.1016/0378-7788(90)90031-D.
ASHRAE (The American Society of Heating, Refrigerating and Air-Conditioning Engineers). 2001. ASHRAE handbook: Fundamentals. Atlanta, GA: ASHRAE.
Bay, J. 2006. Tropical sustainable architecture: Social and environmental dimensions. Burlington, NJ: Elsevier.
Blanco, I., E. Schettini, G. S. Mugnozza, and G. Vox. 2018. “Thermal behaviour of green façades in summer.” J. Agric. Eng. 49 (3): 183–190. https://doi.org/10.4081/jae.2018.835.
Blocken, B., and J. Carmeliet. 2004. “Pedestrian wind environment around buildings: Literature review and practical examples.” J. Therm. Envelope Build. Sci. 28 (2): 107–159. Retrieved on May 19, 2022. https://doi.org/10.1177/1097196304044396.
Blocken, B., J. Hensen, H. Timmermans, T. van Hoof, and C. Gromke. 2016. “Adapting buildings and cities to heat waves: are green solutions the best?” Accessed May 5, 2022. https://www.linkedin.com/pulse/adapting-buildings-cities-heat-waves-green-solutions-best-blocken.
Bröde, P., D. Fiala, K. Błażejczyk, I. Holmér, G. Jendritzky, B. Kampmann, B. Tinz, and G. Havenith. 2012. “Deriving the operational procedure for the universal thermal climate index (UTCI).” Int. J. Biometeorol. 56 (3): 481–494. https://doi.org/10.1007/s00484-011-0454-1.
Bruse, M. 1999. “Die Auswirkungen kleinskaliger Umweltgestaltung auf das Mikroklima – Entwicklung des prognostischen numerischen Modells zur Simulation der Wind-, Temperatur- und Feuchteverteilung in städtischen Strukturen.” Ph.D. thesis, Faculty of Geosciences, Ruhr-Univ. Bochum.
Chudnovsky, A., E. Ben-Dor, and H. Saaroni. 2004. “Diurnal thermal behavior of selected urban objects using remote sensing measurements.” Energy Build. 36 (11): 1063–1074. https://doi.org/10.1016/j.enbuild.2004.01.052.
Dissegna, M. A., T. Yin, H. Wu, N. Lauret, S. Wei, J.-P. Gastellu-Etchegorry, and A. Grêt-Regamey. 2021. “Modeling mean radiant temperature distribution in urban landscapes using DART.” Remote Sens. 13 (8): 1443. https://doi.org/10.3390/rs13081443.
ENVI-Met. 2022. “Envi-met model architecture.” Accessed May 3, 2022. https://envi-met.info/doku.php?id=intro:modelconcept.
Erell, E., D. Pearlmutter, D. Boneh, and P. B. Kutiel. 2014. “Effect of high-albedo materials on pedestrian heat stress in urban street canyons.” Urban Clim. 10: 367–386. https://doi.org/10.1016/j.uclim.2013.10.005.
Good, E. J., D. J. Ghent, C. E. Bulgin, and J. J. Remedios. 2017. “A spatiotemporal analysis of the relationship between near-surface air temperature and satellite land surface temperatures using 17 years of data from the ATSR series.” J. Geophys. Res.: Atmos. 122 (17): 9185–9210. https://doi.org/10.1002/2017JD026880.
Görgen, F., and M. Rossi-Schwarzenbeck. 2021. “Evaporative cooling strategies in urban areas: The potential of vertical greening systems to reduce nocturnal heat stress.” J. Phys. Conf. Ser. 2042 (1): 012056. https://doi.org/10.1088/1742-6596/2042/1/012056.
Gu, K., Y. Fang, Z. Qian, Z. Sun, and A. Wang. 2020. “Spatial planning for urban ventilation corridors by urban climatology.” Ecosyst. Health Sustainability 6 (1): 1747946. https://doi.org/10.1080/20964129.2020.1747946.
Han, H., J. Lee, J. Kim, C. Jang, and H. Jeong. 2014. “Thermal comfort control based on a simplified predicted mean vote index.” Energy Procedia 61: 970–974. https://doi.org/10.1016/j.egypro.2014.11.1006.
Hoelscher, M.-T., T. Nehls, B. Jänicke, and G. Wessolek. 2016. “Quantifying cooling effects of facade greening: Shading, transpiration and insulation.” Energy Build. 114: 283–290. https://doi.org/10.1016/j.enbuild.2015.06.047.
Höppe, P. 1999. “The physiological equivalent temperature – a universal index for the biometeorological assessment of the thermal environment.” Int. J. Biometeorol. 43 (2): 71–75. https://doi.org/10.1007/s004840050118.
Huttner, S. 2012. “Further development and application of the 3D microclimate simulation ENVI-met.” Ph.D. thesis, Faculty of Chemistry, Pharmaceutical Sciences, Geography and Geosciences, Johannes Gutenberg-Univ.
Jänicke, B., F. Meier, M.-T. Hoelscher, and D. Scherer. 2015. “Evaluating the effects of façade greening on human bioclimate in a complex urban environment.” Adv. Meteorol. 2015: 1–15. https://doi.org/10.1155/2015/747259.
Kehrer, M., and T. Schmidt. 2008. “Radiation effects on exterior surfaces.” In Proc., 8th Nordic Symp. Building Physics. Nordic Countries, edited by C. Rode. Copenhagen, Denmark: Danish Society of Engineers.
Kwon, Y. J., and D. K. Lee. 2019. “Thermal comfort and longwave radiation over time in urban residential complexes.” Sustainability 11 (8): 2251. https://doi.org/10.3390/su11082251.
Lee, H., S. Jo, and S. Park. 2022. “A simple technique for the traditional method to estimate mean radiant temperature.” Int. J. Biometeorol. 66 (3): 521–533. https://doi.org/10.1007/s00484-021-02213-x.
Loibl, W., M. Vuckovic, G. Etminan, M. Ratheiser, S. Tschannett, and D. Österreicher. 2021. “Effects of densification on urban microclimate—a case study for the city of Vienna.” Atmosphere 12 (4): 511. https://doi.org/10.3390/atmos12040511.
Lopez-Cabeza, V. P., S. Alzate-Gaviria, E. Diz-Mellado, C. Rivera-Gomez, and C. Galan-Marin. 2022. “Albedo influence on the microclimate and thermal comfort of courtyards under Mediterranean hot summer climate conditions.” Sustainable Cities Soc. 81: 103872. https://doi.org/10.1016/j.scs.2022.103872.
Maggiotto, G., R. Buccolieri, M. A. Santo, L. S. Leo, and S. Di Sabatino. 2014. “Validation of temperature-perturbation and CFD-based modelling for the prediction of the thermal urban environment: The lecce (IT) case study.” Environ. Modell. Software 60: 69–83. https://doi.org/10.1016/j.envsoft.2014.06.001.
Mauree, D., S. Coccolo, A. Perera, V. Nik, J.-L. Scartezzini, and E. Naboni. 2018. “A new framework to evaluate urban design using urban microclimatic modeling in future climatic conditions.” Sustainability 10 (4): 1134. https://doi.org/10.3390/su10041134.
Mosteiro-Romero, M., D. Maiullari, M. Pijpers-van Esch, and A. Schlueter. 2020. “An integrated microclimate-energy demand simulation method for the assessment of urban districts.” Environ. Modell. Software 6. https://doi.org/10.3389/fbuil.2020.553946.
Naboni, E., M. Meloni, C. Makey, and J. Kaempf. 2019. “The simulation of mean radiant temperature in outdoor conditions: A review of software tools capabilities.” In Proc., 16th Building Simulation Conf., edited by V. Corrado, E. Fabrizio, A. Gasparella, and F. Patuzzi. Shanghai, China: International Building Performance Simulation Association (IBPSA).
Nunez, M., and T. R. Oke. 1977. “The energy balance of an urban canyon.” J. Appl. Meteorol. 16 (1): 11–19. https://doi.org/10.1175/1520-0450(1977)016%3C0011:TEBOAU%3E2.0.CO;2.
Oke, T. R. 2006. “Towards better scientific communication in urban climate.” Theor. Appl. Climatol. 84 (1–3): 179–190. https://doi.org/10.1007/s00704-005-0153-0.
Ouyang, W., T. Sinsel, H. Simon, T. E. Morakinyo, H. Liu, and E. Ng. 2022. “Evaluating the thermal-radiative performance of ENVI-met model for green infrastructure typologies: Experience from a subtropical climate.” Build. Environ. 207: 108427. https://doi.org/10.1016/j.buildenv.2021.108427.
Pacifici, M. 2019. “Urban morphology and climate: Field assessment and numerical modeling of interactions.” Ph.D. thesis, Dept. of Civil Engineering Construction, Univ. de Sao Paulo.
Prakash, A. 2000. “Thermal remote sensing: Concepts, issues and applications.” In Vol. 33(B1) of Proc., Int. Archives of Photogrammetry and Remote Sensing Amsterdam, The Netherlands: The International Society for Photogrammetry and Remote Sensing (ISPRS).
Qiao, Z., G. Tian, and L. Xiao. 2013. “Diurnal and seasonal impacts of urbanization on the urban thermal environment: A case study of Beijing using MODIS data.” ISPRS J. Photogramm. Remote Sens. 85: 93–101. https://doi.org/10.1016/j.isprsjprs.2013.08.010.
Safikhani, T., A. M. Abdullah, D. R. Ossen, and M. Baharvand. 2014. “Thermal impacts of vertical greenery systems.” Environ. Clim. Technol. 14 (1): 5–11. https://doi.org/10.1515/rtuect-2014-0007.
Salata, F., I. Golasi, R. de Lieto Vollaro, and A. de Lieto Vollaro. 2016. “Urban microclimate and outdoor thermal comfort. a proper procedure to fit ENVI-met simulation outputs to experimental data.” Sustainable Cities Soc. 26: 318–343. https://doi.org/10.1016/j.scs.2016.07.005.
Salvati, A., and M. Kolokotroni. 2019. “Microclimate data for building energy modelling: Study on ENVI-met forcing data.” In Proc., 16th Building Simulation Conf. of IBPSA, edited by V. Corrado, E. Fabrizio, A. Gasparella, and F. Patuzzi. New York: Taylor & Francis.
Santamouris, M., N. Gaitani, A. Spanou, M. Saliari, K. Giannopoulou, K. Vasilakopoulou, and T. Kardomateas. 2012. “Using cool paving materials to improve microclimate of urban areas – design realization and results of the flisvos project.” Build. Environ. 53: 128–136. https://doi.org/10.1016/j.buildenv.2012.01.022.
Shahmohamadi, P., A. I. Che-Ani, K. N. A. Maulud, N. M. Tawil, and N. A. G. Abdullah. 2011. “The impact of anthropogenic heat on formation of urban heat island and energy consumption balance.” Urban Stud. Res. 2011: 1–9. https://doi.org/10.1155/2011/497524.
Sharifi, E., and S. Lehmann. 2014. “Comparative analysis of surface urban heat island effect in central Sydney.” J. Sustainable Dev. 7 (3). https://doi.org/10.5539/jsd.v7n3p23.
Simon, H., M. Bruse, and L. Kissel. 2017. “Evaluation of ENVI-met’s multiple-node model and estimation of indoor climate.” In Proc., 33rd Passive and Low Energy Architecture: Design to Thrive, edited by L. Brotas, S. Roaf, and F. Nicol. Edinburgh, Scotland: Network for Comfort and Energy Use in Buildings (NCEUB).
Simon, H., T. Sinsel, and M. Bruse. 2021. “Advances in simulating radiative transfer in complex environments.” Appl. Sci. 11 (12): 5449. https://doi.org/10.3390/app11125449.
Singh, N., S. Singh, and R. Mall. 2020. “Urban ecology and human health: Implications of urban heat island, air pollution and climate change nexus.” In Urban ecology, edited by P. Verma, P. Singh, R. Singh, and A. S. Raghubanshi. 317–334. Amsterdam, The Netherlands: Elsevier.
Sinsel, T., H. Simon, W. Ouyang, C. D. S. Gusson, P. Shinzato, and M. Bruse. 2022. “Implementation and evaluation of mean radiant temperature schemes in the microclimate model ENVI-met.” Urban Climate 45: 101279.
Terjung, W. H., and P. A. O’Rourke. 1980. “Simulating the causal elements of urban heat islands.” Boundary Layer Meteorol. 19 (1): 93–118. https://doi.org/10.1007/BF00120313.
Tsoka, S., A. Tsikaloudaki, and T. Theodosiou. 2018. “Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications–a review.” Sustainable Cities Soc. 43: 55–76. https://doi.org/10.1016/j.scs.2018.08.009.
UCAR (University Corporation for Atmospheric Research). 2018. Conduction. Accessed March 24, 2022. https://scied.ucar.edu/learning-zone/earth-system/conduction.
United Nations, Department of Economic and Social Affairs, Population Division. 2019. World urbanization prospects 2018: Highlights. New York: United Nations Publications.
Vuckovic, M., W. Loibl, T. Tötzer, and R. Stollnberger. 2019. “Potential of urban densification to mitigate the effects of heat island in Vienna, Austria.” Environments 6 (7): 82. https://doi.org/10.3390/environments6070082.
Walikewitz, N., B. Jänicke, M. Langner, F. Meier, and W. Endlicher. 2015. “The difference between the mean radiant temperature and the air temperature within indoor environments: A case study during summer conditions.” Build. Environ. 84: 151–161. https://doi.org/10.1016/j.buildenv.2014.11.004.
Wong, N. H., A. Y. Kwang Tan, Y. Chen, K. Sekar, P. Y. Tan, D. Chan, K. Chiang, and N. C. Wong. 2010. “Thermal evaluation of vertical greenery systems for building walls.” Build. Environ. 45 (3): 663–672. https://doi.org/10.1016/j.buildenv.2009.08.005.
Yang, X., L. Zhao, M. Bruse, and Q. Meng. 2013. “Evaluation of a microclimate model for predicting the thermal behavior of different ground surfaces.” Build. Environ. 60: 93–104. https://doi.org/10.1016/j.buildenv.2012.11.008.
Zhang, J., Z. Li, Y. Wei, and D. Hu. 2022. “The impact of the building morphology on microclimate and thermal comfort-a case study in Beijing.” Build. Environ. 223: 109469. https://doi.org/10.1016/j.buildenv.2022.109469.

Information & Authors

Information

Published In

Go to Journal of Urban Planning and Development
Journal of Urban Planning and Development
Volume 149Issue 4December 2023

History

Received: Jan 10, 2023
Accepted: Jul 10, 2023
Published online: Oct 6, 2023
Published in print: Dec 1, 2023
Discussion open until: Mar 6, 2024

ASCE Technical Topics:

Authors

Affiliations

Research Engineer, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria. ORCID: https://orcid.org/0000-0003-2923-855X (corresponding author). Email: [email protected]
Tanja Tötzer [email protected]
Thematic Coordinator, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria. Email: [email protected]
Marianne Bügelmayer-Blaschek [email protected]
Senior Scientist, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria. Email: [email protected]
Romana Berg [email protected]
Research Engineer, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share