Technical Papers
Jan 2, 2023

Stub Column Behavior of Concrete-Filled Cold-Formed Steel Semi-Oval Sections

Publication: Journal of Structural Engineering
Volume 149, Issue 3

Abstract

This paper is an attempt to investigate the structural behavior of concrete-filled cold-formed steel stub columns with semi-oval cross sections via experimental and numerical studies. The test campaign included thirteen stub columns tests on four semi-oval sections infilled with both normal and high strength concrete. The details of test campaign and key observations are described and discussed. Validated against the test data obtained from this study, finite element model was developed to emulate the compressive behavior observed from tests and then used to derive more numerical data via parametric analyses. It is worth noting that the current codified design provisions for concrete-filled steel tubular columns do not explicitly include the semi-oval sections investigated herein. The acquired results from the test campaign and numerical analyses were employed to evaluate the applicability of the American Specifications (ANSI/AISC 360 and ACI318) as well as the European Code (EN1994-1-1). The evaluation results indicate that the aforementioned design rules are generally conservative for compressive strength predictions, among which the predictions by the European Code are the most accurate. Design method considering strength enhancement and confinement effect was proposed with improved accuracy. It is suggested to use the proposed design method for the compressive design of concrete-filled cold-formed steel semi-oval stub columns.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study are available upon reasonable request.

Acknowledgments

The authors are grateful to Shenyang Dongyang Special Section Tube for supplying the test specimens. The research work described in this paper was supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. 17267416). The authors would also like to thank the support from the National Natural Science Foundation of China (No. 52108157).

References

ABAQUS. 2017. ABAQUS/standard user’s manual. Version 6.17. Johnston, RI: Dassault Systemes, Simulia Corp.
ACI (American Concrete Institute). 2014. Building code requirements for structural concrete and commentary. ACI 318-14. Farmington Hills, MI: ACI.
AISI (American Iron and Steel Institute). 2016. North American specification for the design of cold-formed steel structural members. AISI S100-16. Washington, DC: AISI.
ANSI/AISC. 2016. Specification for structural steel buildings. ANSI/AISC 360-16. Chicago: AISC.
Bažant, Z. P., and E. Becq-Giraudon. 2002. “Statistical prediction of fracture parameters of concrete and implications for choice of testing standard.” Cem. Concr. Res. 32 (4): 529–556. https://doi.org/10.1016/S0008-8846(01)00723-2.
Cai, Y., W. M. Quach, M. T. Chen, and B. Young. 2019. “Behavior and design of cold-formed and hot-finished steel elliptical tubular stub columns.” J. Constr. Steel Res. 156 (May): 252–265. https://doi.org/10.1016/j.jcsr.2019.02.006.
CEN (European Committee for Standardization). 2004. Design of composite steel and concrete structures–Part 1.1: General rules for buildings. EN 1994-1-1:2004. Brussels, Belgium: CEN.
Chen, J., M. T. Chen, and B. Young. 2019. “Compression tests of cold-formed steel C- and Z-sections with different stiffeners.” J. Struct. Eng. 145 (5): 04019022. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002305.
Chen, M. T., M. Pandey, and B. Young. 2021a. “Mechanical properties of cold-formed steel semi-oval hollow sections after exposure to ISO-834 fire.” Thin-Walled Struct. 167 (Oct): 108202. https://doi.org/10.1016/j.tws.2021.108202.
Chen, M. T., M. Pandey, and B. Young. 2021b. “Post-fire residual material properties of cold-formed steel elliptical hollow sections.” J. Constr. Steel Res. 183 (Aug): 106723. https://doi.org/10.1016/j.jcsr.2021.106723.
Chen, M. T., and B. Young. 2018a. “Cross-sectional behavior of cold-formed steel semi-oval hollow sections.” Eng. Struct. 177 (Dec): 318–330. https://doi.org/10.1016/j.engstruct.2018.08.057.
Chen, M. T., and B. Young. 2018b. “Experimental and numerical investigation on pin-ended cold-formed steel semi-oval hollow section compression members.” J. Constr. Steel Res. 151 (Dec): 174–184. https://doi.org/10.1016/j.jcsr.2018.09.009.
Chen, M. T., and B. Young. 2019a. “Behavior of cold-formed steel elliptical hollow sections subjected to bending.” J. Constr. Steel Res. 158 (Jul): 317–330. https://doi.org/10.1016/j.jcsr.2019.02.022.
Chen, M. T., and B. Young. 2019b. “Material properties and structural behavior of cold-formed steel elliptical hollow section stub columns.” Thin-Walled Struct. 134 (Jan): 111–126. https://doi.org/10.1016/j.tws.2018.07.055.
Chen, M. T., and B. Young. 2019c. “Structural behavior of cold-formed steel semi-oval hollow section beams.” Eng. Struct. 185 (Apr): 400–411. https://doi.org/10.1016/j.engstruct.2019.01.069.
Chen, M. T., and B. Young. 2019d. “Structural performance of cold-formed steel elliptical hollow section pin-ended columns.” Thin-Walled Struct. 136 (Mar): 267–279. https://doi.org/10.1016/j.tws.2018.11.024.
Chen, M. T., and B. Young. 2020a. “Beam-column tests of cold-formed steel elliptical hollow sections.” Eng. Struct. 210 (May): 109911. https://doi.org/10.1016/j.engstruct.2019.109911.
Chen, M. T., and B. Young. 2020b. “Tensile tests of cold-formed stainless steel tubes.” J. Struct. Eng. 146 (9): 04020165. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002738.
Chen, M. T., and B. Young. 2020c. “Tests of cold-formed normal and high strength steel tubes under tension.” Thin-Walled Struct. 153 (Aug): 106844. https://doi.org/10.1016/j.tws.2020.106844.
Chen, M. T., and B. Young. 2020d. “Tests of cold-formed steel semi-oval hollow section members under eccentric axial load.” J. Struct. Eng. 146 (4): 04020027. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002468.
Chen, M. T., and B. Young. 2021a. “Beam-column design of cold-formed steel semi-oval hollow non-slender sections.” Thin-Walled Struct. 162 (May): 107376. https://doi.org/10.1016/j.tws.2020.107376.
Chen, M. T., and B. Young. 2021b. “Numerical analysis and design of cold-formed steel elliptical hollow sections under combined compression and bending.” Eng. Struct. 241 (Aug): 112417. https://doi.org/10.1016/j.engstruct.2021.112417.
Chen, M. T., B. Young, A. D. Martins, D. Camotim, and P. B. Dinis. 2020a. “Experimental investigation on cold-formed steel stiffened lipped channel columns undergoing local-distortional interaction.” Thin-Walled Struct. 150 (May): 106682. https://doi.org/10.1016/j.tws.2020.106682.
Chen, M. T., B. Young, A. D. Martins, D. Camotim, and P. B. Dinis. 2020b. “Uniformly bent CFS lipped channel beams experiencing local-distortional interaction: Experimental investigation.” J. Constr. Steel Res. 170 (Jul): 106098. https://doi.org/10.1016/j.jcsr.2020.106098.
Chen, M. T., B. Young, A. D. Martins, D. Camotim, and P. B. Dinis. 2021c. “Experimental investigation on cold-formed steel lipped channel beams affected by local-distortional interaction under non-uniform bending.” Thin-Walled Struct. 161 (Apr): 107494. https://doi.org/10.1016/j.tws.2021.107494.
Chen, Y., and K. Ke. 2019. “Seismic performance of high-strength-steel frame equipped with sacrificial beams of non-compact sections in energy dissipation bays.” Thin-Walled Struct. 139 (Jun): 169–185. https://doi.org/10.1016/j.tws.2019.02.035.
Cheng, B., F. Huang, Y. Duan, and M. T. Chen. 2021. “Fatigue performance of bird-beak SHS Gap K-joints under brace in-plane force.” J. Struct. Eng. 147 (11): 04021167. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003143.
Ding, F. X., Z. Li, S. Cheng, and Z. W. Yu. 2016. “Composite action of hexagonal concrete-filled steel tubular stub columns under axial loading.” Thin-Walled Struct. 107 (Oct): 502–513. https://doi.org/10.1016/j.tws.2016.07.005.
Ellobody, E., B. Young, and D. Lam. 2006. “Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns.” J. Constr. Steel Res. 62 (7): 706–715. https://doi.org/10.1016/j.jcsr.2005.11.002.
Fang, H., T. M. Chan, and B. Young. 2018. “Material properties and residual stresses of octagonal high strength steel hollow sections.” J. Constr. Steel Res. 148 (Sep): 479–490. https://doi.org/10.1016/j.jcsr.2018.06.007.
Galambos, T. V. 1998. Guide to stability design criteria for metal structures. Hoboken, NJ: Wiley.
Gardner, L., and D. A. Nethercot. 2004. “Numerical modeling of stainless steel structural components—A consistent approach.” J. Struct. Eng. 130 (10): 1586–1601. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:10(1586).
Guan, M., W. Liu, M. Lai, H. Du, J. Cui, and Y. Gan. 2019. “Seismic behaviour of innovative composite walls with high-strength manufactured sand concrete.” Eng. Struct. 195 (Sep): 182–199. https://doi.org/10.1016/j.engstruct.2019.05.096.
Han, L.-H. 2002. “Tests on stub columns of concrete-filled RHS sections.” J. Constr. Steel Res. 58 (3): 353–372. https://doi.org/10.1016/S0143-974X(01)00059-1.
Han, L.-H. 2004. “Flexural behaviour of concrete-filled steel tubes.” J. Constr. Steel Res. 60 (2): 313–337. https://doi.org/10.1016/j.jcsr.2003.08.009.
Han, L.-H., G.-H. Yao, and Z. Tao. 2007. “Performance of concrete-filled thin-walled steel tubes under pure torsion.” Thin-Walled Struct. 45 (1): 24–36. https://doi.org/10.1016/j.tws.2007.01.008.
Han, L.-H., G.-H. Yao, and X.-L. Zhao. 2005. “Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC).” J. Constr. Steel Res. 61 (9): 1241–1269. https://doi.org/10.1016/j.jcsr.2005.01.004.
He, A., and O. Zhao. 2019. “Experimental and numerical investigations of concrete-filled stainless steel tube stub columns under axial partial compression.” J. Constr. Steel Res. 158 (Jul): 405–416. https://doi.org/10.1016/j.jcsr.2019.04.002.
He, X., K. Ke, Y. Chen, M. C. Yam, and T. Shao. 2022. “An experimental study of steel-concrete composite connections equipped with fuse angles.” J. Constr. Steel Res. 195 (Aug): 107357. https://doi.org/10.1016/j.jcsr.2022.107357.
He, X., K. Ke, L. Guo, M. C. Yam, and Z. Wang. 2021. “A replaceable fuse steel-concrete composite connection: Force transfer mechanism and design considerations.” J. Constr. Steel Res. 183 (Aug): 106760. https://doi.org/10.1016/j.jcsr.2021.106760.
Ho, J. C. M., Y. Liang, Y. H. Wang, M. H. Lai, Z. C. Huang, D. Yang, and Q. L. Zhang. 2022. “Residual properties of steel slag coarse aggregate concrete after exposure to elevated temperatures.” Constr. Build. Material. 316 (Jan): 125751. https://doi.org/10.1016/j.conbuildmat.2021.125751.
Ho, J. C. M., X. L. Ou, M. T. Chen, Q. Wang, and M. H. Lai. 2020. “A path dependent constitutive model for CFFT column.” Eng. Struct. 210 (May): 110367. https://doi.org/10.1016/j.engstruct.2020.110367.
Ho, J. C. M., X. L. Ou, C. W. Li, W. Song, Q. Wang, and M. H. Lai. 2021. “Uni-axial behaviour of expansive CFST and DSCFST stub columns.” Eng. Struct. 237 (Jun): 112193. https://doi.org/10.1016/j.engstruct.2021.112193.
Hu, H.-T., and F.-C. Su. 2011. “Nonlinear analysis of short concrete-filled double skin tube columns subjected to axial compressive forces.” Mar. Struct. 24 (4): 319–337. https://doi.org/10.1016/j.marstruc.2011.05.001.
Huang, H., L.-H. Han, Z. Tao, and X.-L. Zhao. 2010. “Analytical behaviour of concrete-filled double skin steel tubular (CFDST) stub columns.” J. Constr. Steel Res. 66 (4): 542–555. https://doi.org/10.1016/j.jcsr.2009.09.014.
Huang, Y., and B. Young. 2014. “The art of coupon tests.” J. Constr. Steel Res. 96 (May): 159–175. https://doi.org/10.1016/j.jcsr.2014.01.010.
Jiang, B., M. C. H. Yam, K. Ke, A. C. C. Lam, and Q. Zhao. 2020. “Block shear failure of S275 and S690 steel angles with single-line bolted connections.” J. Constr. Steel Res. 170 (Jul): 106068. https://doi.org/10.1016/j.jcsr.2020.106068.
Ke, K., Y. H. Chen, X. H. Zhou, M. C. H. Yam, and S. L. Hu. 2023. “Experimental and numerical study of a brace-type hybrid damper with steel slit plates enhanced by friction mechanism.” Thin Walled Struct. 182: 110249. https://doi.org/10.1016/j.tws.2022.110249.
Ke, K., Y. H. Xiong, M. C. H. Yam, A. C. C. Lam, and K. F. Chung. 2018a. “Shear lag effect on ultimate tensile capacity of high strength steel angles.” J. Constr. Steel Res. 145 (Jun): 300–314. https://doi.org/10.1016/j.jcsr.2018.02.015.
Ke, K., M. C. Yam, X. Zhou, F. Wang, and F. Xu. 2021. “Energy factor of high-strength-steel frames with energy dissipation bays under repeated near-field earthquakes.” Steel Compos. Struct. 40 (3): 369–387. https://doi.org/10.12989/scs.2021.40.3.369.
Ke, K., M. C. H. Yam, A. C. C. Lam, and K. F. Chung. 2018b. “Local web buckling of single-coped beam connections with slender web.” J. Constr. Steel Res. 150 (Feb): 543–555. https://doi.org/10.1016/j.jcsr.2018.08.017.
Ke, K., M. Zhang, M. C. H. Yam, A. C. C. Lam, J. Wang, and B. Jiang. 2022c. “Block shear performance of double-line bolted S690 steel angles under uniaxial tension.” Thin-Walled Struct. 171 (Feb): 108668. https://doi.org/10.1016/j.jcsr.2020.106068.
Ke, K., Q. Zhao, M. C. Yam, P. Liu, and Y. Chen. 2022a. “Experimental and numerical study on reinforced single-coped beam with slender web connections.” Thin-Walled Struct. 171 (Feb): 108823. https://doi.org/10.1016/j.tws.2021.108823.
Ke, K., X. Zhou, H. Zhang, M. C. Yam, L. Guo, and Y. Chen. 2022b. “Performance-based-plastic-design of damage-control steel MRFs equipped with self-centring energy dissipation bays.” J. Constr. Steel Res. 192 (May): 107230. https://doi.org/10.1016/j.jcsr.2022.107230.
Lai, M. H., S. A. M. Binhowimal, L. Hanzic, Q. Wang, and J. C. M. Ho. 2020a. “Cause and mitigation of dilatancy in cement powder paste.” Constr. Build. Mater. 236 (Mar): 117595. https://doi.org/10.1016/j.conbuildmat.2019.117595.
Lai, M. H., S. A. M. Binhowimal, L. Hanzic, Q. Wang, and J. C. M. Ho. 2020b. “Dilatancy mitigation of cement powder paste by pozzolanic and inert fillers.” Struct. Concr. 21 (3): 1164–1180. https://doi.org/10.1002/suco.201900320.
Lai, M. H., M. T. Chen, F. M. Ren, and J. C. M. Ho. 2019a. “Uni-axial behaviour of externally confined UHSCFST columns.” Thin-Walled Struct. 142 (Sep): 19–36. https://doi.org/10.1016/j.tws.2019.04.047.
Lai, M. H., Z. H. Chen, Y. H. Wang, and J. C. M. Ho. 2022a. “Effect of fillers on the mechanical properties and durability of steel slag concrete.” Constr. Build. Mater. 335 (Jun): 127495. https://doi.org/10.1016/j.conbuildmat.2022.127495.
Lai, M. H., L. Hanzic, and J. C. M. Ho. 2019b. “Fillers to improve passing ability of concrete.” Struct. Concr. 20 (1): 185–197. https://doi.org/10.1002/suco.201800047.
Lai, M. H., and J. C. M. Ho. 2016. “A theoretical axial stress-strain model for circular concrete-filled-steel-tube columns.” Eng. Struct. 125 (Oct): 124–143. https://doi.org/10.1016/j.engstruct.2016.06.048.
Lai, M. H., and J. C. M. Ho. 2017. “An analysis-based model for axially loaded circular CFST columns.” Thin-Walled Struct. 119 (Oct): 770–781. https://doi.org/10.1016/j.tws.2017.07.024.
Lai, M. H., Z. C. Huang, C. T. Wang, Y. H. Wang, L. J. Chen, and J. C. M. Ho. 2022b. “Effect of fillers on the behaviour of low carbon footprint concrete at and after exposure to elevated temperatures.” J. Build. Eng. 51 (Jul): 104117. https://doi.org/10.1016/j.jobe.2022.104117.
Lai, M. H., W. C. Lao, W. K. Tang, L. Hanzic, Q. Wang, and J. C. M. Ho. 2023. “Dilatancy swerve in superplasticized cement powder paste.” Constr. Build. Mater. 362 (Jan): 129524. https://doi.org/10.1016/j.conbuildmat.2022.129524.
Lai, M. H., C. W. Li, J. C. M. Ho, and M. T. Chen. 2020c. “Experimental investigation on hollow-steel-tube columns with external confinements.” J. Constr. Steel Res. 166 (Mar): 105865. https://doi.org/10.1016/j.jcsr.2019.105865.
Lai, M. H., Y. W. Liang, Q. Wang, F. M. Ren, M. T. Chen, and J. C. M. Ho. 2020d. “A stress-path dependent stress-strain model for FRP-confined concrete.” Eng. Struct. 203 (Jan): 109824. https://doi.org/10.1016/j.engstruct.2019.109824.
Lai, M. H., W. Song, X. L. Ou, M. T. Chen, Q. Wang, and J. C. M. Ho. 2020e. “A path dependent stress-strain model for concrete-filled-steel-tube column.” Eng. Struct. 211 (May): 110312. https://doi.org/10.1016/j.engstruct.2020.110312.
Lai, M. H., K. J. Wu, X. Cheng, J. C. M. Ho, J. P. Wu, J. H. Chen, and A. J. Zhang. 2022c. “Effect of fillers on the behaviour of heavy-weight concrete made by iron sand.” Constr. Build. Mater. 332 (May): 127357. https://doi.org/10.1016/j.conbuildmat.2022.127357.
Lai, M. H., K. J. Wu, X. L. Ou, M. R. Zeng, C. W. Li, and J. C. M. Ho. 2022d. “Effect of concrete wet packing density on the uni-axial strength of manufactured sand CFST columns.” Struct. Concr. 23 (4): 2615–2629. https://doi.org/10.1002/suco.202100280.
Lai, M. H., J. Zou, B. Yao, J. C. M. Ho, X. Zhuang, and Q. Wang. 2021. “Improving mechanical behavior and microstructure of concrete by using BOF steel slag aggregate.” Constr. Build. Mater. 277 (Mar): 122269. https://doi.org/10.1016/j.conbuildmat.2021.122269.
Lam, D., X. Dai, L. Han, Q. Ren, and W. Li. 2012. “Behaviour of inclined, tapered and STS square CFST stub columns subjected to axial load.” Thin-Walled Struct. 54 (May): 94–105. https://doi.org/10.1016/j.tws.2012.02.010.
Lam, D., and C. A. Williams. 2004. “Experimental study on concrete filled square hollow sections.” Steel Compos. Struct. 4 (2): 95–112. https://doi.org/10.12989/scs.2004.4.2.095.
Li, S., and O. Zhao. 2022. “Local buckling and capacity of press-braked ferritic stainless steel channel sections under minor-axis combined loading.” Thin-Walled Struct. 178 (Sep): 109507. https://doi.org/10.1016/j.tws.2022.109507.
Lin, X.-M., M. C. Yam, K. Ke, Q. He, and K.-F. Chung. 2022. “Investigation of block shear strength of high strength steel bolted connections.” J. Constr. Steel Res. 196 (Sep): 107407. https://doi.org/10.1016/j.jcsr.2022.107407.
Ma, J. L., T. M. Chan, and B. Young. 2016. “Experimental investigation on stub-column behavior of cold-formed high-strength steel tubular sections.” J. Struct. Eng. 142 (5): 04015174. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001456.
Ren, F. M., S. Y. Tian, L. Gong, J. L. Wu, J. X. Mo, C. L. Lai, and M. H. Lai. 2023. “Seismic performance of a ring beam joint connecting FTCES column and RC/ESRC beam with NSC.” J. Build. Eng. 63 (Jan): 105366. https://doi.org/10.1016/j.jobe.2022.105366.
Ren, Q. X., L. H. Han, D. Lam, and C. Hou. 2014. “Experiments on special-shaped CFST stub columns under axial compression.” J. Constr. Steel Res. 98 (Jul): 123–133. https://doi.org/10.1016/j.jcsr.2014.03.002.
Schneider, S. P. 1998. “Axially loaded concrete-filled steel tubes.” J. Struct. Eng. 124 (10): 1125–1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125).
Sheehan, T., X. Dai, T. Chan, and D. Lam. 2012. “Structural response of concrete-filled elliptical steel hollow sections under eccentric compression.” Eng. Struct. 45 (Dec): 314–323. https://doi.org/10.1016/j.engstruct.2012.06.040.
Shen, Q., J. Wang, J. R. Liew, B. Gao, and Q. Xiao. 2020. “Experimental study and strength evaluation of axially loaded welded tubular joints with round-ended oval hollow sections.” Thin-Walled Struct. 154 (Sep): 106846. https://doi.org/10.1016/j.tws.2020.106846.
Tao, Z., Z.-B. Wang, and Q. Yu. 2013. “Finite element modelling of concrete-filled steel stub columns under axial compression.” J. Constr. Steel Res. 89 (Oct): 121–131. https://doi.org/10.1016/j.jcsr.2013.07.001.
Theofanous, M., T. M. Chan, and L. Gardner. 2009. “Structural response of stainless steel oval hollow section compression members.” Eng. Struct. 31 (4): 922–934. https://doi.org/10.1016/j.engstruct.2008.12.002.
Wang, F., B. Young, and L. Gardner. 2019a. “Compressive testing and numerical modelling of concrete-filled double skin CHS with austenitic stainless steel outer tubes.” Thin-Walled Struct. 141 (Aug): 345–359. https://doi.org/10.1016/j.tws.2019.04.003.
Wang, F., B. Young, and L. Gardner. 2019b. “Experimental study of square and rectangular CFDST sections with stainless steel outer tubes under axial compression.” J. Struct. Eng. 145 (11): 04019139. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002408.
Wang, J., K. Ke, and W. Wang. 2022. “Structural robustness evaluation of steel frame buildings with different composite slabs using reduced-order modeling strategies.” J. Constr. Steel Res. 196 (Sep): 107371. https://doi.org/10.1016/j.jcsr.2022.107371.
Yam, M. C. H., K. Ke, B. Jiang, and A. C. C. Lam. 2020. “Net section resistance of bolted S690 steel angles subjected to tension.” Thin-Walled Struct. 151 (Jun): 106722. https://doi.org/10.1016/j.tws.2020.106722.
Yam, M. C. H., K. Ke, A. C. C. Lam, and Q. Zhao. 2019. “Performance of single-coped beam with slender web and quantification of local web buckling strength.” Thin-Walled Struct. 144 (Nov): 106355. https://doi.org/10.1016/j.tws.2019.106355.
Yan, J. J., M. T. Chen, W. M. Quach, M. Yan, and B. Young. 2019. “Mechanical properties and cross-sectional behavior of additive manufactured high strength steel tubular sections.” Thin-Walled Struct. 144 (Nov): 106158. https://doi.org/10.1016/j.tws.2019.04.050.
Yi, S., M. T. Chen, and B. Young. 2023. “Design of concrete-filled cold-formed steel elliptical stub columns.” Eng. Struct 276 (Feb): 115269. https://doi.org/10.1016/j.engstruct.2022.115269.
Zhang, H., X. Zhou, K. Ke, M. C. H. Yam, X. He, and H. Li. 2023. “Self-centring hybrid-steel-frames employing energy dissipation sequences: Insights and inelastic seismic demand model.” J. Build. Eng. 63 (Jan): 105451. https://doi.org/10.1016/j.jobe.2022.105451.
Zhang, L., K. H. Tan, and O. Zhao. 2019. “Experimental and numerical studies of fixed-ended cold-formed stainless steel equal-leg angle section columns.” Eng. Struct. 184 (Apr): 134–144. https://doi.org/10.1016/j.engstruct.2019.01.083.
Zhong, Y., A. He, and O. Zhao. 2022. “Concrete-filled high-chromium stainless steel tube stub columns under combined compression and bending: Experimental and numerical investigations.” Thin-Walled Struct. 180 (Nov): 109762. https://doi.org/10.1016/j.tws.2022.109762.
Zhong, Y., Y. Sun, K. H. Tan, and O. Zhao. 2021. “Testing, modelling and design of high strength concrete-filled high strength steel tube (HCFHST) stub columns under combined compression and bending.” Eng. Struct. 15 (Aug): 112334. https://doi.org/10.1016/j.engstruct.2021.112334.
Zhong, Y., and O. Zhao. 2022. “Concrete-filled high strength steel tube stub columns after exposure to fire: Testing, numerical modelling and design.” Thin-Walled Struct. 177 (Aug): 109428. https://doi.org/10.1016/j.tws.2022.109428.
Zhou, X., Y. Chen, K. Ke, M. C. Yam, and H. Li. 2022a. “Hybrid steel staggered truss frame (SSTF): A probabilistic spectral energy modification coefficient surface model for damage-control evaluation and performance insights.” J. Build. Eng. 45 (Jan): 103556. https://doi.org/10.1016/j.jobe.2021.103556.
Zhou, X., H. Zhang, K. Ke, L. Guo, and M. C. Yam. 2021. “Damage-control steel frames equipped with SMA connections and ductile links subjected to near-field earthquake motions: A spectral energy factor model.” Eng. Struct. 239 (Jul): 112301. https://doi.org/10.1016/j.engstruct.2021.112301.
Zhou, X. H., Y. C. Tan, K. Ke, M. C. H. Yam, H. Y. Zhang, and J. Y. Xu. 2023. “An experimental and numerical study of brace-type long double C-section steel slit dampers.” J. Build. Eng. 64 (Apr): 105555. https://doi.org/10.1016/j.jobe.2022.105555.
Zhou, Z., K. Ke, Y. Chen, and M. C. H. Yam. 2022b. “High strength steel frames with curved knee braces: Performance-based damage-control design framework.” J. Construct. Steel Res. 196 (Sep): 107392. https://doi.org/10.1016/j.jcsr.2022.107392.
Zhu, J.-Y., and T.-M. Chan. 2017. “Behaviour of polygonal-shaped steel-tube columns filled with high-strength concrete.” Proc. Inst. Civ. Eng. Struct. Build. 171 (2): 96–112. https://doi.org/10.1680/jstbu.16.00182.
Zhuang, X., Y. Liang, J. C. M. Ho, Y. H. Wang, M. H. Lai, X. Y. Li, Z. H. Xu, and Y. N. Xu. 2022. “Post-fire behaviour of steel slag fine aggregate concrete.” Structura. Concr. https://doi.org/10.1002/suco.202100677.

Information & Authors

Information

Published In

Go to Journal of Structural Engineering
Journal of Structural Engineering
Volume 149Issue 3March 2023

History

Received: May 18, 2022
Accepted: Nov 2, 2022
Published online: Jan 2, 2023
Published in print: Mar 1, 2023
Discussion open until: Jun 2, 2023

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Postdoctoral Fellow, College of Civil Engineering, Tongji Univ., Shanghai 200092, China; Researcher, Vanke Co., Ltd., Shenzhen 518000, China; formerly, Ph.D. Student, Dept. of Civil Engineering, Univ. of Hong Kong, Pokfulam Rd., Hong Kong, China. ORCID: https://orcid.org/0000-0003-3644-7034. Email: [email protected]
Associate Professor, State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong Univ., Shanghai 200240, China; Associate Professor, Shanghai Key Laboratory for Digital Maintenance of Buildings and Infrastructure, Dept. of Civil Engineering, Shanghai Jiao Tong Univ., Shanghai 200240, China (corresponding author). ORCID: https://orcid.org/0000-0001-8106-6949. Email: [email protected]
Ben Young, F.ASCE [email protected]
Professor, Dept. of Civil and Environmental Engineering, Hong Kong Polytechnic Univ., Hong Kong, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Hybrid Self-Centering Connection Employing Energy Dissipation Sequences: Experimental Study and a Structural Seismic Demand Perspective, Journal of Structural Engineering, 10.1061/JSENDH.STENG-12306, 149, 11, (2023).
  • Tests of Cold-Formed Steel T-Joints with Semi-Oval Hollow Section Chord, Journal of Structural Engineering, 10.1061/JSENDH.STENG-12277, 149, 8, (2023).
  • Experimental investigation of a high strength steel frame with curved knee braces subjected to extreme earthquakes, Thin-Walled Structures, 10.1016/j.tws.2023.110596, 185, (110596), (2023).
  • Large-size shape memory alloy plates subjected to cyclic tension: Towards novel self-centring connections in steel frames, Thin-Walled Structures, 10.1016/j.tws.2023.110591, 185, (110591), (2023).
  • Uni-axial behaviour of steel slag concrete-filled-steel-tube columns with external confinement, Thin-Walled Structures, 10.1016/j.tws.2023.110562, 185, (110562), (2023).
  • Mechanical properties of high strength steels and weld metals at arctic low temperatures, Thin-Walled Structures, 10.1016/j.tws.2023.110543, 185, (110543), (2023).
  • Improving structural robustness of steel frame buildings by enhancing floor deck connections, Journal of Constructional Steel Research, 10.1016/j.jcsr.2023.107842, 204, (107842), (2023).
  • Self-centring damper with multi-energy-dissipation mechanisms: Insights and structural seismic demand perspective, Journal of Constructional Steel Research, 10.1016/j.jcsr.2023.107837, 204, (107837), (2023).
  • Experimental investigation on cold-formed steel elliptical hollow section T-joints, Engineering Structures, 10.1016/j.engstruct.2023.115593, 283, (115593), (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share