Technical Papers
Mar 4, 2019

Experimental and Numerical Investigation of Fracture Behavior of Particle-Reinforced Alkali-Activated Slag Mortars

Publication: Journal of Materials in Civil Engineering
Volume 31, Issue 5

Abstract

This paper presents fracture responses of alkali-activated slag (AAS) mortars with up to 30% (by volume) of slag being replaced by waste iron powder that contains a significant fraction of elongated iron particles. The elongated particles act as microreinforcement and improve the crack resistance of AAS mortars by enlarging the fracture process zone (FPZ). An enlarged FPZ signifies increased energy dissipation, which is reflected in a significant increase in crack growth resistance as determined from R-curves. Fracture responses of notched AAS mortar beams under three-point bending are simulated using the extended finite-element method (XFEM) to develop a tool for direct determination of fracture characteristics such as crack extension and fracture toughness in particulate-reinforced AAS mortars. Fracture response simulated using the XFEM framework correlates well with experimental observations. The comprehensive fracture studies reported here provide an economical and sustainable means of improving the ductility of AAS systems, which are generally more brittle than their conventional portland cement counterparts.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors sincerely acknowledge support for this study from the National Science Foundation (CMMI: 1353170) and the College of Engineering and Department of Civil and Environmental Engineering at the University of Rhode Island. The contents of this paper reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein, and do not necessarily reflect the views and policies of the National Science Foundation; nor do the contents constitute a standard, specification, or a regulation. We gratefully acknowledge the use of facilities in the Laboratory for the Science of Sustainable Infrastructural Materials (LS-SIM) and the LeRoy Eyring Center for Solid State Sciences (LE-CSSS) at Arizona State University. Raw materials provided by Holcim US, Schuff Steel, and Iron Shell LLC are acknowledged.

References

ASTM. 2003. Standard specification for ground granulated blast-furnace slag for use in concrete and mortars. ASTM C989. West Conshohocken, PA: ASTM.
ASTM. 2017. Standard specification for portland cement active standard. ASTM C150/C150M. West Conshohocken, PA: ASTM.
Bažant, Z. P. 2002. “Concrete fracture models: Testing and practice.” Eng. Fract. Mech. 69 (2): 165–205. https://doi.org/10.1016/S0013-7944(01)00084-4.
Belytschko, T., and T. Black. 1999. “Elastic crack growth in finite elements with minimal remeshing.” Int. J. Num. Methods Eng. 45 (5): 601–620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5%3C601::AID-NME598%3E3.0.CO;2-S.
Benson, D. J., Y. Bazilevs, E. D. Luycker, M.-C. Hsu, M. Scott, T. J. R. Hughes, and T. Belytschko. 2010. “A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM.” Int. J. Num. Methods Eng. 83 (6): 765–785. https://doi.org/10.1002/nme.2864.
Bernal, S. A., R. Mejía de Gutiérrez, A. L. Pedraza, J. L. Provis, E. D. Rodriguez, and S. Delvasto. 2011. “Effect of binder content on the performance of alkali-activated slag concretes.” Cem. Concr. Res. 41 (1): 1–8. https://doi.org/10.1016/j.cemconres.2010.08.017.
Bhargava, J., and Å. Rehnström. 1975. “High-speed photography for fracture studies of concrete.” Cem. Concr. Res. 5 (3): 239–247. https://doi.org/10.1016/0008-8846(75)90006-X.
Chen, J., X. Zhang, N. Zhan, and X. Hu. 2010. “Deformation measurement across crack using two-step extended digital image correlation method.” Opt. Lasers Eng. Micro Nano Metrol. Exp. Mech. 48 (11): 1126–1131. https://doi.org/10.1016/j.optlaseng.2009.12.017.
Chithiraputhiran, S., and N. Neithalath. 2013. “Isothermal reaction kinetics and temperature dependence of alkali activation of slag, fly ash and their blends.” Constr. Build. Mater. 45 (Aug): 233–242. https://doi.org/10.1016/j.conbuildmat.2013.03.061.
Collins, F. G., and J. G. Sanjayan. 1999. “Workability and mechanical properties of alkali activated slag concrete.” Cem. Concr. Res. 29 (3): 455–458. https://doi.org/10.1016/S0008-8846(98)00236-1.
Collins, F., and J. G. Sanjayan. 2000. “Effect of pore size distribution on drying shrinking of alkali-activated slag concrete.” Cem. Concr. Res. 30 (9): 1401–1406. https://doi.org/10.1016/S0008-8846(00)00327-6.
Dakhane, A., S. Das, S. Kailas, and N. Neithalath. 2016. “Elucidating the crack resistance of alkali-activated slag mortars using coupled fracture tests and image correlation.” J. Am. Ceram. Soc. 99 (1): 273–280. https://doi.org/10.1111/jace.13960.
Das, S., M. Aguayo, V. Dey, R. Kachala, B. Mobasher, G. Sant, and N. Neithalath. 2014a. “The fracture response of blended formulations containing limestone powder: Evaluations using two-parameter fracture model and digital image correlation.” Cem. Concr. Compos. 53 (Oct): 316–326. https://doi.org/10.1016/j.cemconcomp.2014.07.018.
Das, S., M. Aguayo, G. Sant, B. Mobasher, and N. Neithalath. 2015a. “Fracture process zone and tensile behavior of blended binders containing limestone powder.” Cem. Concr. Res. 73 (Jul): 51–62. https://doi.org/10.1016/j.cemconres.2015.03.002.
Das, S., A. Hendrix, D. Stone, and N. Neithalath. 2015b. “Flexural fracture response of a novel iron carbonate matrix—Glass fiber composite and its comparison to portland cement-based composites.” Constr. Build. Mater. 93 (Sep): 360–370. https://doi.org/10.1016/j.conbuildmat.2015.06.011.
Das, S., A. Kizilkanat, and N. Neithalath. 2015c. “Crack propagation and strain localization in metallic particulate-reinforced cementitious mortars.” Mater. Des. 79 (Aug): 15–25. https://doi.org/10.1016/j.matdes.2015.04.038.
Das, S., and N. Neithalath. 2016. “Microstructure-guided constitutive modeling and fracture prediction of cementitious systems.” In Proc., IGCMAT, LA, 9. Los Angeles: Univ. of California Los Angeles.
Das, S., B. Souliman, D. Stone, and N. Neithalath. 2014b. “Synthesis and properties of a novel structural binder utilizing the chemistry of iron carbonation.” ACS Appl. Mater. Interfaces 6 (11): 8295–8304. https://doi.org/10.1021/am5011145.
Das, S., D. Stone, B. Mobasher, and N. Neithalath. 2016. “Strain energy and process zone based fracture characterization of a novel iron carbonate binding material.” Eng. Fract. Mech. 156 (May): 1–15. https://doi.org/10.1016/j.engfracmech.2016.01.024.
Diamond, S. 2000. “Mercury porosimetry: An inappropriate method for the measurement of pore size distributions in cement-based materials.” Cem. Concr. Res. 30 (10): 1517–1525. https://doi.org/10.1016/S0008-8846(00)00370-7.
Ding, Y., J.-G. Dai, and C.-J. Shi. 2018. “Mechanical properties of alkali-activated concrete subjected to impact load.” J. Mater. Civ. Eng. 30 (5): 04018068. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002256.
Duran Atiş, C., C. Bilim, Ö. Çelik, and O. Karahan. 2009. “Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar.” Constr. Build. Mater. 23 (1): 548–555. https://doi.org/10.1016/j.conbuildmat.2007.10.011.
El-Wafa, M. A., and K. Fukuzawa. 2018. “Early-age strength of alkali-activated municipal slag-fly ash-based geopolymer mortar.” J. Mater. Civ. Eng. 30 (4): 04018040. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002234.
Fernández-Jiménez, A., J. G. Palomo, and F. Puertas. 1999. “Alkali-activated slag mortars: Mechanical strength behaviour.” Cem. Concr. Res. 29 (8): 1313–1321. https://doi.org/10.1016/S0008-8846(99)00154-4.
Fleming, M., Y. A. Chu, B. Moran, and T. Belytschko. 1998. “Enriched element-free Galerkin methods for crack tip fields.” Int. J. Num. Methods Eng. 40 (8): 1483–1504. https://doi.org/10.1002/(SICI)1097-0207(19970430)40:8%3C1483::AID-NME123%3E3.0.CO;2-6.
Gdoutos, E. E. 2006. Fracture mechanics: An introduction. New York: Springer.
Ghafari, E., H. Costa, E. Júlio, A. Portugal, and L. Durães. 2014. “The effect of nanosilica addition on flowability, strength and transport properties of ultra high performance concrete.” Mater. Des. 59 (Jul): 1–9. https://doi.org/10.1016/j.matdes.2014.02.051.
Ghorbani, R., F. Matta, and M. A. Sutton. 2014. “Full-field displacement measurement and crack mapping on masonry walls using digital image correlation.” In Vol. 3 of Proc., Society for Experimental Mechanics Series Advancement of Optical Methods in Experimental Mechanics Conf. New York: Springer.
Hadjab, S. H., M. Chabaat, and J.-F. Thimus. 2007. “Use of scanning electron microscope and the non-local isotropic damage model to investigate fracture process zone in notched concrete beams.” Exp. Mech. 47 (4): 473–484. https://doi.org/10.1007/s11340-006-9001-0.
Hjelmstad, K. D. 2007. Fundamentals of structural mechanics. New York: Springer.
Jankowiak, T., and T. Lodygowski. 2005. “Identification of parameters of concrete damage plasticity constitutive model.” Found. Civ. Environ. Eng. 6 (1): 53–69.
Krottenthaler, M., C. Schmid, J. Schaufler, K. Durst, and M. Göken. 2013. “A simple method for residual stress measurements in thin films by means of focused ion beam milling and digital image correlation.” Surf. Coat. Technol. 215 (Jan): 247–252. https://doi.org/10.1016/j.surfcoat.2012.08.095.
Machado, J. G. M. S., F. A. Brehm, C. A. M. Moraes, C. A. Santos, A. C. F. dos Vilela, and J. B. M. D. Cunha. 2006. “Chemical, physical, structural and morphological characterization of the electric arc furnace dust.” J. Hazard. Mater. 136 (3): 953–960. https://doi.org/10.1016/j.jhazmat.2006.01.044.
Mobasher, B. 2011. Mechanics of fiber and textile reinforced cement composites. Boca Raton, FL: CRC Press.
Mobasher, B., M. Bakhshi, and C. Barsby. 2014a. “Backcalculation of residual tensile strength of regular and high performance fiber reinforced concrete from flexural tests.” Constr. Build. Mater. 70 (Nov): 243–253. https://doi.org/10.1016/j.conbuildmat.2014.07.037.
Mobasher, B., V. Dey, Z. Cohen, and A. Peled. 2014b. “Correlation of constitutive response of hybrid textile reinforced concrete from tensile and flexural tests.” Cem. Concr. Compos. 53 (Oct): 148–161. https://doi.org/10.1016/j.cemconcomp.2014.06.004.
Moës, N., J. Dolbow, and T. Belytschko. 1999. “A finite element method for crack growth without remeshing.” Int. J. Num. Methods Eng. 46 (1): 131–150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1%3C131::AID-NME726%3E3.0.CO;2-J.
Mohamed, E., and B. Hillemeier. 2014. “Combined effect of fine fly ash and packing density on the properties of high performance concrete: An experimental approach.” Constr. Build. Mater. 58 (May): 225–233. https://doi.org/10.1016/j.conbuildmat.2014.02.024.
Moon, H. Y., H. S. Kim, and D. S. Choi. 2006. “Relationship between average pore diameter and chloride diffusivity in various concretes.” Constr. Build. Mater. 20 (9): 725–732. https://doi.org/10.1016/j.conbuildmat.2005.02.005.
Motamedi, D., and A. S. Milani. 2013. “3D nonlinear XFEM simulation of delamination in unidirectional composite laminates: A sensitivity analysis of modeling parameters.” Open J. Compos. Mater. 3 (4): 113–126. https://doi.org/10.4236/ojcm.2013.34012.
Najimi, M., N. Ghafoori, B. Radke, K. Sierra, and M. Sharbaf. 2018. “Comparative study of alkali-activated natural pozzolan and fly ash mortars.” J. Mater. Civ. Eng. 30 (6): 04018115. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002306.
Nemati, K. M. 2006. “Fracture analysis of concrete using scanning electron microscopy.” J. Scanning Microscopies 19 (6): 426–430. https://doi.org/10.1002/sca.4950190605.
Nunes, L. C. S., and J. M. L. Reis. 2012. “Estimation of crack-tip-opening displacement and crack extension of glass fiber reinforced polymer mortars using digital image correlation method.” Mater. Des. 33 (Jan): 248–253. https://doi.org/10.1016/j.matdes.2011.07.051.
Pacheco-Torgal, F., J. Castro-Gomes, and S. Jalali. 2008. “Alkali-activated binders: A review. Part 1: Historical background, terminology, reaction mechanisms and hydration products.” Constr. Build. Mater. 22 (7): 1305–1314. https://doi.org/10.1016/j.conbuildmat.2007.10.015.
Pan, Z., Z. Tao, Y. F. Cao, R. Wuhrer, and T. Murphy. 2018. “Compressive strength and microstructure of alkali-activated fly ash/slag binders at high temperature.” Cem. Concr. Compos. 86 (Feb): 9–18. https://doi.org/10.1016/j.cemconcomp.2017.09.011.
Radlińska, A., R. Yost Joseph, and J. Salera Michael. 2013. “Material properties of structurally viable alkali-activated fly ash concrete.” J. Mater. Civ. Eng. 25 (10): 1456–1464. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000680.
Ravikumar, D., and N. Neithalath. 2012. “Effects of activator characteristics on the reaction product formation in slag binders activated using alkali silicate powder and NaOH.” Cem. Concr. Compos. 34 (7): 809–818. https://doi.org/10.1016/j.cemconcomp.2012.03.006.
Roesler, J., G. H. Paulino, K. Park, and C. Gaedicke. 2007. “Concrete fracture prediction using bilinear softening.” Cem. Concr. Compos 29 (4): 300–312. https://doi.org/10.1016/j.cemconcomp.2006.12.002.
Rossol, M. N., J. H. Shaw, H. Bale, R. O. Ritchie, D. B. Marshall, and F. W. Zok. 2013. “Characterizing weave geometry in textile ceramic composites using digital image correlation.” J. Am. Ceram. Soc. 96 (8): 2362–2365. https://doi.org/10.1111/jace.12468.
Sánchez-Fajardo, V. M., M. E. Torres, and A. J. Moreno. 2014. “Study of the pore structure of the lightweight concrete block with lapilli as an aggregate to predict the liquid permeability by dielectric spectroscopy.” Constr. Build. Mater. 53 (Feb): 225–234. https://doi.org/10.1016/j.conbuildmat.2013.11.093.
Shi, C., D. Roy, and P. Krivenko. 2003. Alkali-activated cements and concretes. Boca Raton, FL: CRC Press.
Skarżyński, Ł., J. Kozicki, and J. Tejchman. 2013. “Application of DIC technique to concrete—Study on objectivity of measured surface displacements.” Exp. Mech. 53 (9): 1545–1559. https://doi.org/10.1007/s11340-013-9781-y.
Sofilić, T., A. Rastovčan-Mioč, Š. Cerjan-Stefanović, V. Novosel-Radović, and M. Jenko. 2004. “Characterization of steel mill electric-arc furnace dust.” J. Hazard. Mater. 109 (1): 59–70. https://doi.org/10.1016/j.jhazmat.2004.02.032.
Soranakom, C., and B. Mobasher. 2007. “Closed-form solutions for flexural response of fiber-reinforced concrete beams.” J. Eng. Mech. 133 (8): 933–941. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:8(933).
Soranakom, C., and B. Mobasher. 2008. “Correlation of tensile and flexural responses of strain softening and strain hardening cement composites.” Cem. Concr. Compos. 30 (6): 465–477. https://doi.org/10.1016/j.cemconcomp.2008.01.007.
Sutton, M. A., J. J. Orteu, and H. Schreier. 2009. Image correlation for shape, motion and deformation measurements: Basic concepts, theory and applications. New York: Springer.
Talling, B., and J. Brandstetr. 1989. “Present state and future of alkali-activated slag concretes.” Spec. Publ. 114: 1519–1546.
Thomas, R. J., and S. Peethamparan. 2015. “Alkali-activated concrete: Engineering properties and stress-strain behavior.” Constr. Build. Mater. 93 (Sep): 49–56. https://doi.org/10.1016/j.conbuildmat.2015.04.039.
Voyiadjis, G. Z., Z. N. Taqieddin, and P. I. Kattan. 2008. “Anisotropic damage-plasticity model for concrete.” Int. J. Plast. 24 (10): 1946–1965. https://doi.org/10.1016/j.ijplas.2008.04.002.
Wang, S.-D., X.-C. Pu, K. L. Scrivener, and P. L. Pratt. 1995. “Alkali-activated slag cement and concrete: A review of properties and problems.” Adv. Cem. Res. 7 (27): 93–102. https://doi.org/10.1680/adcr.1995.7.27.93.
Wang, S.-D., and K. L. Scrivener. 1995. “Hydration products of alkali activated slag cement.” Cem. Concr. Res. 25 (3): 561–571. https://doi.org/10.1016/0008-8846(95)00045-E.
Wang, S.-D., K. L. Scrivener, and P. L. Pratt. 1994. “Factors affecting the strength of alkali-activated slag.” Cem. Concr. Res. 24 (6): 1033–1043. https://doi.org/10.1016/0008-8846(94)90026-4.
Wecharatana, M., and S. P. Shah. 1983. “A model for predicting fracture resistance of fiber reinforced concrete.” Cem. Concr. Res. 13 (6): 819–829. https://doi.org/10.1016/0008-8846(83)90083-2.
Yates, J. R., M. Zanganeh, and Y. H. Tai. 2010. “Quantifying crack tip displacement fields with DIC.” Eng. Fract. Mech. 77 (11): 2063–2076. https://doi.org/10.1016/j.engfracmech.2010.03.025.
Yuan, Y., J. Huang, X. Peng, C. Xiong, J. Fang, and F. Yuan. 2014. “Accurate displacement measurement via a self-adaptive digital image correlation method based on a weighted ZNSSD criterion.” Opt. Lasers Eng. 52 (Jan): 75–85. https://doi.org/10.1016/j.optlaseng.2013.07.016.
Zi, G., and T. Belytschko. 2003. “New crack-tip elements for XFEM and applications to cohesive cracks.” Int. J. Num. Methods Eng. 57 (15): 2221–2240. https://doi.org/10.1002/nme.849.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 31Issue 5May 2019

History

Received: Jul 15, 2018
Accepted: Oct 17, 2018
Published online: Mar 4, 2019
Published in print: May 1, 2019
Discussion open until: Aug 4, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Sumeru Nayak, S.M.ASCE
Graduate Student, Dept. of Civil and Environmental Engineering, Univ. of Rhode Island, Kingston, RI 02881.
Ahmet Kizilkanat
Assistant Professor, Dept. of Civil Engineering, Yildiz Technical Univ., Istanbul 34220, Turkey.
Narayanan Neithalath, M.ASCE
Professor, School of Sustainable Engineering and the Built Environment, Arizona State Univ., Tempe, AZ 85281.
Assistant Professor, Dept. of Civil and Environmental Engineering, Univ. of Rhode Island, Kingston, RI 02881 (corresponding author). ORCID: https://orcid.org/0000-0001-5339-7708. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share