Technical Papers
Apr 29, 2022

Environmental Dependence of Microbially Induced Calcium Carbonate Crystal Precipitations: Experimental Evidence and Insights

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 148, Issue 7

Abstract

Microbial-induced calcium carbonate precipitation (MICP) is a nature-based and eco-friendly technique that has presented promising applications in various disciplines. Despite the extensive amounts of prior studies about this technique, the impact of environmental conditions on the mineral compositions and cementitious characteristics of calcium carbonate precipitations remains unclear. In this study, we focus on four primary factors including temperature (15°C, 25°C, and 35°C), pH of initial solution (7, 8, 9, and 10), bacteria solution (BS) concentration (OD600=0.24, 0.47, 0.68, and 0.81), and cementation solution (CS) concentration (0.1, 0.25, 0.5, 0.75, 1.0, and 1.25 M). Under these varying conditions, 36 groups of MICP experiments are performed. Material characterization techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), and an ultrasonic oscillation test are applied to investigate the morphological features, mineral compositions, and cementitious characteristics of calcium carbonate precipitations, respectively. Experimental results highlight the strong dependence of calcium carbonate precipitations on these factors. The higher temperature contributes to the larger size of calcium carbonate crystal. As the pH of initial solution increases, there is a tendency for mineral composition to change from vaterite into calcite. The decreased BS concentration increases calcite contents and enhances the cementitious characteristics of the precipitation. The CS concentration level influences the size of the calcium carbonate crystal. Through a systematical analysis of how various factors jointly influence the crystal precipitations, this study is expected to improve the current understanding of the MICP process, and contribute to the future optimized design of biomediated soil improvement.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data used during the study appear in the published article.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41572246, 41772280, 41925012, and 41902271), Natural Science Foundation of Jiangsu Province (Grant Nos. BK20171228 and BK20170394), and the Fundamental Research Funds for the Central Universities. The support of Rowan University through the Camden Health Research Initiative is also highly appreciated.

References

Al Qabany, A., and K. Soga. 2013. “Effect of chemical treatment used in MICP on engineering properties of cemented soils.” Géotechnique 63 (4): 331–339. https://doi.org/10.1680/geot.SIP13.P.022.
Al Qabany, A., K. Soga, and C. Santamarina. 2012. “Factors affecting efficiency of microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 138 (8): 992–1001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000666.
Andreassen, J. P., R. Beck, and M. Nergaard. 2012. “Biomimetic type morphologies of calcium carbonate grown in absence of additives.” Faraday Discuss. 159 (1): 247–261. https://doi.org/10.1039/c2fd20056b.
Cheng, L., M. A. Shahin, and D. Mujah. 2017. “Influence of key environmental conditions on microbially induced cementation for soil stabilization.” J. Geotech. Geoenviron. Eng. 143 (1): 04016083. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001586.
Chu, J., V. Ivanov, M. Naeimi, V. Stabnikov, and H. L. Liu. 2014. “Optimization of calcium-based bioclogging and biocementation of sand.” Acta Geotech. 9 (2): 277–285. https://doi.org/10.1007/s11440-013-0278-8.
Chung, F. H. 1974. “Quantitative interpretation of x-ray diffraction patterns of mixtures. II. Adiabatic principle of x-ray diffraction analysis of mixtures.” J. Appl. Crystallogr. 7 (6): 526–531. https://doi.org/10.1107/S0021889874010387.
Cöelfen, H., and M. Antonietti. 2008. Mesocrystals and nonclassical crystallization. Chichester, UK: Wiley.
Cuthbert, M. O., L. A. McMillan, S. Handley-Sidhu, M. S. Riley, D. J. Tobler, and V. R. Phoenix. 2013. “A field and modeling study of fractured rock permeability reduction using microbially induced calcite precipitation.” Environ. Sci. Technol. 47 (23): 13637–13643. https://doi.org/10.1021/es402601g.
DeJong, J. T., et al. 2013. “Biogeochemical processes and geotechnical applications: Progress, opportunities and challenges.” Géotechnique 63 (4): 287–301. https://doi.org/10.1680/geot.SIP13.P.017.
DeJong, J. T., M. B. Fritzges, and K. Nüsslein. 2006. “Microbially induced cementation to control sand response to undrained shear.” J. Geotech. Geoenviron. Eng. 132 (11): 1381–1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381).
DeJong, J. T., B. M. Mortensen, B. C. Martinez, and D. C. Nelson. 2010. “Bio-mediated soil improvement.” Ecol. Eng. 36 (2): 197–210. https://doi.org/10.1016/j.ecoleng.2008.12.029.
De Leeuw, N. H., and S. C. Parker. 1998. “Surface structure and morphology of calcium carbonate polymorphs calcite, aragonite, and vaterite: An atomistic approach.” J. Phys. Chem. B 102 (16): 2914–2922. https://doi.org/10.1021/jp973210f.
Dhami, N. K., M. S. Reddy, and A. Mukherjee. 2013. “Biomineralization of calcium carbonates and their engineered applications: A review.” Front. Microbiol. 4 (Oct): 314. https://doi.org/10.3389/fmicb.2013.00314.
Downs, R. T., and M. Hall-Wallace. 2003. “The American mineralogist crystal structure database.” Am. Mineral. 88 (1): 247–250.
Gorospe, C. M., S. H. Han, S. G. Kim, J. Y. Park, C. H. Kang, J. H. Jeong, and J. S. So. 2013. “Effects of different calcium salts on calcium carbonate crystal formation by Sporosarcina pasteurii KCTC 3558.” Biotechnol. Bioprocess Eng. 18 (5): 903–908. https://doi.org/10.1007/s12257-013-0030-0.
Gowthaman, S., K. Nakashima, and S. Kawasaki. 2022. “Effect of wetting and drying cycles on the durability of bio-cemented soil of expressway slope.” Int. J. Environ. Sci. Technol. 19 (Apr): 2309–2322. https://doi.org/10.1007/s13762-021-03306-1.
Han, L. J., J. S. Li, Q. Xue, Z. Chen, Y. Y. Zhou, and C. S. Poon. 2020. “Bacterial-induced mineralization (BIM) for soil solidification and heavy metal stabilization: A critical review.” Sci. Total Environ. 746 (Dec): 140967. https://doi.org/10.1016/j.scitotenv.2020.140967.
Han, Y. S., G. Hadiko, M. Fuji, and M. Takahashi. 2006. “Crystallization and transformation of vaterite at controlled pH.” J. Cryst. Growth 289 (1): 269–274. https://doi.org/10.1016/j.jcrysgro.2005.11.011.
Holzwarth, U., and N. Gibson. 2011. “The scherrer equation versus the ‘debye-scherrer equation’.” Nat. Nanotechnol. 6 (9): 534. https://doi.org/10.1038/nnano.2011.145.
Jiang, N. J., and K. Soga. 2016. “The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel-sand mixtures.” Géotechnique 6 (1): 42–55.
Jiang, N. J., C. S. Tang, T. Hata, B. Courcelles, O. Dawoud, and D. N. Singh. 2020. “Bio-mediated soil improvement: The way forward.” Soil Use Manage. 36 (2): 185–188. https://doi.org/10.1111/sum.12571.
Kawano, J., N. Shimobayashi, M. Kitamura, K. Shinoda, and N. Aikawa. 2002. “Formation process of calcium carbonate from highly supersaturated solution.” J. Cryst. Growth 237 (Apr): 419–423. https://doi.org/10.1016/S0022-0248(01)01866-8.
Kralj, D., L. Brecevic, and J. Kontrec. 1997. “Vaterite growth and dissolution in aqueous solution III. Kinetics of transformation.” J. Cryst. Growth 177 (3–4): 248–257. https://doi.org/10.1016/S0022-0248(96)01128-1.
Li, M., X. H. Cheng, and H. X. Guo. 2013. “Heavy metal removal by biomineralization of urease producing bacteria isolated from soil.” Int. Biodeterior. Biodegrad. 76 (Jan): 81–85. https://doi.org/10.1016/j.ibiod.2012.06.016.
Liu, B., C. Zhu, C. S. Tang, Y. H. Xie, L. Y. Yin, Q. Cheng, and B. Shi. 2020. “Bio-remediation of desiccation cracking in clayey soils through microbially induced calcite precipitation (MICP).” Eng. Geol. 264 (Jan): 105389. https://doi.org/10.1016/j.enggeo.2019.105389.
Lv, C., C. Zhu, C. S. Tang, Q. Cheng, L. Y. Yin, and B. Shi. 2020. “Effect of fiber reinforcement on the mechanical behavior of bio-cemented sand.” Geosynth. Int. 28 (2): 195–205. https://doi.org/10.1680/jgein.20.00037.
Martinez, B. C., J. T. DeJong, T. R. Ginn, B. M. Montoya, T. H. Barkouki, C. Hunt, B. Tanyu, and D. Major. 2013. “Experimental optimization of microbial-induced carbonate precipitation for soil improvement.” J. Geotech. Geoenviron. Eng. 139 (4): 587–598. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000787.
Michaelis, L., and M. L. Menten. 1913. “Die kinetik der invertinwirkung.” Biochem. Z. 49 (Feb): 333–369.
Montoya, B. M., and J. T. DeJong. 2015. “Stress-strain behavior of sands cemented by microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 141 (6): 04015019. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001302.
Muynck, W. D., S. Leuridan, D. V. Loo, K. Verbeken, and W. Verstraete. 2011. “Influence of pore structure on the effectiveness of a biogenic carbonate surface treatment for limestone conservation.” Appl. Environ. Microbiol. 77 (19): 6808–6820. https://doi.org/10.1128/AEM.00219-11.
Ogino, T., T. Suzuki, and K. Sawada. 1987. “The formation and transformation mechanism of calcium carbonate in water.” Geochim. Cosmochim. Acta 51 (10): 2757–2767. https://doi.org/10.1016/0016-7037(87)90155-4.
Phillips, A. J., et al. 2016. “Fracture sealing with microbially-induced calcium carbonate precipitation: A field study.” Environ. Sci. Technol. 50 (7): 4111–4117. https://doi.org/10.1021/acs.est.5b05559.
Qian, C. X., J. W. Wang, R. X. Wang, and L. Cheng. 2009. “Corrosion protection of cement-based building materials by surface deposition of CaCO3 by Bacillus pasteurii.” Mater. Sci. Eng., C 29 (4): 1361–1364. https://doi.org/10.1016/j.msec.2008.11.004.
Rodriguez-Blanco, J. D., S. Shaw, and L. G. Benning. 2011. “The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite.” Nanoscale 3 (1): 265–271. https://doi.org/10.1039/C0NR00589D.
Rodriguez-Navarro, C., C. Jimenez-Lopez, A. Rodriguez-Navarro, M. T. Gonzalez-Muñoz, and M. Rodriguez-Gallego. 2007. “Bacterially mediated mineralization of vaterite.” Geochim. Cosmochim. Acta 71 (5): 1197–1213. https://doi.org/10.1016/j.gca.2006.11.031.
Rodriguez-Navarro, C., M. Rodriguez-Gallego, K. Ben Chekroun, and M. T. Gonzalez-Munoz. 2003. “Conservation of ornamental stone by myxococcus xanthus-induced carbonate biomineralization.” Appl. Environ. Microbiol. 69 (4): 2182–2193. https://doi.org/10.1128/AEM.69.4.2182-2193.2003.
Sahrawat, K. L. 1984. “Effects of temperature and moisture on urease activity in semi-arid tropical soils.” Plant Soil 78 (3): 401–408. https://doi.org/10.1007/BF02450373.
Sawada, K. 1997. “The mechanisms of crystallization and transformation of calcium carbonates.” Pure Appl. Chem. 69 (5): 921–928. https://doi.org/10.1351/pac199769050921.
Söhnel, O., and J. W. Mullin. 1982. “Precipitation of calcium carbonate.” J. Cryst. Growth 60 (2): 239–250. https://doi.org/10.1016/0022-0248(82)90095-1.
Spanos, N., and P. G. Koutsoukos. 1998. “The transformation of vaterite to calcite: Effect of the conditions of the solutions in contact with the mineral phase.” J. Cryst. Growth 191 (4): 783–790. https://doi.org/10.1016/S0022-0248(98)00385-6.
Stocks-Fischer, S., J. K. Galinat, and S. S. Bang. 1999. “Microbiological precipitation of CaCO3.” Soil Biol. Biochem. 31 (11): 1563–1571. https://doi.org/10.1016/S0038-0717(99)00082-6.
Tang, C. S., L. Y. Yin, N. J. Jiang, C. Zhu, H. Zeng, H. Li, and B. Shi. 2020. “Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: A review.” Environ. Earth Sci. 79 (5): 1–23. https://doi.org/10.1007/s12665-020-8840-9.
Terzis, D., and L. Laloui. 2019. “A decade of progress and turning points in the understanding of bio-improved soils: A review.” Geomech. Energy Environ. 19 (Sep): 100116. https://doi.org/10.1016/j.gete.2019.03.001.
Van Paassen, L. A. 2009. “Biogrout: Ground improvement by microbially induced carbonate precipitation.” Ph.D. thesis, Dept. of Civil Engineering and Geosciences, Delft Univ. of Technology.
Van Paassen, L. A., R. Ghose, T. J. M. Van der Linden, W. R. L. Van der Star, and M. C. M. Van Loosdrecht. 2010. “Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment.” J. Geotech. Geoenviron. Eng. 136 (12): 1721–1728. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382.
Wang, Y. Z., K. Soga, J. T. DeJong, and A. J. Kabla. 2019a. “A microfluidic chip and its use in characterising the particle-scale behaviour of microbial-induced calcium carbonate precipitation (MICP).” Géotechnique 69 (12): 1086–1094. https://doi.org/10.1680/jgeot.18.P.031.
Wang, Y. Z., K. Soga, J. T. DeJong, and A. J. Kabla. 2019b. “Microscale visualization of microbial-induced calcium carbonate precipitation processes.” J. Geotech. Geoenviron. Eng. 145 (9): 04019045. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002079.
Wang, Y. Z., K. Soga, J. T. DeJong, and A. J. Kabla. 2020. “Effects of bacterial density on growth rate and characteristics of microbial-induced CaCO3 precipitates: A particle-scale experimental study.” Preprint, submitted June 29, 2020. https://arxiv.org/abs/2007.04094.
Wei, L. X., J. Q. Liu, X. L. Wu, X. Y. Liu, X. W. Lv, and Y. L. Liu. 2020. “In situ fabrication of Ti–Al/Ti2AlC composite by hot-press sintering.” J. Alloys Compd. 813 (Jan): 152200. https://doi.org/10.1016/j.jallcom.2019.152200.
Wen, K. J., Y. Li, F. Amini, and L. Li. 2020. “Impact of bacteria and urease concentration on precipitation kinetics and crystal morphology of calcium carbonate.” Acta Geotech. 15 (1): 17–27. https://doi.org/10.1007/s11440-019-00899-3.
Whiffin, V. S. 2004. “Microbial CaCO3 precipitation for the production of biocement.” Doctoral dissertation, School of Biological Sciences & Biotechnology, Murdoch Univ.
Whiffin, V. S., L. A. Van Paassen, and M. P. Harkes. 2007. “Microbial carbonate precipitation as a soil improvement technique.” Geomicrobiol. J. 24 (5): 417–423. https://doi.org/10.1080/01490450701436505.
Xu, X., J. T. Han, and K. Cho. 2004. “Formation of amorphous calcium carbonate thin films and their role in biomineralization.” Chem. Mater. 16 (9): 1740–1746. https://doi.org/10.1021/cm035183d.
Xu, X. C., H. X. Guo, X. H. Cheng, and M. Li. 2020. “The promotion of magnesium ions on aragonite precipitation in MICP process.” Constr. Build. Mater. 263 (Dec): 120057. https://doi.org/10.1016/j.conbuildmat.2020.120057.
Yang, Y., J. Chu, B. Cao, H. Liu, and L. Cheng. 2020. “Biocementation of soil using non-sterile enriched urease-producing bacteria from activated sludge.” J. Cleaner Prod. 262 (Jul): 121315. https://doi.org/10.1016/j.jclepro.2020.121315.
Yi, H. H., T. W. Zheng, Z. R. Jia, T. Su, and C. G. Wang. 2021. “Study on the influencing factors and mechanism of calcium carbonate precipitation induced by urease bacteria.” J. Cryst. Growth 564 (Jun): 126113. https://doi.org/10.1016/j.jcrysgro.2021.126113.
Zeng, Y. P., J. W. Cao, Z. Wang, J. W. Guo, and J. S. Lu. 2018. “Formation of amorphous calcium carbonate and its transformation mechanism to crystalline CaCO3 in laminar microfluidics.” Cryst. Growth Des. 18 (3): 1710–1721. https://doi.org/10.1021/acs.cgd.7b01634.
Zhang, W. C., Y. Ju, Y. W. Zong, H. Qi, and K. Zhao. 2018. “In situ real-time study on dynamics of microbially induced calcium carbonate precipitation at a single-cell level.” Environ. Sci. Technol. 52 (16): 9266–9276. https://doi.org/10.1021/acs.est.8b02660.
Zhang, Y., H. X. Guo, and X. H. Cheng. 2015. “Role of calcium sources in the strength and microstructure of microbial mortar.” Constr. Build. Mater. 77 (Feb): 160–167. https://doi.org/10.1016/j.conbuildmat.2014.12.040.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 148Issue 7July 2022

History

Received: Sep 7, 2021
Accepted: Mar 21, 2022
Published online: Apr 29, 2022
Published in print: Jul 1, 2022
Discussion open until: Sep 29, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Candidate, School of Earth Sciences and Engineering, Nanjing Univ., 163 Xianlin Ave., Nanjing 210023, China. Email: [email protected]
Professor, School of Earth Sciences and Engineering, Nanjing Univ., 163 Xianlin Ave., Nanjing 210023, China (corresponding author). ORCID: https://orcid.org/0000-0002-6419-6116. Email: [email protected]
Assistant Professor, Dept. of Civil and Environmental Engineering, Rowan Univ., 201 Mullica Hill Rd., Glassboro, NJ 08028. Email: [email protected]
Wei-Qiang Li [email protected]
Professor, School of Earth Sciences and Engineering, Nanjing Univ., 163 Xianlin Ave., Nanjing 210023, China. Email: [email protected]
Tian-Yu Chen [email protected]
Professor, School of Earth Sciences and Engineering, Nanjing Univ., 163 Xianlin Ave., Nanjing 210023, China. Email: [email protected]
Professor, School of Earth Sciences and Engineering, Nanjing Univ., 163 Xianlin Ave., Nanjing 210023, China. Email: [email protected]
Xiao-Hua Pan [email protected]
Assistant Professor, School of Earth Sciences and Engineering, Nanjing Univ., 163 Xianlin Ave., Nanjing 210023, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Cementing Mechanism of MICP-Treated Mortar and Performance Improvement by Innovative Molds, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-16752, 36, 7, (2024).
  • Regulating the Process of Microbially Induced Calcium Carbonate Precipitation through Applied Electric Fields: Evidence and Insights Using Microfluidics, Journal of Geotechnical and Geoenvironmental Engineering, 10.1061/JGGEFK.GTENG-12532, 150, 10, (2024).
  • A Comprehensive Optimization Study of Microbially Induced Carbonate Precipitation for Soil Strength Enhancement: Impact of Biochemical and Environmental Factors, Journal of Geotechnical and Geoenvironmental Engineering, 10.1061/JGGEFK.GTENG-12230, 150, 10, (2024).
  • Suppressing Drought-Induced Soil Desiccation Cracking Using MICP: Field Demonstration and Insights, Journal of Geotechnical and Geoenvironmental Engineering, 10.1061/JGGEFK.GTENG-12011, 150, 3, (2024).
  • Monitoring and Characterizing the Whole Process of Microbially Induced Calcium Carbonate Precipitation Using Electrical Resistivity Tomography, Journal of Geotechnical and Geoenvironmental Engineering, 10.1061/JGGEFK.GTENG-11782, 150, 1, (2024).
  • Application of urease-producing microbial community in seawater to dust suppression in desert, Environmental Research, 10.1016/j.envres.2022.115121, 219, (115121), (2023).
  • An efficient microbial sealing of rock weathering cracks using bio-carbonation of reactive magnesia cement, Construction and Building Materials, 10.1016/j.conbuildmat.2022.130038, 366, (130038), (2023).
  • Experimental Study on the Preparation of a Highly Active Bacterial Suspension for MICP in the South China Sea, Sustainability, 10.3390/su14159748, 14, 15, (9748), (2022).
  • Effects of calcium sources and magnesium ions on the mechanical behavior of MICP-treated calcareous sand: experimental evidence and precipitated crystal insights, Acta Geotechnica, 10.1007/s11440-022-01748-6, (2022).
  • Microscopic investigation on bonding fracture of biocemented sand from novel in situ brazil splitting tests, Acta Geotechnica, 10.1007/s11440-022-01682-7, 17, 11, (4935-4951), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share