Technical Papers
Jul 25, 2024

Regulating the Process of Microbially Induced Calcium Carbonate Precipitation through Applied Electric Fields: Evidence and Insights Using Microfluidics

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 150, Issue 10

Abstract

Nonuniform cementation challenges may arise when employing microbially induced calcium carbonate precipitation (MICP) technology to treat problematic soils. Electrokinetic methods exhibit the potential to regulate the MICP process by driving negatively charged urease-producing bacteria and promoting the migration of reactant ions. However, the current understanding of bacterial behavior and the characteristics of CaCO3 precipitates under the influence of direct current (DC) electric fields remains unclear. In this study, we designed and fabricated microfluidic chips to simulate sandy soil matrices. By monitoring the real-time MICP reaction process in the microfluidic porous medium with and without a DC electric field through an optical microscope, we analyzed the impact of the electric field on the behavior of bacteria at different locations (i.e., attached and suspended bacteria) and on the morphology and distribution of CaCO3 crystals. Results show that initially injected bacteria adhered to the inner pore surfaces due to interfacial cohesion, whereas subsequently injected bacteria were predominantly suspended in the pore solution and driven toward the anode by the electric field, where they aggregated. Furthermore, the majority of Ca2+ precipitated near the cathode, resulting in larger-sized crystals, and a smaller quantity of Ca2+ precipitated at the anode, generating smaller-sized crystal particles. This observation highlights the crucial role of Ca2+ movement in determining the distribution of CaCO3. Under the influence of a DC electric field, the final precipitated CaCO3 crystals exhibit nonuniform sizes, with an overall smaller average size and more complex crystal morphologies. Our results provide the underlying insights to guide the regulation of the MICP process through applied electric fields.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41925012 and 42230710), National Key Research and Development Program of China (Grant No. 2023YFC3707900), Key Task Project for Joint Research and Development of the Yangtze River Delta Science and Technology Innovation Community (Grant No. 2022CSJGG1200), and Natural Science Foundation of Jiangsu Province (Grant No. BK20211087).

References

Addadi, L., S. Raz, and S. Weiner. 2003. “Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization.” Adv. Mater. 15 (12): 959–970. https://doi.org/10.1002/adma.200300381.
Cheng, L., M. A. Shahin, and J. Chu. 2019. “Soil bio-cementation using a new one-phase low-pH injection method.” Acta Geotech. 14 (3): 615–626. https://doi.org/10.1007/s11440-018-0738-2.
Cöelfen, H., and M. Antonietti. 2008. Mesocrystals and nonclassical crystallization. New York: Wiley.
Cui, M. J., H. J. Lai, T. Hoang, and J. Chu. 2021. “One-phase-low-pH enzyme induced carbonate precipitation (EICP) method for soil improvement.” Acta Geotech. 16 (2): 481–489. https://doi.org/10.1007/s11440-020-01043-2.
Das, T., S. Sehar, L. Koop, Y. K. Wong, S. Ahmed, K. S. Siddiqui, and M. Manefield. 2014. “Influence of calcium in extracellular DNA mediated bacterial aggregation and biofilm formation.” PLoS One 9 (3): e91935. https://doi.org/10.1371/journal.pone.0091935.
DeJong, J. T., M. B. Fritzges, and K. Nüsslein. 2006. “Microbially induced cementation to control sand response to undrained shear.” J. Geotech. Geoenviron. Eng. 132 (11): 1381–1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381).
DeJong, J. T., B. M. Mortensen, B. C. Martinez, and D. C. Nelson. 2010. “Bio-mediated soil improvement.” Ecol. Eng. 36 (2): 197–210. https://doi.org/10.1016/j.ecoleng.2008.12.029.
Deng, J. X., M. J. Li, Y. K. Tian, Z. J. Zhang, L. L. Wu, and L. Hu. 2023. “Using electric field to improve the effect of microbial-induced carbonate precipitation.” Sustainability 15 (7): 5901. https://doi.org/10.3390/su15075901.
De Yoreo, J. J., and P. G. Vekilov. 2003. “Principles of crystal nucleation and growth.” Rev. Mineral. Geochem. 54 (1): 57–93. https://doi.org/10.2113/0540057.
Dong, Z. H., X. H. Pan, C. S. Tang, and B. Shi. 2022. “Microbial healing of nature-like rough sandstone fractures for rock weathering mitigation.” Environ. Earth Sci. 81 (15): 394. https://doi.org/10.1007/s12665-022-10510-w.
Elmaloglou, A., D. Terzis, P. De Anna, and L. Laloui. 2022. “Microfluidic study in a meter-long reactive path reveals how the medium’s structural heterogeneity shapes MICP-induced biocementation.” Sci. Rep. 12 (1): 19553. https://doi.org/10.1038/s41598-022-24124-6.
El Mountassir, G., J. M. Minto, L. A. van Paassen, E. Salifu, and R. J. Lunn. 2018. “Applications of microbial processes in geotechnical engineering.” Adv. Appl. Microbiol. 104 (Sep): 39–91. https://doi.org/10.1016/bs.aambs.2018.05.001.
Galajda, P., J. Keymer, P. Chaikin, and R. Austin. 2007. “A wall of funnels concentrates swimming bacteria.” J. Bacteriol. 189 (23): 8704–8707. https://doi.org/10.1128/JB.01033-07.
Gebauer, D., A. Volkel, and H. Colfen. 2008. “Stable prenucleation calcium carbonate clusters.” Science 322 (5909): 1819–1822. https://doi.org/10.1126/science.1164271.
Gill, R., M. J. Harbottle, J. Smith, and S. Thornton. 2014. “Electrokinetic-enhanced bioremediation of organic contaminants: A review of processes and environmental applications.” Chemosphere 107 (Feb): 31–42. https://doi.org/10.1016/j.chemosphere.2014.03.019.
Gomez, M. G., B. C. Martinez, J. T. DeJong, C. E. Hunt, L. A. deVlaming, D. W. Major, and S. M. Dworatzek. 2015. “Field-scale bio-cementation tests to improve sands.” Proc. Inst. Civ. Eng. Ground Improv. 168 (3): 206–216. https://doi.org/10.1680/grim.13.00052.
Han, Y. S., G. Hadiko, M. Fuji, and M. Takahashi. 2006. “Crystallization and transformation of vaterite at controlled pH.” J. Cryst. Growth 289 (1): 269–274. https://doi.org/10.1016/j.jcrysgro.2005.11.011.
Harkes, M. P., L. A. Van Paassen, J. L. Booster, V. S. Whiffin, and M. C. van Loosdrecht. 2010. “Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement.” Ecol. Eng. 36 (2): 112–117. https://doi.org/10.1016/j.ecoleng.2009.01.004.
He, J., Y. Liu, L. X. Liu, B. Y. Yan, L. L. Li, H. Meng, L. Hang, Y. S. Qi, M. Wu, and Y. F. Gao. 2023. “Recent development on optimization of bio-cementation for soil stabilization and wind erosion control.” Biogeotechnics 1 (2): 100022. https://doi.org/10.1016/j.bgtech.2023.100022.
Ivanov, V., and J. Chu. 2008. “Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ.” Rev. Environ. Sci. Bio/Technol. 7 (2): 139–153. https://doi.org/10.1007/s11157-007-9126-3.
Jiang, N. J., and K. Soga. 2017. “The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel–sand mixtures.” Géotechnique 67 (1): 42–55. https://doi.org/10.1680/jgeot.15.P.182.
Keykha, H. A., B. B. Huat, and A. Asadi. 2014. “Electrokinetic stabilization of soft soil using carbonate-producing bacteria.” Geotech. Geol. Eng. 32 (4): 739–747. https://doi.org/10.1007/s10706-014-9753-8.
Keykha, H. A., B. B. Huat, A. Asadi, and S. Kawasaki. 2012. “Electro-biogrouting and its challenges.” Int. J. Electrochem. Sci. 7 (2): 1196–1204. https://doi.org/10.1016/S1452-3981(23)13407-9.
Keykha, H. A., B. B. Huat, A. Asadi, M. Zareian, and S. Kawasaki. 2015. “Electrokinetic properties of pasteurii and aquimarina bacteria.” Environ. Geotech. 2 (3): 181–188. https://doi.org/10.1680/envgeo.13.00072.
Kim, D., N. Mahabadi, J. Jang, and L. A. van Paassen. 2020. “Assessing the kinetics and pore-scale characteristics of biological calcium carbonate precipitation in porous media using a microfluidic chip experiment.” Water Resour. Res. 56 (2): e2019WR025420. https://doi.org/10.1029/2019WR025420.
Kim, S. H., H. Y. Han, Y. J. Lee, C. W. Kim, and J. W. Yang. 2010. “Effect of electrokinetic remediation on indigenous microbial activity and community within diesel contaminated soil.” Sci. Total Environ. 408 (16): 3162–3168. https://doi.org/10.1016/j.scitotenv.2010.03.038.
Liu, B., C. Zhu, C. S. Tang, Y. H. Xie, L. Y. Yin, Q. Cheng, and B. Shi. 2020. “Bio-remediation of desiccation cracking in clayey soils through microbially induced calcite precipitation (MICP).” Eng. Geol. 264 (Apr): 105389. https://doi.org/10.1016/j.enggeo.2019.105389.
Lv, C., C. S. Tang, C. Zhu, W. Q. Li, T. Y. Chen, L. Zhao, and X. H. Pan. 2022. “Environmental dependence of microbially induced calcium carbonate crystal precipitations: Experimental evidence and insights.” J. Geotech. Geoenviron. Eng. 148 (7): 04022050. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002827.
Lv, C., C. Zhu, C. S. Tang, Q. Cheng, L. Y. Yin, and B. Shi. 2021. “Effect of fiber reinforcement on the mechanical behavior of bio-cemented sand.” Geosynth. Int. 28 (2): 195–205. https://doi.org/10.1680/jgein.20.00037.
Ma, G. L., X. He, X. Jiang, H. L. Liu, J. Chu, and Y. Xiao. 2021. “Strength and permeability of bentonite-assisted biocemented coarse sand.” Can. Geotech. J. 58 (7): 969–981. https://doi.org/10.1139/cgj-2020-0045.
Moser, R., O. Rodriguez, R. Hidalgo-Hernandez, P. Malone, M. Chandler, P. Allison, C. Weiss, and K. Torres-Cancel. 2013. “Infilling of porous materials with various polymorphs of calcium carbonate by an electromigration technique.” J. Appl. Electrochem. 43 (1): 73–83. https://doi.org/10.1007/s10800-012-0501-6.
Pan, X. H., J. Chu, Y. Yang, and L. Cheng. 2020. “A new biogrouting method for fine to coarse sand.” Acta Geotech. 15 (1): 1–16. https://doi.org/10.1007/s11440-019-00872-0.
Phillips, A. J., A. B. Cunningham, R. Gerlach, R. Hiebert, C. Hwang, B. P. Lomans, J. Westrich, C. Mantilla, J. Kirksey, and R. Esposito. 2016. “Fracture sealing with microbially-induced calcium carbonate precipitation: A field study.” Environ. Sci. Technol. 50 (7): 4111–4117. https://doi.org/10.1021/acs.est.5b05559.
Probstein, R. F., and R. E. Hicks. 1993. “Removal of contaminants from soils by electric fields.” Science 260 (5107): 498–503. https://doi.org/10.1126/science.260.5107.498.
Proto, C., J. DeJong, and D. Nelson. 2016. “Biomediated permeability reduction of saturated sands.” J. Geotech. Geoenviron. Eng. 142 (12): 04016073. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001558.
Shao, G. H., R. P. Huang, and P. Liu. 2023. “Application of electric fields to improve cementation homogeneity of biogrouted sands.” Soil Use Manage. 40 (1): e12943. https://doi.org/10.1111/sum.12943.
Tang, C. S., X. H. Pan, Y. J. Cheng, and X. L. Ji. 2023. “Improving hydro-mechanical behavior of loess by a bio-strategy.” Biogeotechnics 1 (2): 100024. https://doi.org/10.1016/j.bgtech.2023.100024.
Tang, C. S., L. Y. Yin, N. J. Jiang, C. Zhu, H. Zeng, H. Li, and B. Shi. 2020. “Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: A review.” Environ. Earth Sci. 79 (Feb): 1–23. https://doi.org/10.1007/s12665-020-8840-9.
Terzis, D., P. Hicher, and L. Laloui. 2020. “Direct currents stimulate carbonate mineralization for soil improvement under various chemical conditions.” Sci. Rep. 10 (1): 17014. https://doi.org/10.1038/s41598-020-73926-z.
Torres, C. I., H. S. Lee, and B. E. Rittmann. 2008. “Carbonate species as OH− carriers for decreasing the pH gradient between cathode and anode in biological fuel cells.” Environ. Sci. Technol. 42 (23): 8773–8777. https://doi.org/10.1021/es8019353.
Van Paassen, L. A., R. Ghose, T. J. van der Linden, W. R. van der Star, and M. C. van Loosdrecht. 2010. “Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment.” J. Geotech. Geoenviron. Eng. 136 (12): 1721–1728. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382.
Wang, D. L., C. S. Tang, X. H. Pan, B. Liu, and B. Shi. 2023. “Coupling effect of fiber reinforcement and MICP stabilization on the tensile behavior of calcareous sand.” Eng. Geol. 317 (Aug): 107090. https://doi.org/10.1016/j.enggeo.2023.107090.
Wang, Y. Z., K. Soga, J. T. DeJong, and A. J. Kabla. 2019a. “A microfluidic chip and its use in characterising the particle-scale behaviour of microbial-induced calcium carbonate precipitation (MICP).” Géotechnique 69 (12): 1086–1094. https://doi.org/10.1680/jgeot.18.P.031.
Wang, Y. Z., K. Soga, J. T. DeJong, and A. J. Kabla. 2019b. “Microscale visualization of microbial-induced calcium carbonate precipitation processes.” J. Geotech. Geoenviron. Eng. 145 (9): 04019045. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002079.
Wang, Y. Z., K. Soga, J. T. DeJong, and A. J. Kabla. 2021. “Effects of bacterial density on growth rate and characteristics of microbial-induced CaCO3 precipitates: Particle-scale experimental study.” J. Geotech. Geoenviron. Eng. 147 (6): 04021036. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002509.
Whiffin, V. S., L. A. Van Paassen, and M. P. Harkes. 2007. “Microbial carbonate precipitation as a soil improvement technique.” Geomicrobiol. J. 24 (5): 417–423. https://doi.org/10.1080/01490450701436505.
Xiao, Y., B. F. Cao, J. G. Shi, H. R. Wu, X. He, C. Zhao, J. Chu, and H. L. Liu. 2023. “State-of-the-art review on the application of microfluidics in biogeotechnology.” Transp. Geotech. 41 (Jul):101030. https://doi.org/10.1016/j.trgeo.2023.101030.
Xiao, Y., X. He, A. W. Stuedlein, J. Chu, T. Matthew Evans, and L. A. Van Paassen. 2022. “Crystal growth of MICP through microfluidic chip tests.” J. Geotech. Geoenviron. Eng. 148 (5): 06022002. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002756.
Xiao, Y., X. He, W. Wu, A. W. Stuedlein, T. M. Evans, J. Chu, H. L. Liu, L. A. van Paassen, and H. R. Wu. 2021a. “Kinetic biomineralization through microfluidic chip tests.” Acta Geotech. 16 (10): 3229–3237. https://doi.org/10.1007/s11440-021-01205-w.
Xiao, Y., Y. Wang, S. Wang, T. M. Evans, A. W. Stuedlein, J. Chu, C. Zhao, H. R. Wu, and H. L. Liu. 2021b. “Homogeneity and mechanical behaviors of sands improved by a temperature-controlled one-phase MICP method.” Acta Geotech. 16 (5): 1417–1427. https://doi.org/10.1007/s11440-020-01122-4.
Yee, N., J. B. Fein, and C. J. Daughney. 2000. “Experimental study of the pH, ionic strength, and reversibility behavior of bacteria–mineral adsorption.” Geochim. Cosmochim. Acta 64 (4): 609–617. https://doi.org/10.1016/S0016-7037(99)00342-7.
Zehner, J., A. Røyne, and P. Sikorski. 2021. “Calcite seed-assisted microbial induced carbonate precipitation (MICP).” PLoS One 16 (2): e0240763. https://doi.org/10.1371/journal.pone.0240763.
Zhang, J. Z., C. S. Tang, C. Lv, Q. Y. Zhou, and B. Shi. 2024. “Monitoring and characterizing the whole process of microbially induced calcium carbonate precipitation using electrical resistivity tomography.” J. Geotech. Geoenviron. Eng. 150 (1): 04023132. https://doi.org/10.1061/JGGEFK.GTENG-11782.
Zhao, C., Y. Xiao, J. Chu, R. Hu, H. L. Liu, X. He, Y. Liu, and X. Jiang. 2023. “Microfluidic experiments of biological CaCO3 precipitation in transverse mixing reactive environments.” Acta Geotech. 18 (10): 5299–5318. https://doi.org/10.1007/s11440-023-01938-w.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 150Issue 10October 2024

History

Received: Nov 30, 2023
Accepted: May 6, 2024
Published online: Jul 25, 2024
Published in print: Oct 1, 2024
Discussion open until: Dec 25, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Ph.D. Candidate, School of Earth Sciences and Engineering, Nanjing Univ., 163 Xianlin Ave., Nanjing 210023, China. Email: [email protected]
Professor, School of Earth Sciences and Engineering, Nanjing Univ., 163 Xianlin Ave., Nanjing 210023, China (corresponding author). ORCID: https://orcid.org/0000-0002-6419-6116. Email: [email protected]
Jun-Zheng Zhang [email protected]
Ph.D. Candidate, School of Earth Sciences and Engineering, Nanjing Univ., 163 Xianlin Ave., Nanjing 210023, China. Email: [email protected]
Ph.D. Candidate, School of Earth Sciences and Engineering, Nanjing Univ., 163 Xianlin Ave., Nanjing 210023, China. Email: [email protected]
Xiao-Hua Pan [email protected]
Professor, School of Earth Sciences and Engineering, Nanjing Univ., 163 Xianlin Ave., Nanjing 210023, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share