Abstract

A field trial evaluated the potential of microbially induced calcite precipitation (MICP) through urea hydrolysis for ground stabilization. A bioaugmentation approach was employed in which locally enriched bacteria were injected, followed by an amendment solution containing urea and calcium chloride. Results from cone penetration tests and soil analysis were inconclusive about the obtained ground stabilization. In situ monitoring results were analyzed using a two-dimensional (2D) numerical reactive transport model to evaluate the process performance, in which the effective thickness of the treated layers, the average reaction rate, and a dilution factor accounting for the water extracted from the less-permeable layers were varied, and the results of the different numerical simulations were compared with the field measurements. The combined results of monitoring and numerical modeling demonstrated that treatment was limited to approximately 5% of the total soil volume. The conversion efficiency was significantly lower than expected, and the substrates spread farther than originally intended, which could be attributed to the heterogeneous soil profile with a large amount of fines, causing preferential flow through the more-permeable layers and possibly hydraulically induced fractures.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All field monitoring data used in this manuscript are available from the corresponding authors upon reasonable request.

Acknowledgments

This work was supported by the National Key Research and Development Program of China (No. 2016YFC0800200), the Natural Science Foundation of China (NSFC) (Grant No. 5187081566), the Chinese Scholarship Council, the National Science Foundation (NSF) Engineering Research Center program under Grant No. ERC-1449501, and Waterfront Toronto. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the NSF.

References

Al Qabany, A., K. Soga, and C. Santamarina. 2012. “Factors affecting efficiency of microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 138 (8): 992–1001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000666.
Amin, M., S. M. A. Zomorodian, and B. C. O’Kelly. 2017. “Reducing the hydraulic erosion of sand using microbial-induced carbonate precipitation.” Proc. Inst. Civ. Eng. Ground Improv. 170 (2): 112–122. https://doi.org/10.1680/jgrim.16.00028.
Andersen, K. H., C. G. Rawlings, T. A. Lunne, and T. H. By. 1994. “Estimation of hydraulic fracture pressure in clay.” Can. Geotech. J. 31 (6): 817–828. https://doi.org/10.1139/t94-099.
Bachmeier, K. L., A. E. Williams, J. R. Warmington, and S. S. Bang. 2002. “Urease activity in microbiologically-induced calcite precipitation.” J. Biotechnol. 93 (2): 171–181. https://doi.org/10.1016/S0168-1656(01)00393-5.
Barkouki, T. H., B. C. Martinez, B. M. Mortensen, T. S. Weathers, J. D. De Jong, T. R. Ginn, N. F. Spycher, R. W. Smith, and Y. Fujita. 2011. “Forward and inverse bio-geochemical modeling of microbially induced calcite precipitation in half-meter column experiments.” Transp. Porous Media 90 (1): 23–39. https://doi.org/10.1007/s11242-011-9804-z.
Benini, S., W. R. Rypniewski, K. S. Wilson, S. Miletti, S. Ciurli, and S. Mangani. 1999. “A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: Why urea hydrolysis costs two nickels.” Structure 7 (2): 205–216. https://doi.org/10.1016/S0969-2126(99)80026-4.
Bjerrum, L., J. K. T. L. Nash, R. M. Kennard, and G. E. Gibson. 1972. “Hydraulic fracturing in field permeability testing.” Géotechnique 22 (2): 319–332. https://doi.org/10.1680/geot.1972.22.2.319.
Burbank, M. B., T. J. Weaver, T. L. Green, B. C. Williams, and R. L. Crawford. 2011. “Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils.” Geomicrobiol. J. 28 (4): 301–312. https://doi.org/10.1080/01490451.2010.499929.
Carroll, D. 1959. “Ion exchange in clays and other minerals.” GSA Bull. 70 (6): 749–779. https://doi.org/10.1130/0016-7606(1959)70[749:IEICAO]2.0.CO;2.
Cheng, L., and R. Cord-Ruwisch. 2013. “Selective enrichment and production of highly urease active bacteria by non-sterile (open) chemostat culture.” J. Ind. Microbiol. Biotechnol. 40 (10): 1095–1104. https://doi.org/10.1007/s10295-013-1310-6.
Cho, G.-C., J. Dodds, and J. C. Santamarina. 2006. “Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands.” J. Geotech. Geoenviron. Eng. 132 (5): 591–602. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(591).
Coduto, D. P., M. R. Yeung, and W. A. Kitch. 2011. Geotechnical engineering: Principles and practices. 2nd ed. Upper Saddle River, NJ: Pearson Education.
Cunningham, A. B., H. Class, A. Ebigbo, R. Gerlach, A. J. Phillips, and J. Hommel. 2019. “Field-scale modeling of microbially induced calcite precipitation.” Comput. Geosci. 23 (2): 399–414. https://doi.org/10.1007/s10596-018-9797-6.
Cuthbert, M. O., L. A. McMillan, S. Handley-Sidhu, M. S. Riley, D. J. Tobler, and V. R. Phoenix. 2013. “A field and modeling study of fractured rock permeability reduction using microbially induced calcite precipitation.” Environ. Sci. Technol. 47 (23): 13637–13643. https://doi.org/10.1021/es402601g.
DeJong, J. T., B. M. Mortensen, B. C. Martinez, and D. C. Nelson. 2010. “Bio-mediated soil improvement.” Ecol. Eng. 36 (2): 197–210. https://doi.org/10.1016/j.ecoleng.2008.12.029.
Ebigbo, A., A. Phillips, R. Gerlach, R. Helmig, A. B. Cunningham, H. Class, and L. H. Spangler. 2012. “Darcy-scale modeling of microbially induced carbonate mineral precipitation in sand columns.” Water Resour. Res. 48 (7): 1–17. https://doi.org/10.1029/2011wr011714.
El Mountassir, G., J. M. Minto, L. A. van Paassen, E. Salifu, and R. J. Lunn. 2018. “Applications of microbial processes in geotechnical engineering.” In Advances in applied microbiology, 39–91. Amsterdam, Netherlands: Elsevier.
Fauriel, S., and L. Laloui. 2012. “A bio-chemo-hydro-mechanical model for microbially induced calcite precipitation in soils.” Comput. Geotech. 46 (Nov): 104–120. https://doi.org/10.1016/j.compgeo.2012.05.017.
Feng, K., B. M. Montoya, and T. M. Evans. 2014. “Numerical investigation of microbial-induced cemented sand mechanical behavior.” In Proc., Geo-Congress 2014: Geo-Characterization and Modeling for Sustainability, 1644–1653. Reston, VA: ASCE.
Gomez, M. G., C. M. Anderson, J. T. DeJong, D. C. Nelson, and X. H. Lau. 2014. “ Stimulating in situ soil bacteria for bio-cementation of sands.” In Proc., Geo-Congress 2014: Geo-Characterization and Modeling for Sustainability, 1674–1682. Reston, VA: ASCE.
Gomez, M. G., C. M. Anderson, C. M. R. Graddy, J. T. DeJong, D. C. Nelson, and T. R. Ginn. 2017. “Large-scale comparison of bioaugmentation and biostimulation approaches for biocementation of sands.” J. Geotech. Geoenviron. Eng. 143 (5): 04016124. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001640.
Gomez, M. G., B. C. Martinez, J. T. Dejong, C. E. Hunt, L. A. deVlaming, D. W. Major, and S. M. Dworatzek. 2015. “Field-scale bio-cementation tests to improve sands.” Proc. Inst. Civ. Eng. Ground Improv. 168 (3): 206–216. https://doi.org/10.1680/grim.13.00052.
Graddy, C. M. R., M. G. Gomez, L. M. Kline, S. R. Morrill, J. T. DeJong, and D. C. Nelson. 2018. “Diversity of Sporosarcina-like bacterial strains obtained from meter-scale augmented and stimulated biocementation experiments.” Environ. Sci. Technol. 52 (7): 3997–4005. https://doi.org/10.1021/acs.est.7b04271.
Harkes, M. P., L. A. van Paassen, J. L. Booster, V. S. Whiffin, and M. C. M. van Loosdrecht. 2010. “Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement.” Ecol. Eng. 36 (2): 112–117. https://doi.org/10.1016/j.ecoleng.2009.01.004.
He, J., and J. Chu. 2014. “Undrained responses of microbially desaturated sand under monotonic loading.” J. Geotech. Geoenviron. Eng. 140 (5): 04014003. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001082.
Hommel, J., A. B. Cunningham, R. Helmig, A. Ebigbo, and H. Class. 2013. “Numerical investigation of microbially induced calcite precipitation as a leakage mitigation technology.” Energy Procedia 40: 392–397. https://doi.org/10.1016/j.egypro.2013.08.045.
Hommel, J., A. Ebigbo, R. Gerlach, A. B. Cunningham, R. Helmig, and H. Class. 2016. “Finding a balance between accuracy and effort for modeling biomineralization.” Energy Procedia 97 (Nov): 379–386. https://doi.org/10.1016/j.egypro.2016.10.028.
Hommel, J., E. Lauchnor, A. Phillips, R. Gerlach, A. B. Cunningham, R. Helmig, A. Ebigbo, and H. Class. 2015. “A revised model for microbially induced calcite precipitation: Improvements and new insights based on recent experiments.” Water Resour. Res. 51 (5): 3695–3715. https://doi.org/10.1002/2014WR016503.
Ivanov, V., J. Chu, V. Stabnikov, and B. Li. 2015. “Strengthening of soft marine clay using bioencapsulation.” Mar. Georesour. Geotechnol. 33 (4): 320–324. https://doi.org/10.1080/1064119X.2013.877107.
Jaworski, G. W., J. M. Duncan, and H. B. Seed. 1981. “Laboratory study of hydraulic fracturing.” J. Geotech. Eng. Div. 107 (6): 713–732. https://doi.org/10.1061/AJGEB6.0001147.
Jiang, N.-J., and K. Soga. 2017. “The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel–sand mixtures.” Geotechnique 67 (1): 42–55. https://doi.org/10.1680/jgeot.15.P.182.
Jiang, N.-J., K. Soga, and M. Kuo. 2017. “Microbially induced carbonate precipitation for seepage-induced internal erosion control in sand–clay mixtures.” J. Geotech. Geoenviron. Eng. 143 (3): 04016100. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001559.
Kim, D. H., N. Mahabadi, J. Jang, and L. A. van Paassen. 2020. “Assessing the kinetics and pore-scale characteristics of biological calcium carbonate precipitation in porous media using a microfluidic chip experiment.” Water Resour. Res. 56 (2): e2019WR025420. https://doi.org/10.1029/2019WR025420.
Lauchnor, E. G., D. M. Topp, A. E. Parker, and R. Gerlach. 2015. “Whole cell kinetics of ureolysis by Sporosarcina pasteurii.” J. Appl. Microbiol. 118 (6): 1321–1332. https://doi.org/10.1111/jam.12804.
Lee, M., M. G. Gomez, A. C. M. San Pablo, C. M. Kolbus, C. M. R. Graddy, J. T. DeJong, and D. C. Nelson. 2019. “Investigating ammonium by-product removal for ureolytic bio-cementation using meter-scale experiments.” Sci. Rep. 9 (1): 1–15. https://doi.org/10.1038/s41598-019-54666-1.
Li, B. 2015. “Geotechnical properties of biocement treated sand and clay.” Ph.D. thesis, School of Civil and Environmental Engineering, Nanyang Technological Univ.
Lide, D. R. 2010. CRC handbook of chemistry and physics. 90th ed. Boca Raton, FL: CRC Press.
Marchi, M., G. Gottardi, and K. Soga. 2014. “Fracturing pressure in clay.” J. Geotech. Geoenviron. Eng. 140 (2): 04013008. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001019.
Martinez, B. C., J. T. DeJong, and T. R. Ginn. 2014. “Bio-geochemical reactive transport modeling of microbial induced calcite precipitation to predict the treatment of sand in one-dimensional flow.” Comput. Geotech. 58 (May): 1–13. https://doi.org/10.1016/j.compgeo.2014.01.013.
Martinez, B. C., J. T. DeJong, T. R. Ginn, B. M. Montoya, T. H. Barkouki, C. Hunt, B. Tanyu, and D. Major. 2013. “Experimental optimization of microbial-induced carbonate precipitation for soil improvement.” J. Geotech. Geoenviron. Eng. 139 (4): 587–598. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000787.
Massarsch, K. R. 1978. “New aspects of soil fracturing in clay.” J. Geotech. Eng. Div. 104 (8): 1109–1123. https://doi.org/10.1061/AJGEB6.0000681.
Minto, J. M., R. J. Lunn, and G. El Mountassir. 2019. “Development of a reactive transport model for field-scale simulation of microbially induced carbonate precipitation.” Water Resour. Res. 55 (8): 7229–7245. https://doi.org/10.1029/2019WR025153.
Mitchell, J. K., and K. Soga. 2005. Fundamentals of soil behaviors. Hoboken, NJ: John Wiley & Sons.
Montoya, B. M., and J. T. DeJong. 2015. “Stress-strain behavior of sands cemented by microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 141 (6): 04015019. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001302.
Montoya, B. M., J. T. DeJong, and R. W. Boulanger. 2013. “Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation.” Géotechnique 63 (4): 302–312. https://doi.org/10.1680/geot.SIP13.P.019.
Mori, A., and M. Tamura. 1987. “Hydrofracturing pressure of cohesive soils.” Soils Found. 27 (1): 14–22. https://doi.org/10.3208/sandf1972.27.14.
Mortensen, B. M., M. J. Haber, J. T. Dejong, L. F. Caslake, and D. C. Nelson. 2011. “Effects of environmental factors on microbial induced calcium carbonate precipitation.” J. Appl. Microbiol. 111 (2): 338–349. https://doi.org/10.1111/j.1365-2672.2011.05065.x.
Nafisi, A., B. M. Montoya, and T. M. Evans. 2020. “Shear strength envelopes of biocemented sands with varying particle size and cementation level.” J. Geotech. Geoenviron. Eng. 146 (3): 04020002. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002201.
Nassar, M. K., D. Gurung, M. Bastani, T. R. Ginn, B. Shafei, M. G. Gomez, C. M. R. Graddy, D. C. Nelson, and J. T. DeJong. 2018. “Large-scale experiments in microbially induced calcite precipitation (MICP): Reactive transport model development and prediction.” Water Resour. Res. 54 (1): 480–500. https://doi.org/10.1002/2017WR021488.
Phillips, A. J., et al. 2016. “Fracture sealing with microbially-induced calcium carbonate precipitation: A field study.” Environ. Sci. Technol. 50 (7): 4111–4117. https://doi.org/10.1021/acs.est.5b05559.
Phillips, A. J., R. Gerlach, E. Lauchnor, A. C. Mitchell, A. B. Cunningham, and L. Spangler. 2013. “Engineered applications of ureolytic biomineralization: A review.” Biofouling 29 (6): 715–733. https://doi.org/10.1080/08927014.2013.796550.
Phillips, A. J., E. Troyer, R. Hiebert, C. Kirkland, R. Gerlach, A. B. Cunningham, L. Spangler, J. Kirksey, W. Rowe, and R. Esposito. 2018. “Enhancing wellbore cement integrity with microbially induced calcite precipitation (MICP): A field scale demonstration.” J. Pet. Sci. Eng. 171 (Dec): 1141–1148. https://doi.org/10.1016/j.petrol.2018.08.012.
Qin, C.-Z., S. M. Hassanizadeh, and A. Ebigbo. 2016. “Pore-scale network modeling of microbially induced calcium carbonate precipitation: Insight into scale dependence of biogeochemical reaction rates.” Water Resour. Res. 52 (11): 8794–8810. https://doi.org/10.1002/2016WR019128.
Robertson, P. K. 2009. “Interpretation of cone penetration tests—A unified approach.” Can. Geotech. J. 46 (11): 1337–1355. https://doi.org/10.1139/T09-065.
Robertson, P. K., and K. L. Cabal. 2015. Guide to cone penetration testing for geotechnical engineering. 6th ed. Signal Hill, CA: Gregg Drilling & Testing.
Sharma, A., and R. Ramkrishnan. 2016. “Study on effect of Microbial Induced Calcite Precipitates on strength of fine grained soils.” Perspect. Sci. 8 (Sep): 198–202. https://doi.org/10.1016/j.pisc.2016.03.017.
Smith, R. W., Y. Fujita, T. R. Ginn, and S. S. Hubbard. 2012. Field investigations of microbially facilitated calcite precipitation for immobilization of strontium-90 and Other trace metals in the subsurface. Iowa City, IA: Univ. of Iowa.
Soga, K., M. Y. A. Ng, and K. Gafar. 2005. “Soil fractures in grouting.” In Vol. 4 of Proc., 11th Int. Congress on Computer Methods and Advances in Geomechanics; Prediction, Analysis and Design in Geomechanical Applications, 397–406, Bologna, Italy: Patron Editore.
Stocks-Fischer, S., J. K. Galinat, and S. S. Bang. 1999. “Microbiological precipitation of CaCO3.” Soil Biol. Biochem. 31 (11): 1563–1571. https://doi.org/10.1016/S0038-0717(99)00082-6.
Terzis, D., and L. Laloui. 2019. “Cell-free soil bio-cementation with strength, dilatancy and fabric characterization.” Acta Geotech. 14 (3): 639–656. https://doi.org/10.1007/s11440-019-00764-3.
Tirkolaei, H. K., and H. Bilsel. 2017. “Estimation on ureolysis-based microbially induced calcium carbonate precipitation progress for geotechnical applications.” Mar. Georesour. Geotechnol. 35 (1): 34–41. https://doi.org/10.1080/1064119X.2015.1099062.
van Paassen, L. A. 2009. “Biogrout: Ground improvement by microbially induced carbonate precipitation.” Ph.D. thesis, Dept. of Biotechnology, Delft Univ. of Technology.
van Paassen, L. A. 2011. “Bio-mediated ground improvement: From laboratory experiment to pilot applications.” In Proc., Geo-Frontiers 2011: Advances in Geotechnical Engineering, 4099–4108. Reston, VA: ASCE. https://doi.org/10.1061/41165(397)419.
van Paassen, L. A., R. Ghose, T. J. M. van der Linden, W. R. L. van der Star, and M. C. M. van Loosdrecht. 2010. “Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment.” J. Geotech. Geoenviron. Eng. 136 (12): 1721–1728. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382.
van Wijngaarden, W. K. 2016. “Mathematical modelling and simulation of biogrout.” Ph.D. thesis, Delft Institute of Applied Mathematics, Delft Univ. of Technology.
van Wijngaarden, W. K., L. A. van Paassen, F. J. Vermolen, G. A. M. van Meurs, and C. Vuik. 2016a. “A reactive transport model for biogrout compared to experimental data.” Transp. Porous Media 111 (3): 627–648. https://doi.org/10.1007/s11242-015-0615-5.
van Wijngaarden, W. K., L. A. van Paassen, F. J. Vermolen, G. A. M. van Meurs, and C. Vuik. 2016b. “Simulation of front instabilities in density-driven flow, using a reactive transport model for biogrout combined with a randomly distributed permeability field.” Transp. Porous Media 112 (2): 333–359. https://doi.org/10.1007/s11242-016-0649-3.
van Wijngaarden, W. K., F. J. Vermolen, G. A. M. van Meurs, and C. Vuik. 2011. “Modelling biogrout: A new ground improvement method based on microbial-induced carbonate precipitation.” Transp. Porous Media 87 (2): 397–420. https://doi.org/10.1007/s11242-010-9691-8.
van Wijngaarden, W. K., F. J. Vermolen, G. A. M. van Meurs, and C. Vuik. 2012. “A mathematical model and analytical solution for the fixation of bacteria in biogrout.” Transp. Porous Media 92 (3): 847–866. https://doi.org/10.1007/s11242-011-9937-0.
Wang, Y., K. Soga, J. T. Dejong, and A. J. Kabla. 2019. “A microfluidic chip and its use in characterising the particle-scale behaviour of microbial-induced calcium carbonate precipitation (MICP).” Géotechnique 69 (12): 1086–1094. https://doi.org/10.1680/jgeot.18.P.031.
Wang, Y., K. Soga, and N.-J. Jiang. 2017. “Microbial induced carbonate precipitation (MICP): The case for microscale perspective.” In Proc., 19th Int. Conf. on Soil Mechanics and Geotechnical Engineering, 1099–1102. Seoul: Korean Geotechnical Society.
Whiffin, V. S. 2004. “Microbial CaCO3 precipitation for the production of biocement.” Ph.D. thesis, School of Biological Sciences and Biotechnology, Murdoch Univ.
Whiffin, V. S., L. A. van Paassen, and M. P. Harkes. 2007. “Microbial carbonate precipitation as a soil improvement technique.” Geomicrobiol. J. 24 (5): 417–423. https://doi.org/10.1080/01490450701436505.
Xu, Z., T. Bai, Y. Pang, F. Zhou, and J. Huang. 2017. “Experimental study of the filling effect of MICP microbial grouting in silt.” In Vol. 72 of Proc., 2016 Int. Conf. on Architectural Engineering and Civil Engineering, 480–484. Paris: Atlantis Press.
Zamani, A., and B. M. Montoya. 2018. “Undrained monotonic shear response of MICP-treated silty sands.” J. Geotech. Geoenviron. Eng. 144 (6): 04018029. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001861.
Zhao, Y., F. Ge, and Y. Yang. 2019. “Factors affecting bio-cemented typical silt from middle and lower reaches of Yellow River.” IOP Conf. Ser.: Earth Environ. Sci. 304 (2): 022061. https://doi.org/10.1088/1755-1315/304/2/022061.
Zheng, M.-C. J., R.-J. Zhang, H.-J. Lai, and J. Zhang. 2017. “Influence of cementation level on the strength behaviour of bio-cemented sand.” Acta Geotech. 12 (5): 971–986. https://doi.org/10.1007/s11440-017-0574-9.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 147Issue 7July 2021

History

Received: May 6, 2020
Accepted: Mar 4, 2021
Published online: May 12, 2021
Published in print: Jul 1, 2021
Discussion open until: Oct 12, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Student, School of Civil Engineering and Mechanics, Huazhong Univ. of Science and Technology, 1037 Luoyu Rd., Wuhan, Hubei 430074, China. ORCID: https://orcid.org/0000-0002-5421-937X. Email: [email protected]
Director, Groundwater Technology BV, Sheffieldstraat 13, Rotterdam 3047, Netherlands. Email: [email protected]
Ph.D. Student, Center for Bio-mediated and Bio-inspired Geotechnics, Arizona State Univ., 650 E Tyler Mall, Tempe, AZ 85287-3005. ORCID: https://orcid.org/0000-0002-1977-8598. Email: [email protected]
Elizabeth Stallings Young, S.M.ASCE [email protected]
Ph.D. Student, Center for Bio-mediated and Bio-inspired Geotechnics, Arizona State Univ., 650 E Tyler Mall, Tempe, AZ 85287-3005. Email: [email protected]
Wouter R. L. van der Star [email protected]
Researcher, Soil and Groundwater Systems, Deltares, Boussinesqweg 1, Delft 2629, Netherlands. Email: [email protected]
Jun-jie Zheng, M.ASCE [email protected]
Professor, School of Civil Engineering and Mechanics, Huazhong Univ. of Science and Technology, 1037 Luoyu Rd., Wuhan, Hubei 430074, China. Email: [email protected]
Leon A. van Paassen, M.ASCE [email protected]
Associate Professor, School of Sustainable Engineering and the Built Environment, Arizona State Univ., 650 E Tyler Mall, Tempe, AZ 85287-3005 (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Cementing Mechanism of MICP-Treated Mortar and Performance Improvement by Innovative Molds, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-16752, 36, 7, (2024).
  • Constitutive Modeling for Biocemented Calcareous Sands, International Journal of Geomechanics, 10.1061/IJGNAI.GMENG-9089, 24, 8, (2024).
  • Various Bacterial Attachment Functions and Modeling of Biomass Distribution in MICP Implementations, Journal of Geotechnical and Geoenvironmental Engineering, 10.1061/JGGEFK.GTENG-10812, 149, 9, (2023).
  • Reactive Transport Model to Evaluate Process Performance of Bio-Mediated Liquefaction Mitigation underneath Existing Structures, Geo-Congress 2023, 10.1061/9780784484654.009, (80-88), (2023).
  • A (Simplified) Biogeochemical Numerical Model to Predict Saturation, Porosity and Permeability During Microbially Induced Desaturation and Precipitation, Water Resources Research, 10.1029/2022WR032907, 59, 1, (2023).
  • Immobilizing copper in loess soil using microbial-induced carbonate precipitation: Insights from test tube experiments and one-dimensional soil columns, Journal of Hazardous Materials, 10.1016/j.jhazmat.2022.130417, 444, (130417), (2023).
  • Effects of carbonate distribution pattern on the mechanical behaviour of bio-cemented sands: A DEM study, Computers and Geotechnics, 10.1016/j.compgeo.2022.105152, 154, (105152), (2023).
  • Small strain stiffness of graded sands with light biocementation, Acta Geotechnica, 10.1007/s11440-023-01886-5, (2023).
  • Effects of Enzymatically Induced Carbonate Precipitation on Capillary Pressure–Saturation Relations, Minerals, 10.3390/min12101186, 12, 10, (1186), (2022).
  • Catalyzing urea hydrolysis using two-step microbial-induced carbonate precipitation for copper immobilization: Perspective of pH regulation, Frontiers in Microbiology, 10.3389/fmicb.2022.1001464, 13, (2022).
  • See more

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share