Technical Papers
Jul 6, 2022

Experimental Studies and Constitutive Modeling of Static Liquefaction Instability in Sand–Clay Mixtures

Publication: International Journal of Geomechanics
Volume 22, Issue 9

Abstract

This paper examines static liquefaction phenomena in sand–clay mixtures from both experimental and theoretical perspectives. Consolidated undrained triaxial tests (CU tests) are implemented on a mixture of sand and clay to study the effects of initial relative density, confining pressure, and clay content on static liquefaction responses. By using the equivalent granular state parameter, a state-dependent hardening plasticity model is proposed to reproduce mechanical responses, as well as to replicate the observed static liquefaction phenomenon. In accordance with the second-order work theory, the criteria for predicting the potential instability and static liquefaction of sand–clay mixtures are obtained. The analyses show that (1) static liquefaction is prone to be promoted by low initial relative density and confining pressure; (2) even a small amount of clay particles can significantly increase the liquefaction susceptibility in loose sand–clay mixtures; (3) the proposed constitutive model can provide a satisfactory match between the test data and the simulations; and (4) even when the state of the soil is potentially unstable, soils can still remain stable unless second-order work vanishes, which indicates the inception of static liquefaction.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The financial support provided by the National Natural Science Foundation of China (NSFC through Grant Nos. 42172300 and 41672270) is gratefully acknowledged.

References

Amini, F., and G. Z. Qi. 2000. “Liquefaction testing of stratified silty sands.” J. Geotech. Geoenviron. Eng. 126 (3): 208–217. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:3(208).
Andrade, J. E. 2009. “A predictive framework for liquefaction instability.” Géotechnique. 59 (8): 673–682. https://doi.org/10.1680/geot.7.00087.
Beddoe, R. A., and A. W. Take. 2015. “Influence of slope inclination on the triggering and distal reach of hydraulically-induced flow slides.” Eng. Geol. 187: 170–182. https://doi.org/10.1016/j.enggeo.2015.01.006.
Been, K., and M. Jefferies. 2004. “Stress–dilatancy in very loose sand.” Can. Geotech. J. 41 (5): 972–989. https://doi.org/10.1139/t04-038.
Been, K., and M. G. Jefferies. 1985. “A state parameter for sands.” Géotechnique 35 (2): 99–112. https://doi.org/10.1680/geot.1985.35.2.99.
Benahmed, N., T. K. Nguyen, P. Y. Hicher, and M. Nicolas. 2015. “An experimental investigation into the effects of low plastic fines content on the behaviour of sand/silt mixtures.” Eur. J. Environ. Civ. Eng. 19 (1): 109–128. https://doi.org/10.1080/19648189.2014.939304.
Bouferra, R., and I. Shahrour. 2004. “Influence of fines on the resistance to liquefaction of a clayey sand.” Proc. Inst. Civ. Eng. Ground Improv. 8 (1): 1–5. https://doi.org/10.1680/grim.2004.8.1.1.
Buscarnera, G., and C. de Prisco. 2012. “Discussing the definition of the second-order work for unsaturated soils.” Int. J. Numer. Anal. Methods Geomech. 36 (1): 36–49. https://doi.org/10.1002/nag.991.
Buscarnera, G., and A. J. Whittle. 2013. “Model prediction of static liquefaction: Influence of the initial state on potential instabilities.” J. Geotech. Geoenviron. Eng. 139 (3): 420–432. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000779.
Castro, G. 1969. “Liquefaction of sand.” Ph.D. thesis, Division of Engineering and Applied Physics, Harvard University, Cambridge.
Choo, H., and S. E. Burns. 2015. “Shear wave velocity of granular mixtures of silica particles as a function of finer fraction, size ratios and void ratios.” Granular Matter 17 (5): 567–578. https://doi.org/10.1007/s10035-015-0580-2.
Chu, J. 1995. “An experimental examination of the critical state and other similar concepts for granular soils.” Can. Geotech. J. 32 (6): 1065–1075. https://doi.org/10.1139/t95-104.
Chu, J., and W. K. Leong. 2001. “Pre-failure strain softening and pre-failure instability of sand: A comparative study.” Géotechnique 51 (4): 311–321. https://doi.org/10.1680/geot.2001.51.4.311.
Dai, B. B., J. Yang, X. Q. Gu, and W. Zhang. 2019. “A numerical analysis of the equivalent skeleton void ratio for silty sand.” Geomech. Eng. 17 (1): 19–30.
Dai, B., J. Yang, and X. Luo. 2015. “A numerical analysis of the shear behavior of granular soil with fines.” Particuology 21: 160–172. https://doi.org/10.1016/j.partic.2014.08.010.
Dash, H. K., T. G. Sitharam, and B. A. Baudet. 2010. “Influence of non-plastic fines on the response of a silty sand to cyclic loading.” Soils Found. 50 (5): 695–704. https://doi.org/10.3208/sandf.50.695.
Fourie, A. B., G. E. Blight, and G. Papageorgiou. 2001. “Static liquefaction as a possible explanation for the Merriespruit tailings dam failure.” Can. Geotech. J. 38: 707–719. https://doi.org/10.1139/t00-112.
Goudarzy, M., M. M. Rahman, D. König, and T. Schanz. 2016. “Influence of non-plastic fines content on maximum shear modulus of granular materials.” Soils Found. 56 (6): 973–983. https://doi.org/10.1016/j.sandf.2016.11.003.
Goudarzy, M., D. Sarkar, W. Lieske, and T. Wichtmann. 2021. “Influence of plastic fines content on the liquefaction susceptibility of sands: Monotonic loading.” Acta Geotech. https://doi.org/10.1007/s11440-021-01283-w.
Hamidi, A., S. Tourchi, and C. Khazaei. 2015. “Thermomechanical constitutive model for saturated clays based on critical state theory.” Int. J. Geomech. 15 (1): 04014038. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000402.
Huang, M. S., X. L. Lü, and J. G. Qian. 2010. “Non-coaxial elastoplasticity model and bifurcation prediction of shear banding in sands.” Int. J. Numer. Anal. Methods Geomech. 34 (9): 906–919.
Huang, Y., and L. Zhao. 2018. “The effects of small particles on soil seismic liquefaction resistance: Current findings and future challenges.” Nat. Hazard. 92 (1): 567–579. https://doi.org/10.1007/s11069-018-3212-4.
Kim, D., B. H. Nam, and H. Youn. 2018. “Effect of clay content on the shear strength of clay–sand mixture.” Int. J. Geo-Eng. 9 (1): 1–12. https://doi.org/10.1186/s40703-017-0070-y.
Krim, A., A. Arab, M. Chemam, A. Brahim, M. Sadek, and I. Shahrour. 2019. “Experimental study on the liquefaction resistance of sand–clay mixtures: Effect of clay content and grading characteristics.” Mar. Georesour. Geotechnol. 37 (2): 129–141. https://doi.org/10.1080/1064119X.2017.1407974.
Lade, P. V. 1992. “Static instability and liquefaction of loose fine sandy slopes.” J. Geotech. Eng. 118 (51): 51–71. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:1(51).
Lade, P. V., R. B. Nelson, and Y. M. Ito. 1988. “Instability of granular materials with nonassociated flow.” J. Eng. Mech. 114 (12): 2173–2191. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:12(2173).
Lashkari, A. 2016. “Prediction of flow liquefaction instability of clean and silty sands.” Acta Geotech. 11 (5): 987–1014. https://doi.org/10.1007/s11440-015-0413-9.
Lashkari, A., A. Karimi, K. Fakharian, and F. Kaviani-Hamedani. 2017. “Prediction of undrained behavior of isotropically and anisotropically consolidated Firoozkuh sand: Instability and flow liquefaction.” Int. J. Geomech. 17 (10): 04017083. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000958.
Ling, Y. H. 1992. “Liquefaction of granular soils with non-cohesive and cohesive fines.” In Vo. 11 of Proc., 10th World. Conf., on Earthquake Engineering, p. 1491. Boca Raton, FL: CRC Press.
Leong, W. K., J. Chu, and C. I. Teh. 2000. “Liquefaction and instability of a granular fill material.” Geotech. Test. J. 23 (2): 178–192. https://doi.org/10.1520/GTJ11042J.
Li, X. S., and Y. F. Dafalias. 2000. “Dilatancy for cohesionless soils.” Géotechnique 50 (4): 449–460. https://doi.org/10.1680/geot.2000.50.4.449.
Li, X. S., and Y. Wang. 1998. “Linear representation of steady-state line for sand.” J. Geotech. Geoenviron. Eng. 124 (12): 1215–1217. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1215).
Lü, X., and M. Huang. 2015. “Static liquefaction of sands under isotropically and K0-consolidated undrained triaxial conditions.” J. Geotech. Geoenviron. Eng. 141 (1): 04014087. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001206.
Lü, X., M. Huang, and J. E. Andrade. 2017. “Predicting the initiation of static liquefaction of cross-anisotropic sands under multiaxial stress conditions.” Int. J. Numer. Anal. Methods Geomech. 41 (17): 1724–1740. https://doi.org/10.1002/nag.2697.
Lü, X., M. Huang, and J. E. Andrade. 2018. “Modeling the static liquefaction of unsaturated sand containing gas bubbles.” Soils Found. 58 (1): 122–133. https://doi.org/10.1016/j.sandf.2017.11.008.
Ma, G., X. He, X. Jiang, H. Liu, J. Chu, and Y. Xiao. 2021. “Strength and permeability of bentonite-assisted biocemented coarse sand.” Can. Geotech. J. 58: 969–981. https://doi.org/10.1139/cgj-2020-0045.
Manzari, M. T., and Y. F. Dafalias. 1997. “A critical state two-surface plasticity model for sands.” Géotechnique 47 (2): 255–272. https://doi.org/10.1680/geot.1997.47.2.255.
Mroz, Z., N. Boukpeti, and A. Drescher. 2003. “Constitutive model for static liquefaction.” Int. J. Geomech. 3 (2): 133–144. https://doi.org/10.1061/(ASCE)1532-3641(2003)3:2(133).
Ng, C. W., W. T. Fung, C. Y. Cheuk, and L. Zhang. 2004. “Influence of stress ratio and stress path on behavior of loose decomposed granite.” J. Geotech. Geoenviron. Eng. 130 (1): 36–44. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:1(36).
Pietruszczak, S., and D. F. E. Stolle. 1987. “Deformation of strain softening materials part II: Modelling of strain softening response.” Comput. Geotech. 4 (2): 109–123. https://doi.org/10.1016/0266-352X(87)90014-0.
Poulos, S. J. 1981. “The steady state of deformation.” J. Geotech. Eng. Div. 107 (5): 553–562. https://doi.org/10.1061/AJGEB6.0001129.
Rahman, M. M., M. A. L. Baki, and S. R. Lo. 2014a. “Prediction of undrained monotonic and cyclic liquefaction behavior of sand with fines based on the equivalent granular state parameter.” Int. J. Geomech. 14 (2): 254–266. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000316.
Rahman, M. M., S. R. Lo, and M. A. L. Baki. 2011. “Equivalent granular state parameter and undrained behaviour of sand–fines mixtures.” Acta Geotech. 6 (4): 183–194. https://doi.org/10.1007/s11440-011-0145-4.
Rahman, M. M., S.-C. R. Lo, and Y. F. Dafalias. 2014b. “Modelling the static liquefaction of sand with low-plasticity fines.” Géotechnique 64 (11): 881–894. https://doi.org/10.1680/geot.14.P.079.
Rahman, M. M., S. R. Lo, and C. T. Gnanendran. 2008. “On equivalent granular void ratio and steady state behaviour of loose sand with fines.” Can. Geotech. J. 45 (10): 1439–1456. https://doi.org/10.1139/T08-064.
Roscoe, K. H., A. N. Schofield, and C. P. Wroth. 1958. “On the yielding of soils.” Géotechnique 8 (1): 22–53. https://doi.org/10.1680/geot.1958.8.1.22.
Sabbar, A. S., A. Chegenizadeh, and H. Nikraz. 2017. “Static liquefaction of very loose sand–slag–bentonite mixtures.” Soils Found. 57 (3): 341–356. https://doi.org/10.1016/j.sandf.2017.05.003.
Singh, S. 1996. “Liquefaction characteristics of silts.” Geotech. Geol. Eng. 14 (1): 1–19. https://doi.org/10.1007/BF00431231.
Sun, Z. C., J. Chu, and Y. Xiao. 2021. “Formulation and implementation of an elastoplastic constitutive model for sand–fines mixtures.” Int. J. Numer. Anal. Methods Geomech. 45 (18): 2682–2708. https://doi.org/10.1002/nag.3282.
Terzaghi, K., and R. B. Peck. 1996. Soil mechanics in engineering practice. 3rd ed. New York: Wiley.
Tong, C.-X., G. J. Burton, S. Zhang, and D. Sheng. 2018. “A simple particle-size distribution model for granular materials.” Can. Geotech. J. 55 (2): 246–257. https://doi.org/10.1139/cgj-2017-0098.
Tong, C., M. Zhai, H. Li, S. Zhang, and D. Sheng. 2022. “Particle breakage of granular soils: Changing critical state line and constitutive modelling.” Acta Geotech. 17 (3): 755–768.
Vaid, Y. P., and S. Sivathayalan. 2000. “Fundamental factors affecting liquefaction susceptibility of sands.” Can. Geotech. J. 37 (3): 592–606. https://doi.org/10.1139/t00-040.
Wei, X., and J. Yang. 2019. “A critical state constitutive model for clean and silty sand.” Acta Geotech. 14 (2): 329–345. https://doi.org/10.1007/s11440-018-0675-0.
Wu, Q. X., T. T. Xu, and Z. X. Yang. 2020. “Diffuse instability of granular material under various drainage conditions: Discrete element simulation and constitutive modeling.” Acta Geotech. 15 (7): 1763–1778. https://doi.org/10.1007/s11440-019-00885-9.
Xiao, Y., Y. Sun, F. Yin, H. Liu, and J. Xiang. 2017a. “Constitutive modeling for transparent granular soils.” Int. J. Geomech. 17 (7): 04016150. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000857.
Xiao, Y., J. Xiang, H. Liu, and Q. Ma. 2017b. “Strength–dilatancy relation of sand containing non-plastic fines.” Géotech. Lett. 7 (2): 204–210. https://doi.org/10.1680/jgele.16.00144.
Xiao, Y., Y. Wang, C. S. Desai, X. Jiang, and H. Liu. 2019a. “Strength and deformation responses of biocemented sands using a temperature-controlled method.” Int. J. Geomech. 19 (11): 04019120. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001497.
Xiao, Y., Z. Yuan, J. Lin, J. Ran, B. Dai, J. Chu, and H. Liu. 2019b. “Effect of particle shape of glass beads on the strength and deformation of cemented sands.” Acta Geotech. 14: 2123–2131. https://doi.org/10.1007/s11440-019-00830-w.
Yamamuro, J. A., and P. V. Lade. 1997. “Static liquefaction of very loose sands.” Can. Geotech. J. 34 (6): 905–917. https://doi.org/10.1139/t97-057.
Yamamuro, J. A., and P. V. Lade. 1998. “Steady-state concepts and static liquefaction of silty sands.” J. Geotech. Geoenviron. Eng. 124 (9): 868–877. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:9(868).
Yang, J., L. M. Wei, and B. B. Dai. 2015. “State variables for silty sands: Global void ratio or skeleton void ratio?” Soils Found. 55 (1): 99–111. https://doi.org/10.1016/j.sandf.2014.12.008.
Yin, Z.-Y., H.-W. Huang, and P.-Y. Hicher. 2016. “Elastoplastic modeling of sand–silt mixtures.” Soils Found. 56 (3): 520–532. https://doi.org/10.1016/j.sandf.2016.04.017.
Zeng, S., X. Lü, and M. Huang. 2019. “Discrete element modeling of static liquefaction of shield tunnel face in saturated sand.” Acta Geotech. 14 (6): 1643–1652. https://doi.org/10.1007/s11440-019-00806-w.
Zhang, S., F. Gao, X. He, Q. Chen, and D. Sheng. 2021. “Experimental study of particle migration under cyclic loading: Effects of load frequency and load magnitude.” Acta Geotech. 16: 367–380. https://doi.org/10.1007/s11440-020-01137-x.
Zlatovic, S., and K. Ishihara. 1997. “Normalized behavior of very loose non-plastic soils: Effects of fabric.” Soils Found. 37 (4): 47–56. https://doi.org/10.3208/sandf.37.4_47.
Zuo, L., and B. A. Baudet. 2015. “Determination of the transitional fines content of sand-non plastic fines mixtures.” Soils Found. 55 (1): 213–219. https://doi.org/10.1016/j.sandf.2014.12.017.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 22Issue 9September 2022

History

Received: Jul 22, 2021
Accepted: Mar 14, 2022
Published online: Jul 6, 2022
Published in print: Sep 1, 2022
Discussion open until: Dec 6, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Xilin , A.M.ASCE [email protected]
Professor, Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education and Dept. of Geotechnical Engineering, Tongji Univ., Shanghai 200092, China (corresponding author). Email: [email protected]
Ph.D. Candidate, Dept. of Geotechnical Engineering, Tongji Univ., Shanghai 200092, China. Email: [email protected]
Graduate Student, Dept. of Geotechnical Engineering, Tongji Univ., Shanghai 200092, China. Email: [email protected]
Graduate Student, Dept. of Geotechnical Engineering, Tongji Univ., Shanghai 200092, China. ORCID: https://orcid.org/0000-0002-7850-8125. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Constitutive Modeling for Biocemented Calcareous Sands, International Journal of Geomechanics, 10.1061/IJGNAI.GMENG-9089, 24, 8, (2024).
  • Stress-Dependent Shear Strength of Resedimented Nile Silty Clay, International Journal of Geomechanics, 10.1061/IJGNAI.GMENG-7733, 23, 5, (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share