Abstract

Per- and polyfluoroalkyl substances (PFASs) are recalcitrant emerging contaminants of concern within the United States and internationally. Of the known PFASs, the sulfonates are considered among the most toxic and difficult to destroy using traditional methods. Research presented herein describes the degradation and defluorination of perfluorooctane sulfonate (PFOS) using a novel photocatalytic porous silica-based granular media (SGM) activated with ultraviolet light, and combined with a strong or weak nucleophilic attack in batch reactors. Sodium thiosulfate proved to be the most compatible and efficient nucleophile in combination with SGM media production of free radicals. Measured aqueous fluoride content accounted for 51% defluorination of PFOS, while the remainder is theorized to mineralize and reside within the porous network of the SGM, as indicated by scanning electron microscopy and energy dispersive x-ray spectroscopy. Removal of PFOS in solution is completed by 30 min with Na2S2O3, with measurable by-product production of C2F3O2 and aqueous fluoride occurring at 15 min. The rapid increase, incipient decrease, and subsequent mineralization of fluoride reveals that the degradation of PFOS is rapid and starts with cleaving of the functional sulfonate group. Amalgamated C-F chains precipitate within the SGM alongside the crystalized fluorine. Possible pathways for PFOS destruction are proposed for the combined attack results. This approach is translatable to other PFASs and organic contaminants of concern.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This research was supported wholly (or in part) by the US Department of Defense through the Strategic Environmental Research and Development Program (SERDP) project ER19-1403. We would like to thank Geosyntec for their technical support.

References

ASTM. 2020. Standard test method for determination of per- and polyfluoroalkyl substances in water, sludge, influent, effluent, and wastewater by liquid chromatography tandem mass spectrometry (LC/MS/MS). ASTM D7979-20. West Conshohocken, PA: ASTM International.
ATSDR (Agency for Toxic Substances and Disease Registry). 2015. Draft toxicological profile for perfluoroalkyls. Atlanta: ATSDR.
Bjerregaard-Olesen, C., C. C. Bach, M. Long, M. Wielsøe, B. H. Bech, T. B. Henriksen, and E. C. Bonefeld-Jørgensen. 2019. “Associations of fetal growth outcomes with measures of the combined xenoestrogenic activity of maternal serum perfluorinated alkyl acids in Danish pregnant women.” Environ. Health Perspect. 127 (1): 17006. https://doi.org/10.1289/EHP1884.
Bruton, T. A., and D. L. Sedlak. 2018. “Treatment of perfluoroalkyl acids by heat-activated persulfate under conditions representative of in situ chemical oxidation.” Chemosphere 206 (Sep): 457–464. https://doi.org/10.1016/j.chemosphere.2018.04.128.
Calafat, A. M., L. Y. Wong, Z. Kuklenyik, J. A. Reidy, and L. L. Needham. 2007. “Polyfluoroalkyl chemicals in the U.S. population: Data from the National Health and Nutrition Examination Survey (NHANES) 2003-2004 and comparisons with NHANES 1999-2000.” Environ. Health Perspect. 115 (11): 1596–1602. https://doi.org/10.1289/ehp.10598.
Carter, K. E., and J. Farrell. 2008. “Oxidative destruction of perfluorooctane sulfonate using boron-doped diamond film electrodes.” Environ. Sci. Technol. 42 (16): 6111–6115. https://doi.org/10.1021/es703273s.
Chen, M. J., S. L. Lo, Y. C. Lee, and C. C. Huang. 2015. “Photocatalytic decomposition of perfluorooctanoic acid by transition-metal modified titanium dioxide.” J. Hazard. Mater. 288 (May): 168–175. https://doi.org/10.1016/j.jhazmat.2015.02.004.
Conder, J. M., R. A. Hoke, W. De Wolf, M. H. Russell, and R. C. Buck. 2008. “Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds.” Environ. Sci. Technol. 42 (4): 995–1003. https://doi.org/10.1021/es070895g.
Coperchini, F., O. Awwad, M. Rotondi, F. Santini, M. Imbriani, L. Chiovato. 2017. “Thyroid disruption by perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA).” J. Endocrinol. Invest. 40: 105–121. https://doi.org/10.1007/s40618-016-0572-z.
Cousins, I. T., et al. 2019. “The concept of essential use for determining when uses of PFASs can be phased out.” Environ. Sci. Processes Impacts 21 (11): 1803–1815. https://doi.org/10.1039/c9em00163h.
Dai, Z., X. Xia, J. Guo, and X. Jiang. 2013. “Bioaccumulation and uptake routes of perfluoroalkyl acids in Daphnia magna.” Chemosphere 90 (5): 1589–1596. https://doi.org/10.1016/j.chemosphere.2012.08.026.
Da Silva, R. C., E. T. Kubaski, E. T. Tenório-Neto, M. K. Lima-Tenório, and S. M. Tebcherani. 2019. “Foam glass using sodium hydroxide as foaming agent: Study on the reaction mechanism in soda-lime glass matrix.” J. Non-Cryst. Solids 511 (May): 177–182. https://doi.org/10.1016/j.jnoncrysol.2019.02.003.
Domingo, J. L., and M. Nadal. 2019. “Human exposure to per- and polyfluoroalkyl substances (PFAS) through drinking water: A review of the recent scientific literature.” Environ. Res. 177 (Aug): 108648. https://doi.org/10.1016/j.envres.2019.108648.
Franke, V., M. D. Schäfers, J. J. Lindberg, and L. Ahrens. 2019. “Removal of per- and polyfluoroalkyl substances (PFASs) from tap water using heterogeneously catalyzed ozonation.” Environ. Sci. Water Res. Technol. 5 (11): 1887–1896. https://doi.org/10.1039/c9ew00339h.
FSANZ (Food Standards Australia New Zealand). 2016. Occurrence of and dietary exposure to perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexane sulfonate (PFHxS) reported in the literature. Wellington, New Zealand: FSANZ.
Gomez-Ruiz, B., P. Ribao, N. Diban, M. J. Rivero, I. Ortiz, and A. Urtiaga. 2018. “Photocatalytic degradation and mineralization of perfluorooctanoic acid (PFOA) using a composite TiO2—rGO catalyst.” J. Hazard. Mater. 344 (Feb): 950–957. https://doi.org/10.1016/j.jhazmat.2017.11.048.
Guelfo, J. L., and C. P. Higgins. 2013. “Subsurface transport potential of perfluoroalkyl acids at aqueous film-forming foam (AFFF)-impacted sites.” Environ. Sci. Technol. 47 (9): 4164–4171. https://doi.org/10.1021/es3048043.
Guillard, C., H. Lachheb, A. Houas, M. Ksibi, E. Elaloui, and J. Herrmann. 2003. “Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2.” J. Photochem. Photobiol. A 158 (1): 27–36. https://doi.org/10.1016/S1010-6030(03)00016-9.
Higgins, C. P., and R. G. Luthy. 2007. “Modeling sorption of anionic surfactants onto sediment materials: An a priori approach for perfluoroalkyl surfactants and linear alkylbenzene sulfonates.” Environ. Sci. Technol. 41 (9): 3254–3261. https://doi.org/10.1021/es062449j.
Hori, H., Y. Nagaoka, A. Yamamoto, T. Sano, N. Yamashita, S. Taniyasu, and S. Kutsuna. 2006. “Efficient decomposition of environmentally persistent perfluorooctane sulfonate and related fluorochemicals using zerovalent iron in subcritical water.” Environ. Sci. Technol. 40 (3): 1049–1054. https://doi.org/10.1021/es0517419.
Hori, H., E. Yamamoto, E. Hayakawa, S. Taniyasu, N. Yamashita, and S. Kutsuna. 2005. “Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant.” Environ. Sci. Technol. 39 (7): 2383–2388. https://doi.org/10.1021/es0484754.
Houde, M., A. O. De Silva, D. C. G. Muir, and R. J. Letcher. 2011. “Monitoring of perfluorinated compounds in aquatic biota: An updated review.” Environ. Sci. Technol. 45 (19): 7962–7973. https://doi.org/10.1021/es104326w.
Huang, J., X. Wang, Z. Pan, X. Li, Y. Ling, and L. Li. 2016. “Efficient degradation of perfluorooctanoic acid (PFOA) by photocatalytic ozonation.” Chem. Eng. J. 296 (Jul): 329–334. https://doi.org/10.1016/j.cej.2016.03.116.
ISO (International Organization for Standardization). 2010. Fine ceramics (advanced ceramics, advanced technical ceramics)—Determination of photocatalytic activity of surfaces in an aqueous medium by degradation of methylene blue. ISO 10678. Geneva: ISO.
ITRC (Interstate Technology & Regulatory Council). 2020. PFAS technical and regulatory guidance document and fact sheets PFAS-1. Washington, DC: ITRC.
Krafft, M. P., and J. G. Riess. 2015. “Selected physicochemical aspects of poly- and perfluoroalkylated substances relevant to performance, environment and sustainability—Part one.” Chemosphere 129 (Jun): 4–19. https://doi.org/10.1016/j.chemosphere.2014.08.039.
Letterman, R. D. 1999. Water quality and treatment: A handbook of community water supplies. New York: McGraw-Hill.
Levy, D., and M. Zayat. 2015. The sol-gel handbook: Synthesis, characterization, and applications. 1st ed. Weinheim, Germany: Wiley-VCH Verlag GmbH.
Li, A., A. Zhang, P. Li, L. Cai, L. Zhang, and J. Gong. 2017. “Nitrogen dioxide radicals mediated mineralization of perfluorooctanoic acid in aqueous nitrate solution with UV irradiation.” Chemosphere 188 (Dec): 367–374. https://doi.org/10.1016/j.chemosphere.2017.08.170.
Lin, H., J. Niu, S. Liang, S. C. Wang, Y. Wang, F. Jin, Q. Luo, S. D. Chiang, and Q. Huang. 2019. “Corrigendum to ‘Development of macroporous Magnéli phase Ti4O7 ceramic materials: As an efficient anode for mineralization of poly- and perfluoroalkyl substances’.” Chem. Eng. J. 354 (2018): 1058–1067. https://doi.org/10.1016/j.cej.2018.07.210.
Lin, H., J. F. Niu, S. Y. Ding, and L. L. Zhang. 2012. “Electrochemical degradation of perfluorooctanoic acid (PFOA) by Ti/SnO2-Sb, Ti/SnO2-Sb/PbO2 and Ti/SnO2-Sb/MnO2 anodes.” Water Res. 46 (7): 2281–2289. https://doi.org/10.1016/j.watres.2012.01.053.
Lopez-Espinosa, M. J., T. Fletcher, B. Armstrong, B. Genser, K. Dhatariya, D. Mondal, and G. Leonardi. 2011. “Association of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) with age of puberty among children living near a chemical plant.” Environ. Sci. Technol. 45 (19): 8160–8166. https://doi.org/10.1021/es1038694.
Lyu, X. J., W. W. Li, P. K. S. Lam, and H. Q. Yu. 2015. “Insights into perfluorooctane sulfonate photodegradation in a catalyst-free aqueous solution.” Sci. Rep. 5 (1): 1–6. https://doi.org/10.1038/srep09353.
Martín, J., F. Hidalgo, M. T. García-Corcoles, A. J. Ibáñez-Yuste, E. Alonso, J. L. Vilchez, and A. Zafra-Gómez. 2019. “Bioaccumulation of perfluoroalkyl substances in marine echinoderms: Results of laboratory-scale experiments with Holothuria tubulosa Gmelin, 1791.” Chemosphere 215 (Jan): 261–271. https://doi.org/10.1016/j.chemosphere.2018.10.037.
McIntyre, H. M., and M. L. Hart. 2021. “Photocatalytic porous silica-based granular media for organic pollutant degradation in industrial waste-streams.” Catalysts 11 (2): 258. https://doi.org/10.3390/catal11020258.
Merino, N., Y. Qu, R. A. Deeb, E. L. Hawley, M. R. Hoffmann, and S. Mahendra. 2016. “Degradation and removal methods for perfluoroalkyl and polyfluoroalkyl substances in water.” Environ. Eng. Sci. 33 (9): 615–649. https://doi.org/10.1089/ees.2016.0233.
Moriwaki, H., Y. Takagi, M. Tanaka, K. Tsuruho, K. Okitsu, and Y. Maeda. 2005. “Sonochemical decomposition of perfluorooctane sulfonate and perfluorooctanoic acid.” Environ. Sci. Technol. 39 (9): 3388–3392. https://doi.org/10.1021/es040342v.
Niu, J. F., H. Lin, J. L. Xu, H. Wu, and Y. Y. Li. 2012. “Electrochemical mineralization of perfluorocarboxylic acids (PFCAs) by Ce-doped modified porous nano-crystalline PbO2 film electrode.” Environ. Sci. Technol. 46 (18): 10191–10198. https://doi.org/10.1021/es302148z.
Parenky, A. C., N. G. de Souza, H. H. Nguyen, J. Jeon, and H. Choi. 2020. “Decomposition of carboxylic PFAS by persulfate activated by silver under ambient conditions.” J. Environ. Eng. 146 (10): 06020003 https://doi.org/10.1061/(ASCE)EE.1943-7870.0001808.
Park, H., C. D. Vecitis, J. Cheng, W. Choi, B. T. Mader, and M. R. Hoffmann. 2009. “Reductive defluorination of aqueous perfluorinated alkyl surfactants: Effects of ionic headgroup and chain length.” J. Phys. Chem. A 113 (4): 690–696. https://doi.org/10.1021/jp807116q.
Qanbarzadeh, M., D. Wang, M. Ateia, S. P. Sahu, and E. L. Cates. 2020. “Impacts of reactor configuration, degradation mechanisms, and water matrices on perfluorocarboxylic acid treatment efficiency by the UV/Bi3O(OH)(PO4)2 photocatalytic process.” ACS EST Eng. 1 (2): 239–248. https://doi.org/10.1021/acsestengg.0c00086.
Qian, Y., X. Guo, Y. Zhang, Y. Peng, P. Sun, C. H. Huang, J. Niu, X. Zhou, and J. C. Crittenden. 2016. “Perfluorooctanoic acid degradation using UV-persulfate process: Modeling of the degradation and chlorate formation.” Environ. Sci. Technol. 50 (2): 772–781. https://doi.org/10.1021/acs.est.5b03715.
Rahman, M. F., S. Peldszus, and W. B. Anderson. 2014. “Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: A review.” Water Res. 50 (Mar): 318–340. https://doi.org/10.1016/j.watres.2013.10.045.
Sahu, S. P., M. Qanbarzadeh, M. Ateia, H. Torkzadeh, A. S. Maroli, and E. L. Cates. 2018. “Rapid degradation and mineralization of perfluorooctanoic acid by a new petitjeanite Bi3O(OH)(PO4)2 microparticle ultraviolet photocatalyst.” Environ. Sci. Technol. Lett. 5 (8): 533–538. https://doi.org/10.1021/acs.estlett.8b00395.
Schaefer, C. E., C. Andaya, A. Burant, C. W. Condee, A. Urtiaga, T. J. Strathmann, and C. P. Higgins. 2017. “Electrochemical treatment of perfluorooctanoic acid and perfluorooctane sulfonate: Insight into mechanisms and application to groundwater treatment.” Chem. Eng. J. 317 (2017): 424–432. https://doi.org/10.1016/j.cej.2017.02.107.
Schaefer, C. E., C. Andaya, A. Urtiaga, E. R. McKenzie, and C. P. Higgins. 2015. “Electrochemical treatment of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in groundwater impacted by aqueous film forming foams (AFFFs).” J. Hazard. Mater. 295 (Sep): 170–175. https://doi.org/10.1016/j.jhazmat.2015.04.024.
Scher, D. P., J. E. Kelly, C. A. Huset, K. M. Barry, R. W. Hoffbeck, V. L. Yingling, and R. B. Messing. 2018. “Occurrence of perfluoroalkyl substances (PFAS) in garden produce at homes with a history of PFAS-contaminated drinking water.” Chemosphere 196 (Apr): 548–555. https://doi.org/10.1016/j.chemosphere.2017.12.179.
Sepulvado, J. G., A. C. Blaine, L. S. Hundal, and C. P. Higgins. 2011. “Occurrence and fate of perfluorochemicals in soil following the land application of municipal biosolids.” Environ. Sci. Technol. 45 (19): 8106–8112. https://doi.org/10.1021/es103903d.
Shoemaker, J., and T. Dan. 2020. Method 537.1: Determination of selected per- and polyflourinated alkyl substances in drinking water by solid phase extraction and liquid chromatography/tandem mass spectrometry (LC/MS/MS). EPA 537. Washington, DC: USEPA.
Singh, R. K., N. Multari, C. Nau-Hix, R. H. Anderson, S. D. Richardson, T. M. Holsen, and S. Mededovic Thagard. 2019. “Rapid removal of poly- and perfluorinated compounds from investigation-derived waste (IDW) in a pilot-scale plasma reactor.” Environ. Sci. Technol. 53 (19): 11375–11382. https://doi.org/10.1021/acs.est.9b02964.
Singh, R. K., N. Multari, C. Nau-Hix, S. Woodard, M. Nickelsen, S. Mededovic Thagard, and T. M. Holsen. 2020. “Removal of poly- and per-fluorinated compounds from ion exchange regenerant still bottom samples in a plasma reactor.” Environ. Sci. Technol. 54 (21): 13973–13980. https://doi.org/10.1021/acs.est.0c02158.
Song, Z., H. Tang, N. Wang, and L. Zhu. 2013. “Reductive defluorination of perfluorooctanoic acid by hydrated electrons in a sulfite-mediated UV photochemical system.” J. Hazard. Mater. 262 (Nov): 332–338. https://doi.org/10.1016/j.jhazmat.2013.08.059.
Stahl, T., J. Heyn, H. Thiele, J. Hüther, K. Failing, S. Georgii, and H. Brunn. 2009. “Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plants.” Arch. Environ. Contam. Toxicol. 57 (2): 289–298. https://doi.org/10.1007/s00244-008-9272-9.
Stebel, E. K., K. A. Pike, H. Nguyen, H. A. Hartmann, M. J. Klonowski, M. G. Lawrence, R. M. Collins, C. E. Hefner, and P. L. Edmiston. 2019. “Absorption of short-chain to long-chain perfluoroalkyl substances using swellable organically modified silica.” Environ. Sci. Water Res. Technol. 5 (11): 1854–1866. https://doi.org/10.1039/C9EW00364A.
Steenland, K., T. Fletcher, and D. A. Savitz. 2010. “Epidemiologic evidence on the health effects of perfluorooctanoic acid (PFOA).” Environ. Health Perspect. 118 (8): 1100–1108. https://doi.org/10.1289/ehp.0901827.
Steenland, K., L. Zhao, A. Winquist, and C. Parks. 2013. “Ulcerative colitis and perfluorooctanoic acid (PFOA) in a highly exposed population of community residents and workers in the Mid-Ohio Valley.” Environ. Health Perspect. 121 (8): 900–905. https://doi.org/10.1289/ehp.1206449.
Tang, H. Q., Q. Q. Xiang, M. Lie, J. C. Yan, L. H. Zhu, and J. Zou. 2010. “Efficient degradation of perfluorooctanoic acid by UV-Fenton process.” Chem. Eng. J. 184 (Mar): 156–162. https://doi.org/10.1016/j.cej.2012.01.020.
Trojanowicz, M., A. Bojanowska-Czajka, I. Bartosiewicz, and K. Kulisa. 2018. “Advanced oxidation/reduction processes treatment for aqueous perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS)—A review of recent advances.” Chem. Eng. J. 336 (15): 170–199. https://doi.org/10.1016/j.cej.2017.10.153.
USEPA. 1993. Determination of inorganic anions by ion chromatography. Washington, DC: USEPA.
Vecitis, C. D., H. Park, J. Cheng, B. T. Mader, and M. R. Hoffmann. 2009. “Treatment of technologies for aqueous perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA).” Environ. Sci. Eng. China 3 (Oct): 129–151. https://doi.org/10.1007/s11783-009-0022-7.
Wang, S., Y. Qu, F. Chen, J. Sun, K. Luo, F. Yao, X. Wang, D. Wang, X. Li, and G. Zeng. 2017. “Photocatalytic degradation of perfluorooctanoic acid and perfluorooctane sulfonate in water: A critical review.” Chem. Eng. J. 328 (Nov): 927–942. https://doi.org/10.1016/j.cej.2017.07.076.
Wang, Y., M. Adgent, P. Su, H. Chen, P. Chen, and C. A. Hsiung. 2016. “Prenatal PFCAs and fetal and postnatal growth PFCA exposure assessment.” Environ. Health Perspect. 124 (11): 1794–1800. https://doi.org/10.1289/ehp.1509998.
Wang, Z. Y., I. T. Cousins, M. Scheringer, R. C. Buck, and K. Hungerbühler. 2014. “Global emission inventories for C4-C14 perfluorolkyl carboxylic acid (PFCA) homologues from 1951 to 2030, Part I: Production and emissions from quantifiable source.” Environ. Int. 70 (Sep): 62–75. https://doi.org/10.1016/j.envint.2014.04.013.
Winchell, L. J., J. J. Ross, M. J. M. Wells, X. Fonoll, J. W. Norton, and K. Y. Bell. 2021. “Per- and polyfluoroalkyl substances thermal destruction at water resource recovery facilities: A state of the science review.” Water Environ. Res. 93 (6): 826–843. https://doi.org/10.1002/wer.1483.
Wu, B., S. Hao, Y. Choi, C. P. Higgins, R. Deeb, and T. J. Strathmann. 2019. “Rapid destruction and defluorination of perfluorooctanesulfonate by alkaline hydrothermal reaction.” Environ. Sci. Technol. Lett. 6 (10): 630–636. https://doi.org/10.1021/acs.estlett.9b00506.
Xu, B., M. Ahmed, J. Zhou, A. Altaee, M. Wu, and G. Xu. 2017. “Photocatalytic removal of perfluoroalkyl substances from water and wastewater: Mechanism, kinetics and controlling factors.” Chemosphere 189 (Dec): 717–729. https://doi.org/10.1016/j.chemosphere.2017.09.110.
Yang, G. C. C., and C. J. Li. 2007. “Electrofiltration of silica nanoparticle-containing wastewater using tubular ceramic membranes.” Separation Purification Technol. 58 (1): 159–165. https://doi.org/10.1016/j.seppur.2007.07.019.
Yang, L., L. He, J. Xue, Y. Ma, Z. Xie, L. Wu, M. Huang, and Z. Zhang. 2020. “Persulfate-based degradation of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in aqueous solution: Review on influences, mechanisms and prospective.” J. Hazard. Mater. 393 (Dec): 12240. https://doi.org/10.1016/j.jhazmat.2020.122405.
Yasuoka, K., K. Sasaki, and R. Hayashi. 2011. “An energy-efficient process for decomposing perfluorooctanoic and perfluorooctane sulfonic acids using dc plasmas generated within gas bubbles.” Plasma Sources Sci. Technol. 20 (3): 034009–034016. https://doi.org/10.1088/0963-0252/20/3/034009.
Zhang, H., L. Weid, X. He, Y. Wang, and Q. Zhang. 2015. “Uptake of perfluoroalkyl acids in the leaves of coniferous and deciduous broad-leafed trees.” Environ. Toxicol. Chem. 34 (7): 1499–1504. https://doi.org/10.1002/etc.2968.
Zhang, K., J. Huang, G. Yu, Q. Zhang, S. Deng, and B. Wang. 2013. “Destruction of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) by ball milling.” Environ. Sci. Technol. 47 (12): 6471–6477. https://doi.org/10.1021/es400346n.
Zhang, Z., J.-J. Chen, X.-J. Lyu, H. Yin, and G.-P. Sheng. 2014. “Complete mineralization of perfluorooctanoic acid (PFOA) by γ-irradiation in aqueous solution.” Sci. Rep. 4 (1): 7418. https://doi.org/10.1038/srep07418.
Zhuo, Q. F., S. B. Deng, B. Yang, J. Huang, B. Wang, T. T. Zhang, and G. Yu. 2012. “Degradation of perfluorinated compounds on a boron-doped diamond electrode.” Electrochim. Acta 77 (Aug): 17–22. https://doi.org/10.1016/j.electacta.2012.04.145.
Zhuo, Q. F., S. B. Deng, B. Yang, J. Huang, and G. Yu. 2011. “Efficient electrochemical oxidation of perfluorooctanoate using a Ti/SnO2-Sb-Bi anode.” Environ. Sci. Technol. 45 (7): 2973–2979. https://doi.org/10.1021/es1024542.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 147Issue 11November 2021

History

Received: Feb 20, 2021
Accepted: Jun 17, 2021
Published online: Aug 25, 2021
Published in print: Nov 1, 2021
Discussion open until: Jan 25, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Master Student, Dept. of Civil and Mechanical Engineering, Univ. of Missouri–Kansas City, 511 Rockhill Rd., 352 Flarsheim Hall, Kansas City, MO 64110. ORCID: https://orcid.org/0000-0001-8896-1436. Email: [email protected]
Ph.D. Student, Dept. of Pharmacology and Pharmaceutical Sciences, Univ. of Missouri–Kansas City, 2464 Charlotte St., Kansas City, MO 64108. ORCID: https://orcid.org/0000-0002-5998-2243. Email: [email protected]
William Gutheil, Ph.D. [email protected]
Professor, Dept. of Pharmacology and Pharmaceutical Sciences, Univ. of Missouri–Kansas City, 2464 Charlotte St., Kansas City, MO 64108. Email: [email protected]
Assistant Professor, Dept. of Civil and Mechanical Engineering, Univ. of Missouri–Kansas City, 511 Rockhill Rd., 352 Flarsheim Hall, Kansas City, MO 64110 (corresponding author). ORCID: https://orcid.org/0000-0002-2458-8799. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Development and Laboratory Scalability of Ultraviolet-Activated Silica-Based Granular Media as an Engineered System for the Degradation of Per- and Polyfluoroalkyl Substances in Concentrated Liquid Waste, Journal of Environmental Engineering, 10.1061/JOEEDU.EEENG-7228, 149, 9, (2023).
  • Photodegradation of per- and polyfluoroalkyl substances in water: A review of fundamentals and applications, Journal of Hazardous Materials, 10.1016/j.jhazmat.2022.129580, 439, (129580), (2022).
  • Coupled photocatalytic alkaline media as a destructive technology for per- and polyfluoroalkyl substances in aqueous film-forming foam impacted stormwater, Chemosphere, 10.1016/j.chemosphere.2021.132790, 291, (132790), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share