Abstract

A great challenge for water managers and stakeholders is the maintenance and improvement of basin sustainability, tackling the ever-increasing threats and impacts. Some catchments, such as the Paranoá River basin (Central Brazil), are facing rapid urbanization, with increasing water demand and water quality impacts that threaten their sustainability. To assess this, two basin indices, the Watershed Sustainability Index (WSI) and the Water Resources System Dynamics (WRSD), were applied to the Paranoá basin in the period between 2015 and 2018. Off-the-shelf data and tailored surveys were used as information sources. The basin WRSD and WSI scores were 0.33 and 0.60, respectively, corresponding to a medium level of hydrologic and integrated sustainability. The WSI bottlenecks were the high unit water demand in the basin, and the incipient management responses with respect to the basin’s environment, livelihood, and policy indicators. For the WRSD index, high water demand was the limiting sustainability factor. Adaptation measures to improve basin sustainability include effective water demand management and the establishment of new protected areas in the catchment.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data used during the study is available from the corresponding author upon reasonable request.

Acknowledgments

The authors acknowledge the technical support provided by Secretaria de Meio Ambiente do Distrito Federal (SEMA-DF) and Centro Internacional de Água e Transdisciplinaridade (CIRAT). This paper is a contribution of the Tropical Water Research Alliance—TWRA.

References

ADASA (Agência Reguladora de Águas, Energia e Saneamento Básico do Distrito Federal). 2017. Estudo técnico sobre demanda de recursos hídricos na bacia do Alto Descoberto–Produto 3. Brasília, Brazil: ADASA.
Albuquerque, A. C. L. S., and H. M. L. Chaves. 2011. “Estimativa de recarga da bacia do Rio das Fêmeas através de métodos manuais e automáticos.” Rev. Bras. Eng. Agríc. Ambient. 15 (11): 1123–1129. https://doi.org/10.1590/S1415-43662011001100003.
ANA (Agência Nacional de Águas). 2018. Conjuntura dos recursos hídricos no Brasil 2018. Brasília, Brazil: ANA.
Azmi, M., and F. Sarmadi. 2015. “Dynamic modelling of water resources sustainable development using a mathematical approach.” KSCE J. Civ. Eng. 19 (6): 1675–1680. https://doi.org/10.1007/s12205-015-0341-0.
Babcicky, P. 2013. “Rethinking the foundations of sustainability measurement: The limitations of the Environmental Sustainability Index (ESI).” Social Indic. Res. 113 (1): 133–157. https://doi.org/10.1007/s11205-012-0086-9.
Baker, C., et al. 2020. “A deep dive into freshwater: Living Planet Report 2020.” Accessed December 3, 2020. https://www.wwf.org.uk/sites/default/files/2020-09/LPR2020_freshwater.pdf.
Campos, J. D. O., and H. M. L. Chaves. 2020. “Tendências e Variabilidades nas Séries Históricas de Precipitação Mensal e Anual no Bioma Cerrado no Período 1977–2010.” Rev. Bras. Meteorol. 35 (1): 157–169. https://doi.org/10.1590/0102-7786351019.
Catano, N., M. Marchand, S. Staley, and Y. W. Guillermo. 2011. “Watershed sustainability index (WSI) for the Reventazón River basin in Cartago, Costa Rica, 2000–2005 period.” In Proc., 2nd Int. Symp. on Building Knowledge Bridges for a Sustainable Water Future, 271–277. Paris: UNESCO.
Chaves, H., J. Rosa, R. Vadas, and R. Oliveira. 2002. “Regionalização de Vazões Mínimas em Bacias Através de Interpolação em Sistemas de Informação Geográfica.” Rev. Bras. Recursos Hídricos 7 (3): 43–51. https://doi.org/10.21168/rbrh.v7n3.p43-51.
Chaves, H. M. L. 2011. “Integrated sustainability analysis of six Latin-American HELP basins.” J. Hydrol. Environ. 7 (1): 149–153.
Chaves, H. M. L., and S. Alipaz. 2007. “An integrated indicator based on basin hydrology, environment, life, and policy: The watershed sustainability index.” Water Resour. Manage. 21 (5): 883–895. https://doi.org/10.1007/s11269-006-9107-2.
Chaves, H. M. L., and D. R. Lorena. 2019. “Assessing reservoir reliability using classical and long-memory statistics.” J. Hydrol.: Reg. Stud. 26 (Dec): 100641. https://doi.org/10.1016/j.ejrh.2019.100641.
Chaves, H. M. L., and T. M. N. Santos. 2020. Water risk and sustainability of strategic basins of the Federal District, Brazil. Brasília, Brazil: Secretaria de Meio Ambiente do Distrito Federal.
Cortés, A. E., et al. 2012. “Application of the watershed sustainability index to the Elqui river basin, North-Central Chile.” Obras y Proyectos 12: 57–69. https://doi.org/10.4067/S0718-28132012000200005.
Costa e Silva, D. D., H. M. L. Chaves, W. F. Curi, J. G. V. Baracuhy, and T. P. S. Cunha. 2020. “Application of the watershed sustainability index in the Piranhas-Açu watershed.” Water Policy 22 (4): 622–640. https://doi.org/10.2166/wp.2020.011.
Dudgeon, D., et al. 2006. “Freshwater biodiversity: Importance, threats, status and conservation challenges.” Biol. Rev. Cambridge Philos. Soc. 81 (2): 163–182. https://doi.org/10.1017/S1464793105006950.
Elfithri, R., et al. 2018. “Watershed sustainability index for Langat UNESCO HELP River Basin, Malaysia.” Int. J. Eng. Technol. 7 (3.14): 187–190.
Esty, D. C., M. Levy, T. Srebotnjak, and A. de Sherbinin. 2005. 2005 environmental sustainability index: Benchmarking national environmental stewardship. New Haven, CT: Yale Center for Environmental Law & Policy.
Falkenmark, M., and C. Widstrand. 1992. “Population and water resources: A delicate balance.” Popul. Bull. 47 (3): 1–36.
Flörke, M., C. Schneider, and R. I. McDonald. 2018. “Water competition between cities and agriculture driven by climate change and urban growth.” Nat. Sustainability 1 (1): 51–58. https://doi.org/10.1038/s41893-017-0006-8.
Franz, C., F. Makeschin, H. Weiß, and C. Lorz. 2014. “Sediments in urban river basins: Identification of sediment sources within the Lago Paranoá catchment, Brasilia DF, Brazil–using the fingerprint approach.” Sci. Total Environ. 466–467 (Jan): 513–523. https://doi.org/10.1016/j.scitotenv.2013.07.056.
Frederiksen, H. D. 2005. “Addressing water crisis in developing countries.” J. Environ. Eng. 131 (5): 667–675. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:5(667).
Gan, X., I. C. Fernandez, J. Guo, M. Wilson, Y. Zhao, B. Zhou, and J. Wu. 2017. “When to use what: Methods for weighting and aggregating sustainability indicators.” Ecol. Indic. 81 (Oct): 491–502. https://doi.org/10.1016/j.ecolind.2017.05.068.
Garriga, R. G., and A. P. Foguet. 2010. “Improved method to calculate a water poverty index at local scale.” J. Environ. Eng. 136 (11): 1287–1298. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000255.
Grant, S. B., et al. 2012. “Taking the ‘waste’ out of ‘wastewater’ for human water security and ecosystem sustainability.” Science 337 (6095): 681–686. https://doi.org/10.1126/science.1216852.
Hoffmann, W. A., and R. B. Jackson. 2000. “Vegetation-climate feedbacks in the conversion of tropical savanna to grassland.” J. Clim. 13 (9): 1593–1602. https://doi.org/10.1175/1520-0442(2000)013%3C1593:VCFITC%3E2.0.CO;2.
Hunsaker, C. T., B. L. Jackson, and A. Simcock. 1998. “Regional assessment of watershed management in the Mid-Atlantic states.” In Watershed management: Practice, policies and coordination, edited by R. Reimold, 1–33. New York: Mc Graw-Hill.
IBGE (Instituto Brasileiro de Geografia e Estatística). 2020. “Main provider of geographic information and statistics in Brazil.” Accessed December 1, 2020. https://www.ibge.gov.br/.
IBGE (Instituto Brasileiro de Geografia e Estatística). 2021. “Estimativas da população residente com data de referência 1 de julho de 2017.” Accessed January 4, 2021. https://cidades.ibge.gov.br/brasil/df/panorama.
Juwana, I., N. Muttil, and B. J. C. Perera. 2012. “Indicator-based water sustainability assessment—A review.” Sci. Total Environ. 438 (Nov): 357–371. https://doi.org/10.1016/j.scitotenv.2012.08.093.
Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel. 2006. “World map of the Köppen-Geiger climate classification updated.” Meteorol. Z. 15 (3): 259–263. https://doi.org/10.1127/0941-2948/2006/0130.
Lee, M., B. Tansel, and M. Balbin. 2013. “Urban sustainability incentives for residential water conservation: Adoption of multiple high efficiency appliances.” Water Resour. Manage. 27 (7): 2531–2540. https://doi.org/10.1007/s11269-013-0301-8.
Luthy, R. G., J. M. Wolfand, and J. L. Bradshaw. 2020. “Urban water revolution: Sustainable water futures for California cities.” J. Environ. Eng. 146 (7): 04020065. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001715.
MapBiomas. 2019. “Hydrological information system of Paraná’s water institute.” Accessed November 25, 2019. https://mapbiomas.org.
Mayer, A. L. 2008. “Strengths and weaknesses of common sustainability indices for multidimensional systems.” Environ. Int. 34 (2): 277–291. https://doi.org/10.1016/j.envint.2007.09.004.
McDonald, R. I., et al. 2014. “Water on an urban planet: Urbanization and the reach of urban water infrastructure.” Global Environ. Change 27 (1): 96–105. https://doi.org/10.1016/j.gloenvcha.2014.04.022.
Mititelu-Ionuş, O. 2017. “Watershed sustainability index development and application: Case study of the Motru river in Romania.” Pol. J. Environ. Stud. 26 (5): 2095–2105. https://doi.org/10.15244/pjoes/69935.
Nunes, G., R. T. Minoti, and S. Koide. 2020. “Mathematical modeling of watersheds as a subsidy for reservoir water balance determination: The case of Paranoá Lake, Federal District, Brazil.” Hydrology 7 (4): 85. https://doi.org/10.3390/hydrology7040085.
OECD (Organisation for Economic Cooperation and Development). 1999. Environmental indicators for agriculture: Concepts and frameworks. Paris: OECD.
Paton, F. L., H. R. Maier, and G. C. Dandy. 2014. “Including adaptation and mitigation responses to climate change in a multiobjective evolutionary algorithm framework for urban water supply systems incorporating GHG emissions.” Water Resour. Res. 50 (8): 6285–6304. https://doi.org/10.1002/2013WR015195.
Pedro-Monzonís, M., A. Solera, J. Ferrer, T. Estrela, and J. Paredes-Arquiola. 2015. “A review of water scarcity and drought indexes in water resources planning and management.” J. Hydrol. 527 (Aug): 482–493. https://doi.org/10.1016/j.jhydrol.2015.05.003.
Plummer, R., R. de Loë, and D. Armitage. 2012. “A systematic review of water vulnerability assessment tools.” Water Resour. Manage. 26 (15): 4327–4346. https://doi.org/10.1007/s11269-012-0147-5.
Poff, N. L., J. D. Allan, M. A. Palmer, D. D. Hart, B. D. Richter, A. H. Arthington, K. H. Rogers, J. L. Meyer, and J. A. Stanford. 2003. “River flows and water wars: Emerging science for environmental decision making.” Front. Ecol. Environ. 1 (6): 298–306. https://doi.org/10.1890/1540-9295(2003)001[0298:RFAWWE]2.0.CO;2.
Preciado-Jiménez, M., J. Aparicio, A. Güitrón-De-Los-Reyes, and J. A. Hidalgo-Toledo. 2013. “Aplicación del índice de sustentabilidad WSI en la cuenca Lerma-Chapala.” Tecnol. Cienc. Agua 4 (4): 93–113.
Rasul, G. 2014. “Food, water, and energy security in South Asia: A nexus perspective from the Hindu Kush Himalayan region.” Environ. Sci. Policy 39 (May): 35–48. https://doi.org/10.1016/j.envsci.2014.01.010.
Rijsberman, F. R. 2006. “Water scarcity: Fact or fiction?” Agric. Water Manage. 80 (1–3): 5–22. https://doi.org/10.1016/j.agwat.2005.07.001.
Rockström, J. 2003. “Resilience building and water demand management for drought mitigation.” Phys. Chem. Earth 28 (20–27): 869–877. https://doi.org/10.1016/j.pce.2003.08.009.
Senent-Aparicio, J., J. Pérez-Sánchez, and A. M. Bielsa-Artero. 2016. “Evaluación de la sostenibilidad de cuencas mediterráneas semiáridas. Caso de estudio: Cuenca del Segura, España.” Tecnol. Cienc. Agua 7 (2): 67–84.
Singh, R. K., H. R. Murty, S. K. Gupta, and A. K. Dikshit. 2007. “Development of composite sustainability performance index for steel industry.” Ecol. Indic. 7 (3): 565–588. https://doi.org/10.1016/j.ecolind.2006.06.004.
Sullivan, C. 2002. “Calculating a water poverty index.” World Dev. 30 (7): 1195–1210. https://doi.org/10.1016/S0305-750X(02)00035-9.
UNDP (United Nations Development Program). 2020. “Human development report 2020.” Accessed October 22, 2020. http://hdr.undp.org/en/2020-report.
UNESCO. 2010. “HELP: Hydrology for the environment, life and policy.” In Brochure. Paris: UNESCO.
United Nations. 2019. World urbanization prospects 2018: Highlights. New York: United Nations.
Vörösmarty, C. J., et al. 2010. “Global threats to human water security and river biodiversity.” Nature 467: 555–561. https://doi.org/10.1038/nature09440.
Xu, Z. X., K. Takeuchi, H. Ishidaira, and X. W. Zhang. 2002. “Sustainability analysis for Yellow River water resources using the system dynamics approach.” Water Resour. Manage. 16 (3): 239–261. https://doi.org/10.1023/A:1020206826669.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 147Issue 11November 2021

History

Received: Jan 27, 2021
Accepted: May 21, 2021
Published online: Aug 18, 2021
Published in print: Nov 1, 2021
Discussion open until: Jan 18, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, School of Technology, Univ. of Brasilia, Brasilia, Brazil (corresponding author). ORCID: https://orcid.org/0000-0002-6754-0576. Email: [email protected]
Thaiane Meira dos Santos [email protected]
Research Assistant, School of Technology, Univ. of Brasilia, Brasilia, Brazil. Email: [email protected]
Bruno Henrique Toná Juliani [email protected]
Graduate Student, Postgraduate Program in Water Resources and Environmental Engineering, Federal Univ. of Paraná, Curitiba, Brazil. Email: [email protected]
Cássia Rocha Pompeu [email protected]
Graduate Student, Dept. of Hydraulic Engineering, IHCantabria-Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Santander, Spain. Email: [email protected]
Cristhiane Michiko Passos Okawa [email protected]
Professor, Dept. of Civil Engineering, State Univ. of Maringá, Maringá, Brazil. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share