Technical Papers
Jan 13, 2023

Effectiveness of Stiffeners in CFDST Columns: Comparative Study

Publication: Practice Periodical on Structural Design and Construction
Volume 28, Issue 2

Abstract

Concrete-filled double-skin tube (CFDST) columns are considered one of most efficient forms of steel-concrete composite columns, which provide higher axial strength and better ductility compared with their counterpart concrete-filled tube (CFT) columns. This paper aims to numerically investigate and compare the performance of axially loaded circular CFDST short columns provided with stiffeners in inner tubes and outer tubes. Circular steel hollow sections have been adopted for inner as well as outer tubes, and rectangular steel stiffeners were fixed in inner and outer tubes to check the effectiveness of stiffeners in stiffened CFDST columns. These CFDST columns were investigated numerically by using a verified finite-element (FE) model from commercially available software. Behavior of 36 unstiffened, inner-tube stiffened, and outer-tube stiffened CFDST columns (12 each) was studied. The FE results were verified by comparing them with previous test results. The FE analysis study has exhibited an increase in peak load (load-carrying capacity) up to 26% and 15% in outer-tube stiffened CFDST columns compared with unstiffened and inner-tube stiffened CFDST columns, respectively. Also, enhanced ductility has been observed in case of these stiffened CFDST columns.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

References

ABAQUS. 2020. User’s manual. Providence, RI: Dassault Systèmes.
ACI (American Concrete Institute). 1995. Building code requirements for structural concrete. ACI318-95. Farmington Hills, MI: ACI.
Alatshan, F., S. A. Osman, R. Hamid, and F. Mashiri. 2020. “Stiffened concrete-filled steel tubes: A systematic review.” Thin-Walled Struct. 148 (Dec): 106590. https://doi.org/10.1016/j.tws.2019.106590.
Ayough, P., N. H. R. Sulong, and Z. Ibrahim. 2020. “Analysis and review of concrete-filled double skin steel tubes under compression.” Thin-Walled Struct. 148 (Dec): 106495. https://doi.org/10.1016/j.tws.2019.106495.
Bao, L., et al. 2015. “The new structural design process of supertall buildings in china high-rise buildings.” Int. J. High-Rise Build. 4 (3): 219–226. https://doi.org/10.21022/IJHRB.2015.4.3.219.
Bažant, Z. P., and E. Becq-Giraudon. 2002. “Statistical prediction of fracture parameters of concrete and implications for choice of testing standard.” Cem. Concr. Res. 32 (4): 529–556. https://doi.org/10.1016/S0008-8846(01)00723-2.
Bergmann, R. 1994. “Load introduction in composite columns filled with high strength concrete.” In Tubular structure VI, 373–380. Rotterdam, Netherlands: Balkema.
BS (British Standard). 2011. Eurocode 3-Design of steel structures. BS EN 1993-1. New York: Wiley.
CEN (European Committee for Standardization). 2005. Eurocode 2: Design of concrete structures. CEN 1992.1. Brussels, Belgium: CEN.
Degenhardt, R. 2017. “Stability of composite shell-type structures.” Stab. Vibr. Thin Walled Compos. Struct. 2017: 253–428. https://doi.org/10.1016/B978-0-08-100410-4.00007-7.
Ding, F. X., C. Fang, Y. Bai, and Y. Z. Gong. 2014. “Mechanical performance of stirrup-confined concrete-filled steel tubular stub columns under axial loading.” J. Constr. Steel Res. 98 (Jul): 146–157. https://doi.org/10.1016/j.jcsr.2014.03.005.
Ding, F. X., Z. W. Yu, Y. Bai, and Y. Z. Gong. 2011. “Elasto-plastic analysis of circular concrete-filled steel tube stub columns.” J. Constr. Steel Res. 67 (10): 1567–1577. https://doi.org/10.1016/j.jcsr.2011.04.001.
Elchalakani, M., V. I. Patel, A. Karrech, M. F. Hassanein, S. Fawzia, and B. Yang. 2019. “Finite element simulation of circular short CFDST columns under axial compression.” Structures 20 (May): 607–619. https://doi.org/10.1016/j.istruc.2019.06.004.
Elchalakani, M., X. L. Zhao, and R. Grzebieta. 2002. “Tests on concrete filled double-skin (CHS outer and SHS inner) composite short columns under axial compression.” Thin-Walled Struct. 40 (5): 415–441. https://doi.org/10.1016/S0263-8231(02)00009-5.
Elsisy, A. R., Y. B. Shao, M. Zhou, and M. F. Hassanein. 2022. “A study on the compressive strengths of stiffened and unstiffened concrete-filled austenitic stainless steel tubular short columns.” Ocean Eng. 248 (Apr): 110793. https://doi.org/10.1016/j.oceaneng.2022.110793.
Essopjee, Y., and M. Dundu. 2015. “Performance of concrete-filled double-skin circular tubes in compression.” Compos. Struct. 133 (Dec): 1276–1283. https://doi.org/10.1016/j.compstruct.2015.08.033.
Ge, H., and T. Usami. 1996. “Cyclic tests of concrete-filled steel.” J. Struct. Eng. 122 (Oct): 1169–1177. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:10(1169).
Gedge, G. 2008. “Structural uses of stainless steel—Buildings and civil engineering.” J. Constr. Steel Res. 64 (11): 1194–1198. https://doi.org/10.1016/j.jcsr.2008.05.006.
Ghannam, M., and I. M. Metwally. 2020. “Numerical investigation for the behaviour of stiffened circular concrete filled double tube columns.” Structures 25 (Sep): 901–919. https://doi.org/10.1016/j.istruc.2020.03.064.
Hafezolghorani, M., F. Hejazi, R. Vaghei, M. S. Bin Jaafar, and K. Karimzade. 2017. “Simplified damage plasticity model for concrete.” Struct. Eng. Int. 27 (1): 68–78. https://doi.org/10.2749/101686616X1081.
Hajjar, J. F. 2000. “Concrete filled steel tube columns.” In Building the future, 363–371. Boca Raton, FL: CRC Press. https://doi.org/10.1201/9781482271263-49.
Han, L. H., H. Huang, and X. L. Zhao. 2009. “Analytical behaviour of concrete-filled double skin steel tubular (CFDST) beam-columns under cyclic loading.” Thin-Walled Struct. 47 (6–7): 668–680. https://doi.org/10.1016/j.tws.2008.11.008.
Han, L. H., W. Li, and R. Bjorhovde. 2014. “Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members.” J. Constr. Steel Res. 100 (Jun): 211–228. https://doi.org/10.1016/j.jcsr.2014.04.016.
Han, L. H., Z. Tao, H. Huang, and X. L. Zhao. 2004. “Concrete-filled double skin (SHS outer and CHS inner) steel tubular beam-columns.” Thin-Walled Struct. 42 (9): 1329–1355. https://doi.org/10.1016/j.tws.2004.03.017.
Han, L. H., G. H. Yao, and Z. Tao. 2007. “Performance of concrete-filled thin-walled steel tubes under pure torsion.” Thin-Walled Struct. 45 (1): 24–36. https://doi.org/10.1016/j.tws.2007.01.008.
Hassan, A., and J. A. Bhat. 2021. “Behaviour of CFDST and RCC member hybrid frames.” Asian J. Civ. Eng. 22 (6): 1045–1058. https://doi.org/10.1007/s42107-021-00364-1.
Hassanein, M. F., M. Elchalakani, and V. I. Patel. 2017. “Overall buckling behaviour of circular concrete-filled dual steel tubular columns with stainless steel external tubes.” Thin-Walled Struct. 115 (Mar): 336–348. https://doi.org/10.1016/j.tws.2017.01.035.
Higgins, T. R. 1968. “Discussion of ‘strength of steel-encased concrete beam columns.’” J. Struct. Div. 94 (3): 850. https://doi.org/10.1061/JSDEAG.0001925.
Hu, H. T., and F. C. Su. 2011. “Nonlinear analysis of short concrete-filled double skin tube columns subjected to axial compressive forces.” Mar. Struct. 24 (4): 319–337. https://doi.org/10.1016/j.marstruc.2011.05.001.
Huang, C. S., Y.-K. Yeh, G.-Y. Liu, H.-T. Hu, K. C. Tsai, Y. T. Weng, S. H. Wang, and M.-H. Wu. 2002. “Axial load behavior of stiffened concrete-filled steel columns.” J. Struct. Eng. 128 (9): 1222–1230. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1222).
Huang, H., L. H. Han, Z. Tao, and X. L. Zhao. 2010. “Analytical behaviour of concrete-filled double skin steel tubular (CFDST) stub columns.” J. Constr. Steel Res. 66 (4): 542–555. https://doi.org/10.1016/j.jcsr.2009.09.014.
Huang, L., S. S. Zhang, T. Yu, and K. D. Peng. 2020. “Circular hybrid double-skin tubular columns with a stiffener-reinforced steel inner tube and a large-rupture-strain FRP outer tube: Compressive behavior.” Thin-Walled Struct. 155 (Jun): 106946. https://doi.org/10.1016/j.tws.2020.106946.
Ibañez, C., M. L. Romero, A. Espinos, J. M. Portolés, and V. Albero. 2017. “Ultra-high strength concrete on eccentrically loaded slender circular concrete-filled dual steel columns.” In Structures, 64–74. Amsterdam, Netherlands: Elsevier. https://doi.org/10.1016/j.istruc.2017.07.005.
Karthika, S., and M. Ranjitham. 2016. “Study of strength and behaviour of concrete filled double skin tubular square columns under axial compressive loads.” Int. J. Eng. Res. V5 (5): 746–751. https://doi.org/10.17577/IJERTV5IS050843.
Katwal, U., Z. Tao, M. K. Hassan, and W.-D. Wang. 2017. “Simplified numerical modeling of axially loaded circular concrete-filled steel stub columns.” J. Struct. Eng. 143 (12): 04017169. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001897.
Kitada, T. 1998. “Ultimate strength and ductility of state-of-the-art concrete-filled steel bridge piers in Japan.” Eng. Struct. 20 (4–6): 347–354. https://doi.org/10.1016/S0141-0296(97)00026-6.
Knowles, R. B., and R. Park. 1969. “Strength of concrete filled steel tubular columns.” J. Struct. Div. 95 (12): 2565–2588. https://doi.org/10.1061/JSDEAG.0002425.
Li, W., L. H. Han, and X. L. Zhao. 2012. “Axial strength of concrete-filled double skin steel tubular (CFDST) columns with preload on steel tubes.” Thin-Walled Struct. 56 (Mar): 9–20. https://doi.org/10.1016/j.tws.2012.03.004.
Liang, Q. Q., and B. Uy. 1998. “Parametric study on the structural behaviour of steel plates in concrete-filled fabricated thin-walled box columns.” Adv. Struct. Eng. 2 (1): 57–71. https://doi.org/10.1177/136943329800200108.
Liang, W., J. Dong, and Q. Wang. 2019. “Mechanical behaviour of concrete-filled double-skin steel tube (CFDST) with stiffeners under axial and eccentric loading.” Thin-Walled Struct. 138 (Sep): 215–230. https://doi.org/10.1016/j.tws.2019.02.002.
Lin, M. L., and K. C. Tsai. 2003. “Mechanical behavior of double-skinned composite steel tubular columns.” In Proc., Joint NCREE-JRC Conf. Taipei, Taiwan: National Center for Research on Earthquake Engineering.
Lyu, X., Y. Xu, Q. Xu, and Y. Yu. 2019. “Axial compression performance of square thin walled concrete-filled steel tube stub columns with reinforcement stiffener under constant high-temperature.” Materials 12 (7): 1098. https://doi.org/10.3390/ma12071098.
Mohammadbagheri, S., and B. Shekastehband. 2020. “Fire resistance of stiffened CFDST columns after earthquake-induced damages.” Thin-Walled Struct. 154 (May): 106865. https://doi.org/10.1016/j.tws.2020.106865.
Moore, P., and G. Booth. 2015. “Welding problems and defects.” In The welding engineers guide to fracture and fatigue, 23–36. Oxford, UK: Elsevier. https://doi.org/10.1533/9781782423911.1.23.
Noel, B., and E. R. Jacobson. 1967. “Structural behavior of concrete filled steel tubes.” ACI J. Proc. 64 (7): 404–413. https://doi.org/10.14359/7575.
Pagoulatou, M., T. Sheehan, X. H. Dai, and D. Lam. 2014. “Finite element analysis on the capacity of circular concrete-filled double-skin steel tubular (CFDST) stub columns.” Eng. Struct. 72 (Apr): 102–112. https://doi.org/10.1016/j.engstruct.2014.04.039.
Patel, K., and S. Thakkar. 2013. “Analysis of CFT, RCC and steel building subjected to lateral loading.” Procedia Eng. 51 (Jan): 259–265. https://doi.org/10.1016/j.proeng.2013.01.035.
Patel, V. I., Q. Q. Liang, and M. N. S. Hadi. 2014. “Nonlinear analysis of axially loaded circular concrete-filled stainless steel tubular short columns.” J. Constr. Steel Res. 101 (Oct): 9–18. https://doi.org/10.1016/j.jcsr.2014.04.036.
Patel, V. I., Q. Q. Liang, and M. N. S. Hadi. 2017. “Nonlinear analysis of biaxially loaded rectangular concrete-filled stainless steel tubular slender beam-columns.” Eng. Struct. 140 (Aug): 120–133. https://doi.org/10.1016/j.engstruct.2017.02.071.
Prion, H. G., and J. Boehme. 1994. “Beam-column behaviour of steel tubes filled with high strength concrete.” Can. J. Civ. Eng. 21 (2): 207–218. https://doi.org/10.1139/l94-024.
Rahimian, A., and Y. Eilon. 2006. “New York’s Hearst Tower, A restoration, an adaptive reuse and a modern steel tower rolled into one.” Struct. Mag. 2 (Feb): 25–29.
Romero, M. L., C. Ibañez, A. Espinos, J. M. Portolés, and A. Hospitaler. 2017. “Influence of ultra-high strength concrete on circular concrete-filled dual steel columns.” Structures, 13–20. Amsterdam, Netherlands: Elsevier. https://doi.org/10.1016/j.istruc.2016.07.001.
Schneider, S. P. 1998. “Axially loaded concrete-filled steel tubes.” J. Struct. Eng. 124 (10): 1125–1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125.
Shanmugam, N. E., and B. Lakshmi. 2001. “State of the art report on steel-concrete composite columns.” J. Constr. Steel Res. 57 (10): 1041–1080. https://doi.org/10.1016/S0143-974X(01)00021-9.
Shieh, S.-S., C.-C. Chang, and J.-H. Jong. 2003. “Structural design of composite super-columns for the Taipei 101 Tower.” In Proc., Int. Workshop on Steel and Concrete Composite Constructions, 25–33. Taipei, Taiwan: National Center for Research on Earthquake Engineering.
Tao, Z., Z. Bin Wang, and Q. Yu. 2013. “Finite element modelling of concrete-filled steel stub columns under axial compression.” J. Constr. Steel Res. 89 (Mar): 121–131. https://doi.org/10.1016/j.jcsr.2013.07.001.
Tao, Z., and L. H. Han. 2006. “Behaviour of concrete-filled double skin rectangular steel tubular beam-columns.” J. Constr. Steel Res. 62 (7): 631–646. https://doi.org/10.1016/j.jcsr.2005.11.008.
Tao, Z., L. H. Han, and Z. Bin Wang. 2005. “Experimental behaviour of stiffened concrete-filled thin-walled hollow steel structural (HSS) stub columns.” J. Constr. Steel Res. 61 (7): 962–983. https://doi.org/10.1016/j.jcsr.2004.12.003.
Tao, Z., L. H. Han, and D. Y. Wang. 2007. “Experimental behaviour of concrete-filled stiffened thin-walled steel tubular columns.” Thin-Walled Struct. 45 (5): 517–527. https://doi.org/10.1016/j.tws.2007.04.003.
Tao, Z., L. H. Han, and D. Y. Wang. 2008. “Strength and ductility of stiffened thin-walled hollow steel structural stub columns filled with concrete.” Thin-Walled Struct. 46 (10): 1113–1128. https://doi.org/10.1016/j.tws.2008.01.007.
Tao, Z., L. H. Han, and X. L. Zhao. 2004. “Behaviour of concrete-filled double skin (CHS inner and CHS outer) steel tubular stub columns and beam-columns.” J. Constr. Steel Res. 60 (8): 1129–1158. https://doi.org/10.1016/j.jcsr.2003.11.008.
Tao, Z., L.-H. Han, and X.-L. Zhao. 2003. “Behaviour of concrete-filled double skin (CHS Inner and CHS Outer) steel tubular stub columns and beam-columns.” J. Constr. Steel Res. 60 (8): 1129–1158. https://doi.org/10.1016/j.jcsr.2003.11.008.
Tao, Z., B. Uy, L. H. Han, and Z. Bin Wang. 2009. “Analysis and design of concrete-filled stiffened thin-walled steel tubular columns under axial compression.” Thin-Walled Struct. 47 (12): 1544–1556. https://doi.org/10.1016/j.tws.2009.05.006.
Tao, Z., B. Uy, F. Y. Liao, and L. H. Han. 2011. “Nonlinear analysis of concrete-filled square stainless steel stub columns under axial compression.” J. Constr. Steel Res. 67 (11): 1719–1732. https://doi.org/10.1016/j.jcsr.2011.04.012.
Thomas, J., and T. N. Sandeep. 2020. “Capacity of short circular CFST columns with inner vertical plates welded intermittently.” J. Constr. Steel Res. 165 (Feb): 105840. https://doi.org/10.1016/j.jcsr.2019.105840.
Tian, Z., Y. Liu, L. Jiang, W. Zhu, and Y. Ma. 2019. “A review on application of composite truss bridges composed of hollow structural section members.” J. Traffic Transp. Eng. 6 (1): 94–108. https://doi.org/10.1016/j.jtte.2018.12.001.
Uenaka, K., H. Kitoh, and K. Sonoda. 2010. “Concrete filled double skin circular stub columns under compression.” Thin-Walled Struct. 48 (1): 19–24. https://doi.org/10.1016/j.tws.2009.08.001.
Vernardos, S., and C. Gantes. 2019. “Experimental behavior of concrete-filled double-skin steel tubular (CFDST) stub members under axial compression: A comparative review.” Structures 22 (May): 383–404. https://doi.org/10.1016/j.istruc.2019.06.025.
Wang, F., L. Cheng, H. Han, and W. Li. 2018. “Analytical behavior of CFDST stub columns with external stainless steel tubes under axial compression.” Thin-Walled Struct. 127 (Jan): 756–768. https://doi.org/10.1016/j.tws.2018.02.021.
Wang, Y., Y. Yang, and S. Zhang. 2012. “Static behaviors of reinforcement-stiffened square concrete-filled steel tubular columns.” Thin-Walled Struct. 58 (Jun): 18–31. https://doi.org/10.1016/j.tws.2012.04.015.
Wang, Z. B., J. B. Zhang, W. Li, and H. J. Wu. 2020. “Seismic performance of stiffened concrete-filled double skin steel tubes.” J. Constr. Steel Res. 169 (Jun): 106020. https://doi.org/10.1016/j.jcsr.2020.106020.
Wei, S., S. T. Mau, C. Vipulanandan, and S. K. Mantrala. 1995. “Performance of new sandwich tube under axial loading: Experiment.” J. Struct. Eng. 121 (12): 1806–1814. https://doi.org/10.1061/(asce)0733-9445(1995)121:12(1806).
Wright, H., T. Oduyemi, and H. R. Evans. 1991. “The experimental behaviour of double skin composite elements.” J. Constr. Steel Res. 19 (Jun): 91–110. https://doi.org/10.1016/0143-974X(91)90036-Z.
Yuan, F., H. Huang, and M. Chen. 2019. “Effect of stiffeners on the eccentric compression behaviour of square concrete-filled steel tubular columns.” Thin-Walled Struct. 135 (Apr): 196–209. https://doi.org/10.1016/j.tws.2018.11.015.
Zakir, M., F. A. Sofi, and J. A. Naqash. 2021. “Experimentally verified behavior and confinement model for concrete in circular stiffened FRP-concrete-steel double-skin tubular columns.” Structures 33 (Jan): 1144–1157. https://doi.org/10.1016/j.istruc.2021.05.010.
Zhao, L., W. Cao, H. Guo, Y. Zhao, Y. Song, and Z. Yang. 2018. “Experimental and numerical analysis of large-scale circular concrete-filled steel tubular columns with various constructural measures under high axial load ratios.” Appl. Sci. 8 (10): 1–21. https://doi.org/10.3390/app8101894.
Zhao, X. L., and R. Grzebieta. 2002. “Strength and ductility of concrete filled double skin (SHS inner and SHS outer) tubes.” Thin-Walled Struct. 40 (2): 199–213. https://doi.org/10.1016/S0263-8231(01)00060-X.
Zhao, X.-L., R. Grzebieta, and M. Elchalakani. 2002. “Tests of concrete-filled double skin CHS composite stub columns.” Steel Compos. Struct. 2 (2): 129–146. https://doi.org/10.12989/scs.2002.2.2.129.

Information & Authors

Information

Published In

Go to Practice Periodical on Structural Design and Construction
Practice Periodical on Structural Design and Construction
Volume 28Issue 2May 2023

History

Received: Sep 9, 2022
Accepted: Nov 9, 2022
Published online: Jan 13, 2023
Published in print: May 1, 2023
Discussion open until: Jun 13, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Research Scholar, Dept. of Civil Engineering, National institute of Technology Srinagar, Hazratbal, Srinagar, Jammu and Kashmir 190006, India. ORCID: https://orcid.org/0000-0003-2340-1520. Email: [email protected]
Professor, Dept. of Civil Engineering, National Institute of Technology Srinagar, Hazratbal, Srinagar, Jammu and Kashmir 190006, India (corresponding author). ORCID: https://orcid.org/0000-0002-2495-8243. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Development of Circular Multicell Double-Skin Tubular Columns: Testing and Improved Axial Performance, Journal of Structural Engineering, 10.1061/JSENDH.STENG-13845, 150, 11, (2024).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share