Abstract

This research evaluates the geometric non-linear behavior of structures often used in transmission lines (TLs) and verifies the influence of different wire lengths, average wind speeds, and unevenness between adjacent towers, using the IEC 60826 standard. Different finite element numerical models were developed considering the isolated tower and also the complete system (tower, wires, and insulator chains). The analyses revealed that a simplified model can be employed for cases of adjacent, equal-length spans, but for cases with different lengths, the effect of geometric nonlinearities (GNLs) can become expressive and influence the type of analysis to be performed. Furthermore, it was found that increasing the average wind speed may imply an increase in the longitudinal unbalance. Finally, it was concluded that the unevenness between spans should be considered when calculating the loads to be applied to the structure, even if the simplified model is used. Based on the outcomes and considering wind speeds between 30 and 40  m/s and adjacent tower unevenness between 0 and 10%, this work establishes practical design criteria to be used by designers in the design of suspension structures of TLs located in the State of Minas Gerais, Brazil. The methodology presented in this paper can be extrapolated to other regions of the country, paying attention to the fact that the recommendations proposed here are valid only for self-supporting towers.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

The numerical models of the tower, which are presented in Figs. 26, 8, and 9, are proprietary or confidential in nature and may only be provided with restrictions. All other data are available from the corresponding author upon reasonable request.

Acknowledgments

The authors wish to thank the Companhia Energética de Minhas Gerais (CEMIG) and the Agência Nacional de Energia Elétrica (ANEEL) for the technical and financial support during the development of this work, which is linked to R&D D0592: Development of structures for specific overhead distribution lines, optimized for each macro-region of Minas Gerais, according to the IEC 60826 standard.

References

Abd-Elaal, E. S., J. E. Mills, and X. Ma. 2018. “A review of transmission line systems under downburst wind loads.” J. Wind Eng. Ind. Aerodyn. 179 (Jul): 503–513. https://doi.org/10.1016/j.jweia.2018.07.004.
ABNT (Associação Brasileira de Normas Técnicas). 1985. Projeto de Linhas Aéreas de Transmissão de Energia Elétrica. NBR 5422. Rio de Janeiro, Brasil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 1988. Forças devidas ao Vento em Edificações. NBR 6123. Rio de Janeiro, Brasil: ABNT.
Aboshosha, H., A. Elawady, A. El Ansary, and A. El Damatty. 2016. “Review on dynamic and quasi-static buffeting response of transmission lines under synoptic and non-synoptic winds.” Eng. Struct. 112 (Aug): 23–46. https://doi.org/10.1016/j.engstruct.2016.01.003.
Aboshosha, H., and A. El Damatty. 2015. “Dynamic response of transmission line conductors under downburst and synoptic winds.” Wind Struct. Int. J. 21 (2): 241–272. https://doi.org/10.12989/was.2015.21.2.241.
ANSYS Inc. 2017. Release 18.2—Documentation for ANSYS. Canonsburg, Estados Unidos: ANSYS.
ASCE. 2015. Design of latticed steel transmission structures. ASCE 10-15. Reston, VA: ASCE.
Beck, A. T., and M. R. Corrêa. 2013. “New design chart for basic wind speeds in Brazil.” Latin Am. J. Solids Struct. 10 (4): 707–723. https://doi.org/10.1590/S1679-78252013000400003.
Blessmann, J. 2001. Acidentes causados pelo vento. Porto Alegre, Brasil: Universidade Federal do Rio Grande do Sul.
Cai, Y., Q. Xie, S. Xue, L. Hu, and A. Kareem. 2019. “Fragility modelling framework for transmission line towers under winds.” Eng. Struct. 191 (Apr): 686–697. https://doi.org/10.1016/j.engstruct.2019.04.096.
Cappellari, T. T. O. 2005. Determinação da resposta dinâmica de feixes de condutores em linhas aéreas de transmissão. Porto Alegre, Brasil: Universidade Federal do Rio Grande do Sul.
Carlos, T. B., and J. Kaminski. 2015. “Rotina numérica para análise dinâmica de torres estaiadas de linhas de transmissão submetidas à ruptura de cabo.” In Proc., Ibero-Latin American Congress on Computational Methods in Engineering. Barcelona, Spain: International Association of Computational Mechanics. https://doi.org/10.1016/j.proeng.2017.09.177.
Carvalho, H. 2010. Metodologias para análise estática do efeito do vento em linhas de transmissão. Belo Horizonte, Brasil: Universidade Federal de Minas Gerais.
Carvalho, H. 2015. Efeitos do vento em linhas de transmissão. Belo Horizonte, Brasil: Universidade Federal de Minas Gerais.
Carvalho, H., J. Correia, A. D. Jesus, and R. Calçada. 2018. “Aerodynamic damping in cables of overhead transmission lines subjected to wind loads.” Wind Eng. 42 (4): 268–275. https://doi.org/10.1177/0309524X18777312.
Carvalho, H., G. Queiroz, and R. H. Fakury. 2016. “Comportamento de sistemas estruturais de linhas de transmissão submetidos ao vento.” Revista da Estrutura do Aço 5 (1): 21–38. https://doi.org/10.17648/aco-2238-9377-5-1-2.
Clark, M., D. J. Richards, and D. Clutterbuck. 2006. “Measured dynamic performance of electricity transmission towers following controlled broken-wire events.” In Proc., CIGRE. Paris: International Council on Large Electric Systems.
Davenport, A. G. 1980. “Gust response factors for transmission line loading.” Wind Eng. 1980 (1): 899–909. https://doi.org/10.1016/B978-1-4832-8367-8.50085-1.
Davenport, A. G. 1988. “The response of tensions structures to turbulent Wind: The role of aerodynamic damping.” In Proc., 1st Int. Oleg Kerensky Memorial Conf. on Tension Structures. London: Institution of Structural Engineers. https://doi.org/10.1016/j.engstruct.2021.112885.
Eiffel, G. 1911. Résistance de l’air et l’aviation: Expériences efféctées au laboratoire du Champ-de-Mars. Paris: H. Dunot et E. Pinat. https://doi.org/10.1016/j.shpsa.2012.08.002.
Gould, R. W. F., and W. G. Raymer. 1972. Measurements over a wide range of Reynolds numbers of the wind forces on models of lattice frameworks with tubular members. London: National Physical Laboratory.
Hamada, A., J. P. C. King, A. A. El Damatty, G. Bitsuamlak, and M. Hamada. 2017. “The response of a guyed transmission line system to boundary layer wind.” Eng. Struct. 139 (Jan): 135–152. https://doi.org/10.1016/j.engstruct.2017.01.047.
IEC (International Electrotechnical Commission). 2017. Design criteria of overhead transmission lines. IEC 60826. Geneva: IEC.
Kempner, L., and H. I. Laursen. 1981. “Measured dynamic response of a latticed transmission line tower and conductors to wind loading.” In Proc., 4th US National Conf. on Wind Engineering, 348–355. Tokyo: International Association of Wind Engineering.
Klein, T. 2004. Estudo em túnel de vento das características aerodinâmicas de torres metálicas treliçadas. Porto Alegre, Brasil: Universidade Federal do Rio Grande do Sul.
Krishnasamy, S. G. 1981. “Wind and ice loads on overhead transmission lines.” Ontario Hydro Res. Rev. 3 (4): 11–18.
Labegalini, P. R., J. A. Labegalini, R. D. Fuchs, and M. T. Almeida. 1992. Projetos Mecânicos das Linhas de Transmissão. Herning, Denmark: Blucher.
Loredo-Souza, A. M. 1996. The behaviour of transmission lines under high winds. London: Univ. of Western Ontario.
Luzardo, A. C. 2016. Simulação do comportamento dinâmico de torres de linhas de transmissão sob ação de ventos originados de Downburst. Porto Alegre, Brasil: Universidade Federal do Rio Grande do Sul.
Milewski, S., W. Cecot, and J. Orkisz. 2021. “On-line monitoring aided evaluation of power line cable shapes.” Eng. Struct. 235 (Mar): 20–25. https://doi.org/10.1016/j.engstruct.2021.111902.
Momomura, Y., H. Marukawa, T. Okamura, E. Hongo, and T. Ohkuma. 1997. “Full-scale measurements of wind-induced vibration of a transmission line system in a mountainous area.” J. Wind Eng. Ind. Aerodyn. 72 (Apr): 241–252. https://doi.org/10.1016/S0167-6105(97)00240-7.
Monk, P. E. 1980. Structural failure of transmission towers under high wind loads. New York: Univ. of Canterbury.
Nexans. 2003. Catálogo de Produtos: Alumínio, condutores nus. Paris: Nexans.
Oliveira, B. A. S., and J. G. S. Silva. 2016. “Modelagem do Comportamento Estrutural Dinâmico de Torres de Aço de Telecomunicações Submetidas à Ação Dinâmica Não Determinística de Cargas de Vento.” In Proc., Ibero-Latin American Congress on Computational Methods in Engineering. Barcelona, Spain: International Association of Computational Mechanics.
Oliveira, C. C. 2019. Avaliação do Comportamento de Sistemas Estruturais de Linhas de Transmissão Submetidos à Ação do Vento. Belo Horizonte, Brasil: Universidade Federal de Minas Gerais.
Oliveira, C. C., et al. 2020. “Nonlinear dynamic analysis of transmission line cables under synoptic wind loads.” Pract. Period. Struct. Des. Constr. 25 (4): 1–13. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000514.
Oliveira, M. I. R. D. 2006. Análise estrutural de torres de transmissão de energia submetidas aos efeitos dinâmicos induzidos pelo vento. Rio de Janeiro, Brasil: Universidade do Estado do Rio de Janeiro.
Reis, E. D., P. H. da Cruz Santos, H. Carvalho, J. A. de Vasconcelos, R. L. da Silva Adriano, and D. C. Lopes. 2019. “Metodologia para a determinação da velocidade básica do vento aplicada ao projeto de linhas aéreas de transmissão.” In Proc., Ibero-Latin American Congress on Computational Methods in Engineering. Barcelona, Spain: International Association of Computational Mechanics.
Ribeiro, D., C. Bragança, P. A. Montenegro, H. Carvalho, B. Costa, and F. Marques. 2022. “Wind-induced fatigue analysis of high-rise guyed lattice steel towers.” In Structures, 719–734. Amsterdam, Netherlands: Elsevier.
Rippel, L. I. 2005. Estudo em túnel de vento do arrasto aerodinâmico sobre torres treliçadas de linhas de transmissão. Alegre, Brazil: Universidade Federal do Rio Grande do Sul.
Rodrigues, R. S. 2004. Mecânica do colapso aeroelástico de torres TEE. Rio de Janeiro, Brasil: Universidade Federal do Rio de Janeiro.
Rossi, A., C. Jubayer, H. Koss, D. Arriaga, and H. Hangan. 2020. “Combined effects of wind and atmospheric icing on overhead transmission lines.” J. Wind Eng. Ind. Aerodyn. 204 (Jul): 104271. https://doi.org/10.1016/j.jweia.2020.104271.
Santos, A. S. 2008. Estudo de vibrações eólicas em linhas de transmissão de energia elétrica de alta tensão. Pará, Brasil: Universidade Federal do Pará.
Shehata, A., and A. El Damatty. 2021. “Extensible catenary approach in analyzing transmission line’s conductors under downbursts.” Eng. Struct. 234 (Feb): 111905. https://doi.org/10.1016/j.engstruct.2021.111905.
Silva, J. B. G. F., and M. M. Carvalho. 2009. “Algumas considerações sobre a problemática dos efeitos dinâmicos nas estruturas de linhas de transmissão.” In Proc., Int. Seminar on Modeling and Identification of Structures Subjected to Dynamic Excitation. Av. Bento Gonçalves, Brasil: Federal Univ. of Rio Grande do Sul.
Stengel, D., K. Thiele, M. Clobes, and M. Mehdianpour. 2017. “Aerodynamic damping of nonlinear movement of conductor cables in wind tunnel tests, numerical simulations and full-scale measurements.” J. Wind Eng. Ind. Aerodyn. 169 (7): 47–53. https://doi.org/10.1016/j.jweia.2017.07.002.
Vallis, M. B., A. M. Loredo-Souza, and L. C. Watrin. 2017. “A review of Brazilian wind data.” In Proc., 13th Americas Conf. on Wind Engineering. Naples, FL: American Association for Wind Engineering. https://doi.org/10.1016/j.jweia.2018.11.022.
Wu, Z., Y. Iida, and Y. Uematsu. 2021. “The flow fields generated by stationary and travelling downbursts and resultant wind load effects on transmission line structural system.” J. Wind Eng. Ind. Aerodyn. 210 (May): 104521. https://doi.org/10.1016/j.jweia.2021.104521.
Xie, Q., Y. Cai, and S. Xue. 2017. “Wind-induced vibration of UHV transmission tower line system: Wind tunnel test on aero-elastic model.” J. Wind Eng. Ind. Aerodyn. 171 (Aug): 219–229. https://doi.org/10.1016/j.jweia.2017.10.011.
Yi, Y., N. Xiaochun, Z. Jianping, Y. Zhitao, and L. Min. 2021. “Wear and life prediction of the U-shaped connecter of transmission line system under strong wind load.” Eng. Fail. Anal. 125 (Apr): 105404. https://doi.org/10.1016/j.engfailanal.2021.105404.
Zhang, J., and Q. Xie. 2019. “Failure analysis of transmission tower subjected to strong wind load.” J. Constr. Steel Res. 160 (5): 271–279. https://doi.org/10.1016/j.jcsr.2019.05.041.

Information & Authors

Information

Published In

Go to Practice Periodical on Structural Design and Construction
Practice Periodical on Structural Design and Construction
Volume 28Issue 2May 2023

History

Received: Jul 21, 2022
Accepted: Nov 14, 2022
Published online: Jan 9, 2023
Published in print: May 1, 2023
Discussion open until: Jun 9, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, Dept. of Civil Engineering, Federal Center for Technological Education of Minas Gerais, 7675, Amazonas Ave., Belo Horizonte 30.421-169, Brazil (corresponding author). ORCID: https://orcid.org/0000-0001-9848-125X. Email: [email protected]
Hermes Carvalho [email protected]
Professor, Dept. of Structural Engineering, Federal Univ. of Minas Gerais, 6627, Antonio Carlos Ave., Belo Horizonte 31.270-901, Brazil. Email: [email protected]
Ph.D. Student, Dept. of Structural Engineering, Federal Univ. of Minas Gerais, 6627, Antonio Carlos Ave., Belo Horizonte 31.270-901, Brazil. ORCID: https://orcid.org/0000-0003-4665-2189. Email: [email protected]
João Antônio de Vasconcelos [email protected]
Professor, Dept. of Electrical Engineering, Federal Univ. of Minas Gerais, 6627, Antonio Carlos Ave., Belo Horizonte 31.270-901, Brazil. Email: [email protected]
Professor, Dept. of Electrical Engineering, Federal Univ. of Minas Gerais, 6627, Antonio Carlos Ave., Belo Horizonte 31.270-901, Brazil. ORCID: https://orcid.org/0000-0003-4090-5771. Email: [email protected]
Danilo Campos Lopes [email protected]
Civil Engineer, Companhia Energética de Minas Gerais, 1200, Barbacena Ave., Belo Horizonte 31.270-901, Brazil. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share