Technical Papers
Jul 29, 2024

Synergistic-Inhibition Mechanism of MgO and Na2CO3 as Alkali Activator: Hydration–Hardening Characteristics of MgONa2CO3–Activated Slag

Publication: Journal of Materials in Civil Engineering
Volume 36, Issue 10

Abstract

MgO and Na2CO3 are used instead of strong alkalis (e.g., NaOH, NaOH+Na2SiO3) to prepare alkali-activated slag cement, achieving the promotion and use of green-economic alkali activators. In this study, the hydration reaction kinetics, hydration products, mechanical evolution, and microstructure characteristics of MgO-Na2CO3 activated slag (MNAS) system are studied. The results show that adding Na2CO3(>1%) prolongs the time of the second exothermic diffraction peak, and inhibits the hydration of the MNAS system in the early stage. The addition of Na2CO3 increases the 28 day compressive strength of the MNAS system. However, at 90 days, with the higher content of Na2CO3, the SiO4, and AlO4 at the Q2 site are dechained, the peak value at the Q0 site increases, the mean chain length (MCL) of the gel phase decreases, the total pore volume increases, cracks appeared in the internal structure, and the compressive strength decreases. Na2CO3 mixing of 3%, 5%–8%, and 10% is appropriate when using S-type, M-type, and R-type MgO. The MNAS system is excellent from the aspects of CO2 emission, energy consumption, and cost of the alkali-activated materials.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This research was funded by the Natural Science Foundation of Hebei Province (E2022201011), Science and Technology Project of Hebei Education Department (QN2022067), Science and Technology Project of Hebei Provincial Department of Human Resources and Social Security (C20220309), Hebei University Laboratory Open Project (sy202235). The corresponding author acknowledges the financial support provided by the National Natural Science Foundation of China (52178227).
Author contributions: Hongqiang Ma: Writing–original manuscript, Funding acquisition. Enyang Dai: Data processing, Writing–original manuscript. Hao Fu: Writing–review and editing. Erxia Du: Writing–review and editing. Xuan Zheng: Writing–review and editing. Jingjing Feng: Experimental equipment support, Funding acquisition.

References

Abbass, A. M., M. A. Elrahman, P. Sikora, J. Strzałkowski, D. Stephan, and H. A. Abdel-Gawwad. 2023. “From dolomite waste to katoite-based binder: Synthesis, performance and characterization.” J. Build. Mater. 75 (Apr): 106971. https://doi.org/10.1016/j.jobe.2023.106971.
Abdalqader, A., F. Jin, and A. Al-Tabbaa. 2019. “Performance of magnesia-modified sodium carbonate-activated slag/fly ash concrete.” Cem. Concr. Compos. 103 (Jun): 160–174. https://doi.org/10.1016/j.cemconcomp.2019.05.007.
Abd-EI-Raoof, F., A. Tawfik, S. Komarneni, and S. E. Ahmed. 2019. “Hydrotalcite and hydrocalumite as resources from waste materials of concrete aggregate and Al-dross by microwave-hydrothermal process.” Constr. Build. Mater. 207 (Jun): 10–16. https://doi.org/10.1016/j.conbuildmat.2019.02.105.
Akturk, B., M. Abolfathi, S. Ulukaya, A. B. Kizikanat, T. J. N. Hooper, L. Gu, E. H. Yang, and C. Unluer. 2022. “Hydration kinetics and performance of sodium carbonate-activated slag-based systems containing reactive MgO and metakaolin under carbonation.” Cem. Concr. Compos. 132 (Apr): 104617. https://doi.org/10.1016/j.cemconcomp.2022.104617.
Alharbi, N., B. Varela, and R. Hailstone. 2020. “Alkali-activated slag characterization by scanning electron microscopy, X-ray microanalysis and nuclear magnetic resonance spectroscopy.” Mater. Charact. 168 (Sep): 110504. https://doi.org/10.1016/j.matchar.2020.110504.
Bernal, S. A., R. S. Nicolas, R. J. Myers, P. R. M. F. de Gutiérrez, J. S. J. van Deventer, and J. L. Provis. 2014. “MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders.” Cem. Concr. Res. 57 (May): 33–43. https://doi.org/10.1016/j.cemconres.2013.12.003.
Bernal, S. A., J. L. Provis, R. J. Myers, R. S. Nicolas, and J. S. J. V. Deventer. 2015. “Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders.” Mater. Struct. 48 (3): 517–529. https://doi.org/10.1617/s11527-014-0412-6.
Burciaga-Díaz, O. 2019. “Parameters affecting the properties and microstructure of quicklime (CaO)-activated slag cement pastes.” Cem. Concr. Compos. 103 (May): 104–111. https://doi.org/10.1016/j.cemconcomp.2019.05.002.
Burciaga-Díaz, O., I. E. Betancourt-Castillo, M. E. Montes-Escobedo, and J. I. Escalante-García. 2023. “One-part pastes and mortars of CaO-Na2CO3 activated blast furnace slag: Microstructural evolution, cost and CO2 emissions.” Constr. Build. Mater. 368 (Sep): 130431. https://doi.org/10.1016/j.conbuildmat.2023.130431.
Chen, Z. J., and H. L. Ye. 2022. “The role of CaO and MgO incorporation in chloride resistance of sodium carbonate-activated slag.” Cem. Concr. Compos. 132 (Nov): 104625. https://doi.org/10.1016/j.cemconcomp.2022.104625.
Chinese Standard. 2012. Energy consumption limit per unit product of soda ash. GB 29140-2012. Beijing: Chinese Standard.
Dai, J. P., Q. C. Wang, X. Y. Lou, X. Y. Bao, B. Zhang, J. Q. Wang, and X. Zhang. 2021. “Solution calorimetry to assess effects of water-cement ratio and low temperature on hydration heat of cement.” Constr. Build. Mater. 269 (Dec): 121222. https://doi.org/10.1016/j.conbuildmat.2020.121222.
Dung, N. T., T. J. N. Hooper, and C. Unluer. 2019. “Accelerating the reaction kinetics and improving the performance of Na2CO3-activated GGBS mixes.” Cem. Concr. Res. 126 (Jun): 105927. https://doi.org/10.1016/j.cemconres.2019.105927.
Dung, N. T., T. J. N. Hooper, and C. Unluer. 2021. “Improving the carbonation resistance of Na2CO3-activated slag mixes via the use of reactive MgO and nucleation seeding.” Cem. Concr. Compos. 115 (Jan): 103832. https://doi.org/10.1016/j.cemconcomp.2020.103832.
Gao, X., Q. L. Yu, and H. J. H. Brouwers. 2017. “Apply 29Si, 27Al MAS NMR and selective dissolution in identifying the reaction degree of alkali activated slag-fly ash composites.” Ceram. Int. 43 (15): 12408–12419. https://doi.org/10.1016/j.ceramint.2017.06.108.
García-Lodeiro, I., A. Fernández-Jiménez, M. T. Blanco, and A. Palomo. 2007. “FTIR study of the sol-gel synthesis of cementitious gels: C─ S─ H and N─ A─ S─ H.” J. Sol–Gel Sci. Technol. 45 (Jun): 63–72. https://doi.org/10.1007/s10971-007-1643-6.
Gebregziabiher, B. S., R. Thomas, and S. Peethamparan. 2015. “Very early-age reactive kinetics and microstructural development in alkali-activated slag.” Cem. Concr. Compos. 55 (Aug): 91–102. https://doi.org/10.1016/j.cemconcomp.2014.09.001.
Groves, G. W., A. Brough, I. G. Richardson, and C. M. Dobson. 2010. “Progressive changes in the structure of hardened C3S cement pastes due to carbonation.” J. Am. Ceram. Soc. 74 (11): 2891–2896. https://doi.org/10.1111/j.1151-2916.1991.tb06859.x.
Hwang, C. L., D. H. Vo, V. A. Tran, and M. D. Yehualaw. 2018. “Effect of high MgO content on the performance of alkali-activated fine slag under water and air curing conditions.” Constr. Build. Mater. 186 (Dec): 503–513. https://doi.org/10.1016/j.conbuildmat.2018.07.129.
Jia, R. Q., Q. Wang, and T. Luo. 2022. “Understanding the workability of alkali-activated phosphorus slag pastes: Effects of alkali dose and silicate modulus on early-age hydration reactions.” Cem. Concr. Compos. 133 (Nov): 104649. https://doi.org/10.1016/j.cemconcomp.2022.104649.
Jiang, J. Y., Q. Zhang, Y. R. Yan, D. Guo, F. J. Wang, S. P. Wu, and W. Sun. 2018. Design of a novel nanocomposite with C─ S─ H@LA for thermal energy storage: A theoretical and experimental study.” Appl. Energy 220 (Aug) 395–407.
Jimenez, A. F., and F. Puertas. 2001. “Setting of alkali-activated slag cement. Influence of activator nature.” Adv. Cem. Res 13 (3): 115–121. https://doi.org/10.1680/adcr.2001.13.3.115.
Jin, F., and A. Al-Tabbaa. 2015. “Strength and drying shrinkage of slag paste activated by sodium carbonate and reactive MgO.” Constr. Build. Mater. 81 (Jun): 58–65. https://doi.org/10.1016/j.conbuildmat.2015.01.082.
Jin, F., K. Gu, and A. Al-Tabbaa. 2014. “Strength and drying shrinkage of alkali-activated slag pastes containing reactive MgO.” Constr. Build. Mater. 51 (Feb): 395–404. https://doi.org/10.1016/j.conbuildmat.2013.10.081.
Kang, X. J., and H. L. Ye. 2023. “Composition, nanostructure and stability of Cu-modified C─ A─ S─ H in antibacterial alkali-activated slag.” Cem. Concr. Res. 172 (Nov): 107256. https://doi.org/10.1016/j.cemconres.2023.107256.
Kiiashko, A., M. Chaouche, and L. Frouin. 2021. “Effect of phosphonate addition on sodium carbonate activated slag properties.” Cem. Concr. Compos. 119 (Jun): 103986. https://doi.org/10.1016/j.cemconcomp.2021.103986.
Komljenović, M., Z. Baščarević, and V. Bradić. 2010. “Mechanical and microstructural properties of alkali-activated fly ash geopolymers.” J. Hazard. Mater. 181 (1–3): 35–42. https://doi.org/10.1016/j.jhazmat.2010.04.064.
Kovtun, M., E. P. Kearsley, and J. Shekhovtsova. 2015. “Chemical acceleration of a neutral granulated blast-furnace slag activated by sodium carbonate.” Cem. Concr. Res. 72 (Apr): 1–9. https://doi.org/10.1016/j.cemconres.2015.02.014.
Kumar, A., B. J. Walder, A. K. Mohamed, A. Hofstetter, B. Srinivasan, A. J. Rossini, K. Scrivener, L. Emsley, and P. Bowen. 2017. “The atomic-level structure of cementitious calcium silicate hydrate.” J. Phys. Chem. 121 (32): 17188–17196. https://doi.org/10.1021/acs.jpcc.7b02439.
Kunhi Mohamed, A., et al. 2020. “The atomic-level structure of cementitious calcium aluminate silicate hydrate.” J. Am. Chem. Soc. 142 (25): 11060–11071. https://doi.org/10.1021/jacs.0c02988.
Lao, J. C., B. T. Huang, Y. Fang, L. Y. Xu, J. G. Dai, and S. P. Shah. 2023. “Strain-hardening alkali-activated fly ash/slag composites with ultra-high compressive strength and ultra-high tensile ductility.” Cem. Concr. Res. 165 (Aug): 107075. https://doi.org/10.1016/j.cemconres.2022.107075.
Li, G. Y., H. B. Tan, J. J. Zhang, X. F. Deng, X. H. Liu, and Z. T. Luo. 2021. “Ground granulated blast-furnace slag/fly ash blends activated by sodium carbonate at ambient temperature.” Constr. Build. Mater. 291 (Feb): 123378. https://doi.org/10.1016/j.conbuildmat.2021.123378.
Lin, S., Z. M. Zou, J. Qu, X. F. Li, Y. Y. Huang, C. J. Wu, and Z. G. Xu. 2020. “As(III) removal from aqueous solution by katoite (Ca3Al2(OH)12).” Chemosphere 260 (Jan): 127555. https://doi.org/10.1016/j.chemosphere.2020.127555.
Liu, Q. F., Y. X. Cai, H. Peng, Z. Z. Meng, S. Mundra, and A. Castel. 2023a. “A numerical study on chloride transport in alkali-activated fly ash/slag concretes.” Cem. Concr. Res. 166 (Nov): 107094. https://doi.org/10.1016/j.cemconres.2023.107094.
Liu, Q. F., X. H. Shen, B. Šavija, Z. Meng, D. C. W. Tsang, S. Sepasgozar, and E. Schlangen. 2023b. “Numerical study of interactive ingress of calcium leaching, chloride transport and multi-ions coupling in concrete.” Cem. Concr. Res. 165 (Jan): 107072. https://doi.org/10.1016/j.cemconres.2022.107072.
Ma, H. Q., E. X. Du, X. Y. Niu, and J. J. Feng. 2022a. “Drying shrinkage characteristics and mechanism primary exploration of MgO-slag mortars.” Constr. Build. Mater. 333 (Apr): 127416. https://doi.org/10.1016/j.conbuildmat.2022.127416.
Ma, H. Q., X. M. Li, X. Zheng, X. Y. Niu, and Y. L. Fang. 2022b. “Effect of active MgO on the hydration kinetics characteristics and microstructures of alkali-activated fly ash-slag materials.” Constr. Build. Mater. 361 (Jun): 129677. https://doi.org/10.1016/j.conbuildmat.2022.129677.
Ma, H. Q., X. Y. Niu, and J. J. Feng. 2022c. “Mechanical and microstructural property evolutions of MgO-slag cementitious materials under high temperatures.” J. Build. Mater. 56 (Dec): 104756. https://doi.org/10.1016/j.jobe.2022.104756.
Ma, H. Q., and C. Wu. 2022. “Early hydration kinetics and microstructure development of MgO-activated slag at room temperature.” J. Mater. Civ. Eng. 35 (1): 04022376. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004548.
Ma, H. Q., S. C. Zhang, and J. J. Feng. 2022d. “Early hydration properties and microstructure evolutions of MgO-activated slag materials at different curing temperatures.” Ceram. Int. 48 (12): 17104–17115. https://doi.org/10.1016/j.ceramint.2022.02.266.
Marple, M. A. T., B. Koroglu, K. Morrison, J. Crowhurst, A. Balachandra, P. Soroushian, and H. E. Mason. 2022. “Accelerated carbonation and structural transformation of blast furnace slag by mechanochemical alkali-activation.” Cem. Concr. Res. 156 (Aug): 106760. https://doi.org/10.1016/j.cemconres.2022.106760.
Matalkah, F., T. Salem, M. Shaafaey, and P. Soroushian. 2019. “Drying shrinkage of alkali activated binders cured at room temperature.” Constr. Build. Mater. 201 (Feb): 563–570. https://doi.org/10.1016/j.conbuildmat.2018.12.223.
McQueen, N., P. Kelemen, G. Dipple, P. Renforth, and J. Wilcox. 2020. “Ambient weathering of magnesium oxide for CO2 removal from air.” Nat. Commun. 11 (1): 3299. https://doi.org/10.1038/s41467-020-16510-3.
Mi, T. W., E. H. Yang, and C. Unluer. 2023. “Investigation of the properties of reactive MgO-based cements and their effect on performance.” Cem. Concr. Compos. 138 (Jun): 104984. https://doi.org/10.1016/j.cemconcomp.2023.104984.
Moseson, A. J., D. E. Moseson, and M. W. Barsoum. 2012. “High volume limestone alkali-activated cement developed by design of experiment.” Cem. Concr. Compos. 34 (3): 328–336. https://doi.org/10.1016/j.cemconcomp.2011.11.004.
Mu, Y. D., Z. C. Liu, F. Z. Wang, and X. Huang. 2018. “Carbonation characteristics of γ-dicalcium silicate for low-carbon building material.” Constr. Build. Mater. 177 (Jan): 322–331. https://doi.org/10.1016/j.conbuildmat.2018.05.087.
Myers, R. J., S. A. Bernal, R. S. Nicolas, and J. L. Provis. 2013. “Generalized structural description of calcium-sodium aluminosilicate hydrate gels: The cross-linked substituted tobermorite model.” Langmuir 29 (17): 5294–5306. https://doi.org/10.1021/la4000473.
Pawełkowicz, S. S., P. Svora, Z. Prošek, M. Keppert, E. Vejmelková, N. Murafa, T. Sawoszczuk, J. Syguła–Cholewińska, and H. Bíbová. 2022. “Laboratory assessment of a photoactive gypsum-based repair plaster.” Constr. Build. Mater. 346 (Sep): 128426. https://doi.org/10.1016/j.conbuildmat.2022.128426.
Pour-Ghaz, M. 2013. “Sustainable infrastructure materials: Challenges and opportunities.” Int. J. Appl. Ceram. Technol. 10 (4): 584–592. https://doi.org/10.1111/ijac.12083.
Provis, J. L. 2018. “Alkali-activated materials.” Cem. Concr. Res. 114 (Nov): 40–48. https://doi.org/10.1016/j.cemconres.2017.02.009.
Provis, J. L., and S. A. Bemal. 2014. “Geopolymers and related alkali-activated materials.” Annu. Rev. Mater. Res. 44 (1): 299–327. https://doi.org/10.1146/annurev-matsci-070813-113515.
Riyap, H. I., C. N. Bewa, C. Banenzoué, H. K. Tchakouté, C. H. Rüscher, E. Kamseu, M. C. Bignozzi, and C. Leonelli. 2019. “Microstructure and mechanical, physical and structural properties of sustainable lightweight metakaolin-based geopolymer cements and mortars employing rice husk.” J. Asian Ceram. Soc. 7 (2): 199–212. https://doi.org/10.1080/21870764.2019.1606140.
Rostami, V., Y. X. Shao, A. J. Boyd, and Z. He. 2012. “Microstructure of cement paste subject to early carbonation curing.” Cem. Concr. Res. 42 (1): 186–193. https://doi.org/10.1016/j.cemconres.2011.09.010.
Seo, J., H. N. Yoon, S. Kim, Z. Wang, T. Kil, and H. K. Lee. 2021. “Characterization of reactive MgO-modified calcium sulfoaluminate cements upon carbonation.” Cem. Concr. Res. 146 (Dec): 106484. https://doi.org/10.1016/j.cemconres.2021.106484.
Shah, V., and A. Scott. 2021. “Hydration and microstructural characteristics of MgO in the presence of metakaolin and silica fume.” Cem. Concr. Compos. 121 (Jun): 104068. https://doi.org/10.1016/j.cemconcomp.2021.104068.
Singh, L. P., S. K. Bhattacharyya, S. P. Shah, G. Mishra, and U. Sharma. 2016. “Studies on early stage hydration of tricalcium silicate incorporating silica nanoparticles: Part II.” Constr. Build. Mater. 102 (1): 943–949. https://doi.org/10.1016/j.conbuildmat.2015.05.084.
Singh, P. S., T. Bastow, and M. Trigg. 2015. “Structural studies of geopolymers by Si29 and Al27 MAS-NMR.” J. Mater. Sci. 40 (Aug): 3951–3961. https://doi.org/10.1007/s10853-005-1915-x.
Summerbell, D. L., C. Y. Barlow, and J. M. Cullen. 2016. “Potential reduction of carbon emissions by performance improvement: A cement industry case study.” J. Cleaner Prod. 135 (Dec): 1327–1339. https://doi.org/10.1016/j.jclepro.2016.06.155.
Sun, B. B., Y. B. Sun, G. Ye, and G. D. Schutter. 2023. “A mix design methodology of blast furnace slag and fly ash-based alkali-activated concrete.” Cem. Concr. Compos. 140 (Mar): 105076. https://doi.org/10.1016/j.cemconcomp.2023.105076.
Walkley, B., R. S. Nicolas, M. Sani, S. A. Bernal, J. S. J. Deventer, and J. I. Provis. 2017. “Structural evolution of synthetic alkali-activated CaOMgONa2OAl2O3SiO2 materials is influenced by Mg content.” Cem. Concr. Res. 99 (Apr): 155–171. https://doi.org/10.1016/j.cemconres.2017.05.006.
Walkley, B., R. S. Nicolas, M. A. Sani, G. J. Rees, J. V. Hanna, J. S. J. van Deventer, and J. L. Provis. 2016. “Phase evolution of C─ (N)─ A─ S─ H/N─ A─ S─ H gel blends investigated via alkali-activation of synthetic calcium aluminosilicate precursors.” Cem. Concr. Res. 89 (Sep): 120–135. https://doi.org/10.1016/j.cemconres.2016.08.010.
Wojtacha-Rychter, K., M. Król, M. Gołaszewska, J. Całus-Moszko, M. Magdziarczyk, and A. Smoliński. 2022. “Dust from chlorine bypass installation as cementitious materials replacement in concrete making.” J. Build. Mater. 51 (8): 104309. https://doi.org/10.1016/j.jobe.2022.104309.
Wu, Y. F., H. P. Xie, T. Liu, Y. F. Wang, G. H. Wang, X. L. Gao, and B. Liang. 2019. “Soda ash production with low energy consumption using proton cycled membrane electrolysis.” Ind. Eng. Chem. Res. 58 (8): 3450–3458. https://doi.org/10.1021/acs.iecr.8b05371.
Yang, J., F. Z. Wang, X. Y. He, and Y. Su. 2019. “Pore structure of affected zone around saturated and large superabsorbent polymers in cement paste.” Cem. Concr. Compos. 97 (Jun): 54–67. https://doi.org/10.1016/j.cemconcomp.2018.12.020.
Yang, J. H., X. Y. Zheng, Y. Ma, J. Y. Zhou, Y. N. Liang, and T. Ji. 2023a. “Effect of Na2CO3 on the tensile creep of slag-fly ash systems activated with Na2SiO3.” Cem. Concr. Compos. 140 (Feb): 105110. https://doi.org/10.1016/j.cemconcomp.2023.105110.
Yang, T., X. Gao, Q. Zhang, M. H. Lv, P. Z. Zhuang, and D. Chen. 2023b. “Accelerated carbonation of one-part sodium carbonate-activated slag cements modified by calcined dolomite.” Constr. Build. Mater. 375 (Aug): 131013. https://doi.org/10.1016/j.conbuildmat.2023.131013.
Yuan, B., C. Straub, S. Segers, Q. L. Yu, and H. J. H. Brouwers. 2017a. “Sodium carbonate activated slag as cement replacement in autoclaved aerated concrete.” Ceram. Int. 43 (8): 6039–6047. https://doi.org/10.1016/j.ceramint.2017.01.144.
Yuan, B., Q. L. Yu, and H. J. H. Brouwers. 2017b. “Time-dependent characterization of Na2CO3 activated slag.” Cem. Concr. Compos. 84 (Mar): 188–197. https://doi.org/10.1016/j.cemconcomp.2017.09.005.
Yusslee, E., and S. Beskhyroun. 2022. “The potential of one-part alkali-activated materials(AAMs) as a concrete patch mortar.” Sci. Rep. 12 (1): 15902. https://doi.org/10.1038/s41598-022-19830-0.
Zhang, Y., M. F. Liang, Y. D. Gan, and O. Çopuroğlu. 2022. “Effect of MgO content on the quantitative role of hydrotalcite-like phase in a cement-slag system during carbonation.” Cem. Concr. Compos. 134 (Jul): 104765. https://doi.org/10.1016/j.cemconcomp.2022.104765.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 36Issue 10October 2024

History

Received: Jan 23, 2024
Accepted: May 13, 2024
Published online: Jul 29, 2024
Published in print: Oct 1, 2024
Discussion open until: Dec 29, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Professor, College of Civil Engineering and Architecture, Hebei Univ., Baoding 071002, China; Professor, Technology Innovation Center for Testing and Evaluation in Civil Engineering of Hebei Province, Hebei Univ., Baoding 071002, China. ORCID: https://orcid.org/0000-0002-9076-0147
Postgraduate, College of Civil Engineering and Architecture, Hebei Univ., Baoding 071002, China. ORCID: https://orcid.org/0009-0009-3295-9850
Hao Fu
Postgraduate, College of Civil Engineering and Architecture, Hebei Univ., Baoding 071002, China.
Erxia Du
Assistant Professor, College of Civil Engineering and Architecture, Hebei Univ., Baoding 071002, China; Assistant Professor, Technology Innovation Center for Testing and Evaluation in Civil Engineering of Hebei Province, Hebei Univ., Baoding 071002, China.
Xuan Zheng
Assistant Professor, College of Civil Engineering and Architecture, Hebei Univ., Baoding 071002, China; Assistant Professor, Technology Innovation Center for Testing and Evaluation in Civil Engineering of Hebei Province, Hebei Univ., Baoding 071002, China.
Jingjing Feng [email protected]
Professor, College of Water Conservancy and Civil Engineering, Shandong Agricultural Univ., Taian, Shandong 271018, China (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share