Abstract

This research studied an innovative method for improving the properties of fly ash–based geopolymer mortar by using ultrafine two-dimensional (2D) graphitic carbon nanoplatelets (GCNPs) derived from sustainable biomass sources. These low-cost and eco-friendly GCNPs were synthesized through a thermochemical process involving biomass-derived sucrose solution. Both fly ash and GCNPs were processed and activated to optimize their performance in the geopolymerization process. The graphitic carbon reinforced geopolymer mortar (GCGPM) composite was optimized by employing different dosages of GCNPs (0, 0.1, 0.2, 0.3% [by weight of binder]), and the resulting GCGPM was examined through various instrumental analyses. It was observed that the addition of GCNPs results in reduced workability of the geopolymer mortar. Importantly, the maximum compressive strength of the GCGPM was significantly enhanced, up to 34.21%, with a 0.2% GCNPs addition over a 28-day curing period. Furthermore, incorporating 0.1% GCNPs into the composite led to an increased composite density, resulting in a substantial reduction of water absorption, up to 76.49%. These outcomes hold promise for achieving a more compact microstructure through the integration of GCNPs into geopolymer composites. The study suggests that novel synthesized GCNPs can effectively and sustainably enhance the properties of geopolymer composites in a cost-effective manner.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors are grateful for Tanvir Qureshi’s academic research support through the New Investigator Award from the University of the West of England (UK). The authors acknowledge CSIR–Institute of Minerals and Materials Technology for supporting the research with the graphitic carbon used in this study.

References

Abiodun, O., C. Kabubo, R. Mutuku, and O. Ejohwomu. 2023. “The effect of pristine graphene on the mechanical properties of geopolymer mortar.” Sustainability 15 (2): 1706. https://doi.org/10.3390/su15021706.
Adamu, M., P. Trabanpruek, P. Jongvivatsakul, S. Likitlersuang, and M. Iwanami. 2021. “Mechanical performance and optimization of high-volume fly ash concrete containing plastic wastes and graphene nanoplatelets using response surface methodology.” Constr. Build. Mater. 308 (Nov): 125085. https://doi.org/10.1016/j.conbuildmat.2021.125085.
Adamu, M., P. Trabanpruek, V. Limwibul, P. Jongvivatsakul, M. Iwanami, and S. Likitlersuang. 2022. “Compressive behavior and durability performance of high-volume fly-ash concrete with plastic waste and graphene nanoplatelets by using response-surface methodology.” J. Mater. Civ. Eng. 34 (9): 04022222. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004377.
Akhnoukh, A. K., and H. Elia. 2019. “Developing high performance concrete for precast/prestressed concrete industry.” Case Stud. Constr. Mater. 11 (Dec): e00290. https://doi.org/10.1016/j.cscm.2019.e00290.
Amri, A., A. A. Najib, M. Olivia, M. Altarawneh, A. Syam, M. M. Rahman, S. Saputro, J. Wahyuadi, and Z. T. Jiang. 2021. “Physicochemical properties of geopolymer composites with DFT calculations of in-situ reduction of graphene oxide.” Ceram. Int. 47 (10): 13440–13445. https://doi.org/10.1016/j.ceramint.2021.01.202.
ASTM. 2013. Standard test methods for sampling and testing concrete masonry units and related units. ASTM C140. West Conshohocken, PA: ASTM.
ASTM. 2017. Standard test methods for density of compacted or sintered powder metallurgy (PM) products using Archimedes’ principle. ASTM B962-17. West Conshohocken, PA: ASTM.
ASTM. 2020. Standard test method for flow of hydraulic cement mortar. ASTM C1437-20. West Conshohocken, PA: ASTM.
ASTM. 2021. Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50 mm] cube specimens). ASTM C109/C109M-21. West Conshohocken, PA: ASTM.
ASTM. 2022. Standard specification for coal fly ash and raw or calcined natural Pozzolan for use in concrete. ASTM C618-22. West Conshohocken, PA: ASTM.
Bayati, M., and M. Fidalgo de Cortalezzi. 2019. “Aggregation of graphene oxide in natural waters: Role of solution chemistry and specific interactions.” J. Environ. Eng. 145 (9): 04019050. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001561.
Bellum, R. R., K. Muniraj, C. S. R. Indukuri, and S. R. C. Madduru. 2020. “Investigation on performance enhancement of fly ash-GGBFS based graphene geopolymer concrete.” J. Build. Eng. 32 (Dec): 101659. https://doi.org/10.1016/j.jobe.2020.101659.
Bhagath Singh, G. V. P., and K. V. L. Subramaniam. 2016. “Quantitative XRD study of amorphous phase in alkali activated low calcium siliceous fly ash.” Constr. Build. Mater. 124 (Oct): 139–147. https://doi.org/10.1016/j.conbuildmat.2016.07.081.
Carriço, A., J. A. Bogas, A. Hawreen, and M. Guedes. 2018. “Durability of multi-walled carbon nanotube reinforced concrete.” Constr. Build. Mater. 164 (Mar): 121–133. https://doi.org/10.1016/j.conbuildmat.2017.12.221.
Chindasiriphan, P., P. Nuaklong, S. Keawsawasvong, C. Thongchom, T. Jirawattanasomkul, P. Jongvivatsakul, W. Tangchirapat, and S. Likitlersuang. 2023. “Effect of superabsorbent polymer and polypropylene fiber on mechanical performances of alkali-activated high-calcium fly ash mortar under ambient and elevated temperatures.” J. Build. Eng. 71 (Jul): 106509. https://doi.org/10.1016/j.jobe.2023.106509.
Chompoorat, T., T. Thepumong, P. Nuaklong, P. Jongvivatsakul, and S. Likitlersuang. 2021. “Alkali-activated controlled low-strength material utilizing high-calcium fly ash and steel slag for use as pavement materials.” J. Mater. Civ. Eng. 33 (8): 04021178. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003798.
da Cruz, B. D., L. G. Tienne, F. F. Gondim, L. da Silva Candido, E. G. Chaves, M. D. Marques, F. S. da Luz, and S. N. Monteiro. 2022. “Graphene nanoplatelets reinforced polyamide-11 nanocomposites thermal stability and aging for application in flexible pipelines.” J. Mater. Res. Technol. 18 (May): 1842–1854. https://doi.org/10.1016/j.jmrt.2022.03.075.
Davidovits, J. 1991. “Geopolymers—Inorganic polymeric new materials.” J. Therm. Anal. 37 (8): 1633–1656. https://doi.org/10.1007/BF01912193.
Davidovits, J. 1994. “Properties of geopolymer cements.” In Proc., First Int. Conf. on Alkaline Cements and Concretes, 131–149. Chennai, India: Scientific Research Institute on Binders and Materials.
Du, S., J. Wu, O. AlShareedah, and X. Shi. 2019. “Nanotechnology in cement-based materials: A review of durability, modeling, and advanced characterization.” Nanomaterials 9 (9): 1213. https://doi.org/10.3390/nano9091213.
García-Taengua, E., M. Sonebi, K. M. A. Hossain, M. Lachemi, and J. Khatib. 2015. “Effects of the addition of nanosilica on the rheology, hydration and development of the compressive strength of cement mortars.” Compos. B Eng. 81 (Nov): 120–129. https://doi.org/10.1016/j.compositesb.2015.07.009.
Guo, S., Y. Lu, X. Wan, F. Wu, T. Zhao, and C. Shen. 2020a. “Preparation, characterization of highly dispersed reduced graphene oxide/epoxy resin and its application in alkali-activated slag composites.” Cem. Concr. Compos. 105 (Jan): 103424. https://doi.org/10.1016/j.cemconcomp.2019.103424.
Guo, S., X. Qiao, T. Zhao, and Y.-S. Wang. 2020b. “Preparation of highly dispersed graphene and its effect on the mechanical properties and microstructures of geopolymer.” J. Mater. Civ. Eng. 32 (11): 04020327. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003424.
Hager, I., M. Sitarz, and K. Mróz. 2021. “Fly-ash based geopolymer mortar for high-temperature application—Effect of slag addition.” J. Clean. Prod. 316 (Sep): 128168. https://doi.org/10.1016/j.jclepro.2021.128168.
Ho, V. D., A. Gholampour, D. Losic, and T. Ozbakkaloglu. 2021. “Enhancing the performance and environmental impact of alkali-activated binder-based composites containing graphene oxide and industrial by-products.” Constr. Build. Mater. 284 (May): 122811. https://doi.org/10.1016/j.conbuildmat.2021.122811.
Hou, D. S., Q. E. Zhang, J. H. Zhang, and P. Wang. 2019. “Molecular modeling of capillary transport in the nanometer pore of nanocomposite of cement hydrate and graphene/GO.” J. Phys. Chem. C 123 (25): 15557–15568. https://doi.org/10.1021/acs.jpcc.9b02539.
Huang, T., and Z. Sun. 2021. “Advances in multifunctional graphene-geopolymer composites.” Constr. Build. Mater. 272 (Feb): 121619. https://doi.org/10.1016/j.conbuildmat.2020.121619.
Iqbal, H. W., K. Hamcumpai, P. Nuaklong, P. Jongvivatsakul, S. Likitlersuang, C. Chintanapakdee, and A. C. Wijeyewickrema. 2023. “Effect of graphene nanoplatelets on engineering properties of fly ash-based geopolymer concrete containing crumb rubber and its optimization using response surface methodology.” J. Build. Eng. 75 (Sep): 107024. https://doi.org/10.1016/j.jobe.2023.107024.
Irfanita, R., S. S. Desa, M. R. Fahlefy, S. Wahyuni, U. Athiyyah, and A. Setiawan. 2020. “The influence of reduced graphene oxide nanoparticles (rGO NPs) on the microstructure of metakaolin geopolymer.” IOP Conf. Ser. Mater. Sci. Eng. 864 (1): 012043. https://doi.org/10.1088/1757-899X/864/1/012043.
IS (Indian Standard). 1986. Methods of test for soils, Part 4: Grain size analysis. IS 2720 Part 4: 1985. New Delhi, India: IS.
IS (Indian Standard). 1991. Standard sand for testing cement specification. IS 650:1991. New Delhi, India: IS.
Islam, M. A., et al. 2022. “Exfoliation mechanisms of 2D materials and their applications.” Appl. Phys. Rev. 9 (4): 041301. https://doi.org/10.1063/5.0090717.
Johnson, D. W., B. P. Dobson, and K. S. Coleman. 2015. “A manufacturing perspective on graphene dispersions.” Curr. Opin. Colloid Interface Sci. 20 (5–6): 367–382. https://doi.org/10.1016/j.cocis.2015.11.004.
Johra, F. T., J.-W. Lee, and W.-G. Jung. 2014. “Facile and safe graphene preparation on solution based platform.” J. Ind. Eng. Chem. 20 (5): 2883–2887. https://doi.org/10.1016/j.jiec.2013.11.022.
Jongvivatsakul, P., C. Thongchom, A. Mathuros, T. Prasertsri, M. Adamu, S. Orasutthikul, A. Lenwari, and T. Charainpanitkul. 2022. “Enhancing bonding behavior between carbon fiber-reinforced polymer plates and concrete using carbon nanotube reinforced epoxy composites.” Case Stud. Constr. Mater. 17 (Dec): e01407. https://doi.org/10.1016/j.cscm.2022.e01407.
Khaloo, A., M. H. Mobini, and P. Hosseini. 2016. “Influence of different types of nano-SiO2 particles on properties of high-performance concrete.” Constr. Build. Mater. 113 (Jun): 188–201. https://doi.org/10.1016/j.conbuildmat.2016.03.041.
Konkena, B., and S. Vasudevan. 2012. “Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through p K a measurements.” J. Phys. Chem. Lett. 3 (7): 867–872. https://doi.org/10.1021/jz300236w.
Krishna, R. S., J. Mishra, A. Adetayo, S. K. Das, and S. M. Mustakim. 2020. “Green synthesis of high-performance graphene reinforced geopolymer composites: A review on environment-friendly extraction of nanomaterials.” Iran. J. Mater. Sci. Eng. 17 (4): 10–24. https://doi.org/10.22068/ijmse.17.4.10.
Krishna, R. S., J. Mishra, S. K. Das, B. Nanda, S. K. Patro, and S. M. Mustakim. 2022. “A review on potential of graphene reinforced geopolymer composites.” In Tailored functional materials, 43–60. Singapore: Springer.
Krishna, R. S., J. Mishra, B. Nanda, S. K. Patro, A. Adetayo, and T. S. Qureshi. 2021a. “The role of graphene and its derivatives in modifying different phases of geopolymer composites: A review.” Constr. Build. Mater. 306 (Nov): 124774.
Krishna, R. S., F. Shaikh, J. Mishra, G. Lazorenko, and A. Kasprzhitskii. 2021b. “Mine tailings-based geopolymers: Properties, applications and industrial prospects.” Ceram. Int. 47 (13): 17826–17843. https://doi.org/10.1016/j.ceramint.2021.03.180.
Kumar, S., and R. Kumar. 2011. “Mechanical activation of fly ash: Effect on reaction, structure and properties of resulting geopolymer.” Ceram. Int. 37 (2): 533–541. https://doi.org/10.1016/j.ceramint.2010.09.038.
Kumar, S., G. Mucsi, F. Kristály, and P. Pekker. 2017. “Mechanical activation of fly ash and its influence on micro and nano-structural behaviour of resulting geopolymers.” Adv. Powder Technol. 28 (3): 805–813. https://doi.org/10.1016/j.apt.2016.11.027.
Kumar, V., A. Kumar, D.-J. Lee, and S.-S. Park. 2021. “Estimation of number of graphene layers using different methods: A focused review.” Materials 14 (16): 4590. https://doi.org/10.3390/ma14164590.
Lertcumfu, N., P. Jaita, S. Thammarong, S. Lamkhao, S. Tandorn, C. Randorn, T. Tunkasiri, and G. Rujijanagul. 2020. “Influence of graphene oxide additive on physical, microstructure, adsorption, and photocatalytic properties of calcined kaolinite-based geopolymer ceramic composites.” Colloids Surf., A 602 (May): 125080. https://doi.org/10.1016/j.colsurfa.2020.125080.
Li, L., Y. Wei, Z. Li, and M. U. Farooqi. 2022a. “Rheological and viscoelastic characterizations of fly ash/slag/silica fume-based geopolymer.” J. Clean Prod. 354 (Jun): 131629. https://doi.org/10.1016/j.jclepro.2022.131629.
Li, V. C., and C. K. Y. Leung. 1992. “Steady-state and multiple cracking of short random fiber composites.” J. Eng. Mech. 118 (11): 2246–2264. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:11(2246).
Li, Z., M. N. Sheikh, H. Feng, and M. N. S. Hadi. 2022b. “Mechanical properties of engineered geopolymer composite with graphene nanoplatelet.” Ceram. Int. 48 (23): 34915–34930. https://doi.org/10.1016/j.ceramint.2022.08.081.
Li, Z., H. Wang, S. He, Y. Lu, and M. Wang. 2006. “Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite.” Mater. Lett. 60 (3): 356–359. https://doi.org/10.1016/j.matlet.2005.08.061.
Liu, R., H. Xiao, H. Li, L. Sun, Z. Pi, G. Q. Waqar, T. Du, and L. Yu. 2018. “Effects of nano-SiO2 on the permeability-related properties of cement-based composites with different water/cement ratios.” J. Mater. Sci. 53 (7): 4974–4986. https://doi.org/10.1007/s10853-017-1906-8.
Long, W. J., C. Lin, X. W. Tan, J. L. Tao, T. H. Ye, and Q. L. Luo. 2020. “Structural applications of thermal insulation alkali activated materials with reduced graphene oxide.” Materials 13 (5): 1052. https://doi.org/10.3390/ma13051052.
Lu, D., X. Shi, and J. Zhong. 2022. “Nano-engineering the interfacial transition zone in cement composites with graphene oxide.” Constr. Build. Mater. 356 (Nov): 129284. https://doi.org/10.1016/j.conbuildmat.2022.129284.
Malard, L. M., M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus. 2009. “Raman spectroscopy in graphene.” Phys. Rep. 473 (5–6): 51–87. https://doi.org/10.1016/j.physrep.2009.02.003.
Marcin, M., M. Sisol, I. Brezani, and D. Behunova. 2019. “Mechanical activation of two different types of fly ash and their effect on alkali activation.” IOP Conf. Ser. Mater. Sci. Eng. 583 (1): 012024. https://doi.org/10.1088/1757-899X/583/1/012024.
Mbayachi, V. B., E. Ndayiragije, T. Sammani, S. Taj, E. R. Mbuta, and A. Ullah Khan. 2021. “Graphene synthesis, characterization and its applications: A review.” Results Chem. 3 (Jan): 100163. https://doi.org/10.1016/j.rechem.2021.100163.
Mishra, J., B. Nanda, S. K. Patro, and R. S. Krishna. 2022. “Sustainable fly ash based geopolymer binders: A review on compressive strength and microstructure properties.” Sustainability 14 (22): 15062. https://doi.org/10.3390/su142215062.
Mucsi, G., Z. Molnár, and S. Kumar. 2014. “Geopolymerisation of mechanically activated lignite and brown coal fly ash.” Acta Phys. Pol. A 126 (4): 994–998. https://doi.org/10.12693/APhysPolA.126.994.
Murthy, A. R., P. Ganesh, S. S. Kumar, and N. R. Iyer. 2015. “Fracture energy and tension softening relation for nano-modified concrete.” Struct. Eng. Mech. 54 (6): 1201–1216. https://doi.org/10.12989/sem.2015.54.6.1201.
Najigivi, A., A. Khaloo, A. Iraji zad, and S. Abdul Rashid. 2013. “Investigating the effects of using different types of SiO2 nanoparticles on the mechanical properties of binary blended concrete.” Composites, Part B 54 (Nov): 52–58. https://doi.org/10.1016/j.compositesb.2013.04.035.
Nam, S., A. D. French, B. D. Condon, and M. Concha. 2016. “Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II.” Carbohydr. Polym. 135 (Jan): 1–9. https://doi.org/10.1016/j.carbpol.2015.08.035.
Nazari, A., and S. Riahi. 2010. “ZrO2 nanoparticles’ effects on split tensile strength of self compacting concrete.” Mater. Res. 13 (4): 485–495. https://doi.org/10.1590/S1516-14392010000400011.
Ni, Z., Y. Wang, T. Yu, and Z. Shen. 2008. “Raman spectroscopy and imaging of graphene.” Nano Res. 1 (4): 273–291. https://doi.org/10.1007/s12274-008-8036-1.
Nuaklong, P., N. Boonchoo, P. Jongvivatsakul, T. Charinpanitkul, and P. Sukontasukkul. 2021a. “Hybrid effect of carbon nanotubes and polypropylene fibers on mechanical properties and fire resistance of cement mortar.” Constr. Build. Mater. 275 (Mar): 122189. https://doi.org/10.1016/j.conbuildmat.2020.122189.
Nuaklong, P., K. Hamcumpai, S. Keawsawasvong, S. Pethrung, P. Jongvivatsakul, S. Tangaramvong, T. Pothisiri, and S. Likitlersuang. 2023. “Strength and post-fire performance of fiber-reinforced alkali-activated fly ash concrete containing granite industry waste.” Constr. Build. Mater. 392 (Aug): 131984. https://doi.org/10.1016/j.conbuildmat.2023.131984.
Nuaklong, P., P. Worawatnalunart, P. Jongvivatsakul, S. Tangaramvong, T. Pothisiri, and S. Likitlersuang. 2021b. “Pre- and post-fire mechanical performances of high calcium fly ash geopolymer concrete containing granite waste.” J. Build. Eng. 44 (Dec): 103265. https://doi.org/10.1016/j.jobe.2021.103265.
Pavithra, P., M. Srinivasula Reddy, P. Dinakar, B. Hanumantha Rao, B. K. Satpathy, and A. N. Mohanty. 2016. “A mix design procedure for geopolymer concrete with fly ash.” J. Clean. Prod. 133 (Oct): 117–125. https://doi.org/10.1016/j.jclepro.2016.05.041.
Perumal, S., R. Atchudan, and I. W. Cheong. 2021. “Recent studies on dispersion of graphene–polymer composites.” Polymers (Basel) 13 (14): 2375. https://doi.org/10.3390/polym13142375.
Piscanec, S., M. Lazzeri, F. Mauri, and A. C. Ferrari. 2007. “Optical phonons of graphene and nanotubes.” Eur. Phys. J. Spec. Top 148 (1): 159–170. https://doi.org/10.1140/epjst/e2007-00236-2.
Qureshi, T., and S. Ootim. 2023. “Multifunctional concrete with graphene-based nanomaterials and superabsorbent polymer.” J. Mater. Civ. Eng. 35 (4): 04023046 https://doi.org/10.1061/(ASCE)MT.1943-5533.0004699.
Qureshi, T., and D. Panesar. 2019a. “A comparison of graphene oxide, reduced graphene oxide and pure graphene: Early age properties of cement composites.” In Proc., 2nd RILEM Spring Convention & Int. Conf. on Sustainable Materials, Systems and Structures. Paris: RILEM Publications SARL.
Qureshi, T., G. Wang, S. Mukherjee, M. Akibul Islam, T. Filleter, C. V. Singh, and D. K. Panesar. 2022. “Graphene-based anti-corrosive coating on steel for reinforced concrete infrastructure applications: Challenges and potential.” Constr. Build. Mater. 351 (Oct): 128947. https://doi.org/10.1016/j.conbuildmat.2022.128947.
Qureshi, T. S., and D. K. Panesar. 2019b. “Impact of graphene oxide and highly reduced graphene oxide on cement based composites.” Constr. Build. Mater. 206 (May): 71–83. https://doi.org/10.1016/j.conbuildmat.2019.01.176.
Qureshi, T. S., and D. K. Panesar. 2020. “Nano reinforced cement paste composite with functionalized graphene and pristine graphene nanoplatelets.” Composites B 197 (Sep): 108063. https://doi.org/10.1016/j.compositesb.2020.108063.
Qureshi, T. S., D. K. Panesar, B. Sidhureddy, A. Chen, and P. C. Wood. 2019. “Nano-cement composite with graphene oxide produced from epigenetic graphite deposit.” Composites, Part B 159 (Feb): 248–258. https://doi.org/10.1016/j.compositesb.2018.09.095.
Ranjbar, N., M. Mehrali, M. Mehrali, U. J. Alengaram, and M. Z. Jumaat. 2015. “Graphene nanoplatelet-fly ash based geopolymer composites.” Cem. Concr. Res. 76 (Oct): 222–231. https://doi.org/10.1016/j.cemconres.2015.06.003.
Saafi, M., L. Tang, J. Fung, M. Rahman, and J. Liggat. 2015. “Enhanced properties of graphene/fly ash geopolymeric composite cement.” Cem. Concr. Res. 67 (Jan): 292–299. https://doi.org/10.1016/j.cemconres.2014.08.011.
Sagar, R. V., B. K. R. Prasad, and S. S. Kumar. 2012. “An experimental study on cracking evolution in concrete and cement mortar by the b-value analysis of acoustic emission technique.” Cem. Concr. Res. 42 (8): 1094–1104. https://doi.org/10.1016/j.cemconres.2012.05.003.
Saha, S., and C. Rajasekaran. 2020. “Strength and shrinkage properties of heat-cured fly ash–based geopolymer mortars containing fine recycled concrete aggregate.” J. Test Eval. 48 (6): 4735. https://doi.org/10.1520/JTE20180799.
Samuvel Raj, R., G. Prince Arulraj, N. Anand, B. Kanagaraj, E. Lubloy, and M. Z. Naser. 2023. “Nanomaterials in geopolymer composites: A review.” Dev. Built Enviro. 13 (Mar): 100114. https://doi.org/10.1016/j.dibe.2022.100114.
Scherrer, P. 1918. “Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen.” Nach. Ges. Wiss. Gottingen 2: 98–100.
Seong, H., G. Kim, J. Jeon, H. Jeong, J. Noh, Y. Kim, H. Kim, and S. Huh. 2018. “Experimental study on characteristics of grinded graphene nanofluids with surfactants.” Materials 11 (6): 950. https://doi.org/10.3390/ma11060950.
Sharma, S., and N. C. Kothiyal. 2015. “Influence of graphene oxide as dispersed phase in cement mortar matrix in defining the crystal patterns of cement hydrates and its effect on mechanical, microstructural and crystallization properties.” RSC Adv. 5 (65): 52642–52657. https://doi.org/10.1039/C5RA08078A.
Shilar, F. A., S. V. Ganachari, V. B. Patil, T. M. Y. Khan, N. M. Almakayeel, and S. Alghamdi. 2022. “Review on the relationship between nano modifications of geopolymer concrete and their structural characteristics.” Polymers (Basel) 14 (7): 1421. https://doi.org/10.3390/polym14071421.
Shiri, S., M. H. Abbasi, A. Monshi, and F. Karimzadeh. 2014. “A study on mechanical and physical properties of monocalcium aluminate cement reinforced with nano-SiO2 particles.” Composites Part B 56 (Jan): 30–33. https://doi.org/10.1016/j.compositesb.2013.08.057.
Song, X., Y. Li, and C. Li. 2020. “Bond behavior between steel bars and carbon nanotube modified concrete.” Constr. Build. Mater. 255 (Sep): 119339. https://doi.org/10.1016/j.conbuildmat.2020.119339.
Stobinski, L., B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek, and I. Bieloshapka. 2014. “Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods.” J. Electron. Spectros. Relat. Phenomena 195 (Aug): 145–154. https://doi.org/10.1016/j.elspec.2014.07.003.
Tay, C. H., and M. Norkhairunnisa. 2021. “Mechanical strength of graphene reinforced geopolymer nanocomposites: A review.” Front. Mater. 8 (Jul): 661013. https://doi.org/10.3389/fmats.2021.661013.
Valizadeh Kiamahalleh, M., A. Gholampour, D. N. H. Tran, T. Ozbakkaloglu, and D. Losic. 2020. “Physiochemical and mechanical properties of reduced graphene oxide–cement mortar composites: Effect of reduced graphene oxide particle size.” Constr. Build. Mater. 250 (Jul): 118832. https://doi.org/10.1016/j.conbuildmat.2020.118832.
van Damme, H. 2018. “Concrete material science: Past, present, and future innovations.” Cem. Concr. Res. 112 (Oct): 5–24. https://doi.org/10.1016/j.cemconres.2018.05.002.
Viana, T. M., B. A. Bacelar, I. D. Coelho, P. Ludvig, and W. J. Santos. 2020. “Behaviour of ultra-high performance concretes incorporating carbon nanotubes under thermal load.” Constr. Build. Mater. 263 (Dec): 120556. https://doi.org/10.1016/j.conbuildmat.2020.120556.
Wang, W., Z. Zhong, X. Kang, and X. Ma. 2023. “Physico-mechanical properties and micromorphological characteristics of graphene oxide reinforced geopolymer foam concrete.” J. Build. Eng. 72 (Aug): 106732. https://doi.org/10.1016/j.jobe.2023.106732.
Win, T. T., L. Prasittisopin, P. Jongvivatsakul, and S. Likitlersuang. 2023. “Investigating the synergistic effect of graphene nanoplatelets and fly ash on the mechanical properties and microstructure of calcium aluminate cement composites.” J. Build. Eng. 78 (Nov): 107710. https://doi.org/10.1016/j.jobe.2023.107710.
Wu, S., T. Qureshi, and G. Wang. 2021. “Application of graphene in fiber-reinforced cementitious composites: A review.” Energies (Basel) 14 (15): 4614. https://doi.org/10.3390/en14154614.
Wu, Y., B. Lu, T. Bai, H. Wang, F. Du, Y. Zhang, L. Cai, C. Jiang, and W. Wang. 2019. “Geopolymer, green alkali activated cementitious material: Synthesis, applications and challenges.” Constr. Build. Mater. 224 (Nov): 930–949. https://doi.org/10.1016/j.conbuildmat.2019.07.112.
Xu, G., J. Zhong, and X. Shi. 2018. “Influence of graphene oxide in a chemically activated fly ash.” Fuel 226 (Apr): 644–657. https://doi.org/10.1016/j.fuel.2018.04.033.
You, X., Q. Feng, J. Yang, K. Huang, J. Hu, and S. Dong. 2019. “Preparation of high concentration graphene dispersion with low boiling point solvents.” J. Nanopart. Res. 21 (1): 19. https://doi.org/10.1007/s11051-019-4459-8.
Zakka, W. P., N. H. Abdul Shukor Lim, and M. Chau Khun. 2021. “A scientometric review of geopolymer concrete.” J. Clean. Prod. 280 (Jan): 124353. https://doi.org/10.1016/j.jclepro.2020.124353.
Zhang, F., K. Yang, G. Liu, Y. Chen, M. Wang, S. Li, and R. Li. 2022. “Recent advances on graphene: Synthesis, properties and applications.” Composites, Part A 160 (Sep): 107051. https://doi.org/10.1016/j.compositesa.2022.107051.
Zhang, P., J. Su, J. Guo, and S. Hu. 2023. “Influence of carbon nanotube on properties of concrete: A review.” Constr. Build. Mater. 369 (Mar): 130388. https://doi.org/10.1016/j.conbuildmat.2023.130388.
Zhang, X., Z. Liu, and F. Wang. 2019. “Autogenous shrinkage behavior of ultra-high performance concrete.” Constr. Build. Mater. 226 (Nov): 459–468. https://doi.org/10.1016/j.conbuildmat.2019.07.177.
Zhou, G. X., C. Li, Z. Zhao, Y. Z. Qi, Z. H. Yang, D. C. Jia, J. Zhong, and Y. Zhou. 2020. “3D printing geopolymer nanocomposites structure: Graphene oxide size effects on a reactive matrix.” Carbon 164 (Aug): 215–223. https://doi.org/10.1016/j.carbon.2020.02.021.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 36Issue 8August 2024

History

Received: Nov 15, 2023
Accepted: Jan 26, 2024
Published online: May 30, 2024
Published in print: Aug 1, 2024
Discussion open until: Oct 30, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Ph.D. Student, Centre for Infrastructure Engineering, Western Sydney Univ., Penrith, NSW 2751, Australia; Technology Innovation Hub, Indian Institute of Technology Guwahati, Guwahati 781039, India. ORCID: https://orcid.org/0000-0003-2025-0317
Neha Sethy, S.M.ASCE
Master’s Student, Dept. of Civil Engineering, Veer Surendra Sai Univ. of Technology, Burla 768018, India.
Suman Saha
Assistant Professor, Dept. of Civil Engineering, National Institute of Technology, Durgapur 713209, India.
Senior Technical Officer, Environment and Sustainability Dept., CSIR—Institute of Minerals and Materials Technology, Bhubaneswar 751013, India. ORCID: https://orcid.org/0000-0002-6354-4932
Boopathy R
Senior Scientist, Environment and Sustainability Dept., CSIR—Institute of Minerals and Materials Technology, Bhubaneswar 751013, India.
Faiz Uddin Ahmed Shaikh
Professor, School of Civil and Mechanical Engineering, Curtin Univ., Perth, WA 6102, Australia.
Senior Scientist, Dept. of Engineering Design and Mathematics, Univ. of the West of England, Bristol BS16 1QY, UK; Inspection and Monitoring Technologies Branch, Canadian Nuclear Laboratories Ltd., 286 Plant Rd., Chalk River, ON, Canada K0J 1J0 (corresponding author). ORCID: https://orcid.org/0000-0002-8959-9181. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share