Technical Papers
Apr 3, 2024

Effects of Cocontamination by Toluene on Cr(VI) Adsorption by P-nZVI in a Soil–Water System: A Fixed-Bed Column Study

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 28, Issue 3

Abstract

Soil–water cocontamination with heavy metals and nonaqueous phase liquids (NAPLs) raises widespread concerns. Coexisting NAPL pollutants like toluene can antagonize the chemical processes employed for removing target heavy metals. This study investigates the impact of toluene on Cr(VI) adsorption by pumice-supported nano zerovalent iron (P-nZVI). The experiment was performed by passing a 10 mg/L Cr(VI) aqueous solution through a fixed-bed column in two batches, one without and the other with toluene. Results showed that toluene's copresence caused a 71.3% drop (3.14 to 0.9 mg/g) in P-nZVI adsorption capacity for Cr(VI). In toluene's absence, a Cr(VI) concentration in the effluent appeared after 60 h, while in its copresence, a Cr(VI) concentration appeared within 10 h. The average Cr(VI) concentration of the effluent increased from 5.05 mg/L in the first batch to 8.64 mg/L in the second batch. Breakthrough curve modeling demonstrated that the Thomas model best described the adsorption kinetics for the first case (R2 = 0.999), followed by the Yoon and Nelson and the Clark models with R2 = 0.996 and 0.994, respectively. Under toluene cocontamination, both the Thomas and the Yoon and Nelson models showed the best fit (R2 = 0.996). The inverse numerical analysis determined adsorption isotherm parameters (Ks, β, η) and confirmed that the reaction followed Langmuir behavior (β ≃ 1) with slight linearity under individual Cr(VI) presence. The results from this adsorption study, supported by adsorbent characterization before and after the reaction, demonstrated the unfavorable effects of coexisting contaminants on the removal of contaminants of concern.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data generated or used during the study appear in the published article.

Acknowledgments

The authors are thankful to the British Council, UK, and the Department of Science and Technology, India, for joint support through a UKIERI Project. The authors are also thankful to the University Grants Commission (UGC), India, for research fellowship support and SPARK, IIT Roorkee, India, for internship assistance.
Author contributions: A.G.: Conceptualization, Methodology, Investigation, Writing – original draft, Review, Editing; B.K.Y.: Conceptualization, Project Administering and Funding, Writing – review; S.R.: Methodology, Investigation, Writing – review; H.S.: Methodology, Investigation.

References

Agnello, A. C., M. Bagard, E. D. van Hullebusch, G. Esposito, and D. Huguenot. 2016. “Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation.” Sci. Total Environ. 563–564: 693–703. https://doi.org/10.1016/j.scitotenv.2015.10.061.
Ahmad, S. S., Z. A. Reshi, M. A. Shah, I. Rashid, R. Ara, and S. M. A. Andrabi. 2016. “Heavy metal accumulation in the leaves of Potamogeton natans and Ceratophyllum demersum in a Himalayan RAMSAR site: Management implications.” Wetlands Ecol. Manage. 24 (4): 469–475. https://doi.org/10.1007/s11273-015-9472-9.
Ali, M., X. Song, D. Ding, Q. Wang, Z. Zhang, and Z. Tang. 2022. “Bioremediation of PAHs and heavy metals co-contaminated soils: Challenges and enhancement strategies.” Environ. Pollut. 295: 118686. https://doi.org/10.1016/j.envpol.2021.118686.
Almalkawi, A. T., S. Hamadna, and P. Soroushian. 2017. “One-part alkali activated cement based volcanic pumice.” Constr. Build. Mater. 152: 367–374. https://doi.org/10.1016/j.conbuildmat.2017.06.139.
Babel, S., and T. A. Kurniawan. 2004. “Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan.” Chemosphere 54 (7): 951–967. https://doi.org/10.1016/j.chemosphere.2003.10.001.
Bai, B., Q. Nie, Y. Zhang, X. Wang, and W. Hu. 2021. “Cotransport of heavy metals and SiO2 particles at different temperatures by seepage.” J. Hydrol. 597: 125771. https://doi.org/10.1016/j.jhydrol.2020.125771.
Bakshi, A., and A. K. Panigrahi. 2018. “A comprehensive review on chromium induced alterations in fresh water fishes.” Toxicol. Rep. 5: 440–447. https://doi.org/10.1016/j.toxrep.2018.03.007.
Baltrons, O., M. López-Mesas, M. Vilaseca, C. Gutiérrez-Bouzán, F. Le Derf, F. Portet-Koltalo, and C. Palet. 2018. “Influence of a mixture of metals on PAHs biodegradation processes in soils.” Sci. Total Environ.628–629: 150–158. https://doi.org/10.1016/j.scitotenv.2018.02.013.
Banerjee, M., N. Bar, R. K. Basu, and S. K. Das. 2018. “Removal of Cr(VI) from its aqueous solution using green adsorbent pistachio shell: A fixed bed column study and GA-ANN modeling.” Water Conserv. Sci. Eng. 3 (1): 19–31. https://doi.org/10.1007/s41101-017-0039-x.
Bilgiç, A., and A. Çimen. 2019. “Removal of chromium(vi) from polluted wastewater by chemical modification of silica gel with 4-acetyl-3-hydroxyaniline.” RSC Adv. 9 (64): 37403–37414. https://doi.org/10.1039/c9ra05810a.
Bilgic, A., A. Cimen, and A. N. Kursunlu. 2023. “A novel biosorbent functionalized pillar[5]arene: Synthesis, characterization and effective biosorption of Cr(VI).” Sci. Total Environ. 857 (October 2022): 159312. https://doi.org/10.1016/j.scitotenv.2022.159312.
Biswas, B., B. Sarkar, A. Mandal, and R. Naidu. 2015. “Heavy metal-immobilizing organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed-contaminated soil.” J. Hazard. Mater. 298: 129–137. https://doi.org/10.1016/j.jhazmat.2015.05.009.
Cao, X., X. Cui, M. Xie, R. Zhao, L. Xu, S. Ni, and Z. Cui. 2022. “Amendments and bioaugmentation enhanced phytoremediation and micro-ecology for PAHs and heavy metals co-contaminated soils.” J. Hazard. Mater. 426: 128096. https://doi.org/10.1016/j.jhazmat.2021.128096.
Catalfamo, P., I. Arrigo, P. Primerano, and F. Corigliano. 2006. “Efficiency of a zeolitized pumice waste as a low-cost heavy metals adsorbent.” J. Hazard. Mater. 134 (1–3): 140–143. https://doi.org/10.1016/j.jhazmat.2005.10.040.
Chen, Y., M. Mastalerz, and A. Schimmelmann. 2012. “Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy.” Int. J. Coal Geol. 104: 22–33. https://doi.org/10.1016/j.coal.2012.09.001.
Chirakkara, R. A., C. Cameselle, and K. R. Reddy. 2016. “Assessing the applicability of phytoremediation of soils with mixed organic and heavy metal contaminants.” Rev. Environ. Sci. Bio/Technol. 15 (2): 299–326. https://doi.org/10.1007/s11157-016-9391-0.
Clark, R. M. 1987. “Evaluating the cost and performance of field-scale granular activated carbon systems.” Environ. Sci. Technol. 21 (6): 573–580. https://doi.org/10.1021/es00160a008.
Cundy, A. B., L. Hopkinson, and R. L. D. Whitby. 2008. “Use of iron-based technologies in contaminated land and groundwater remediation: A review.” Sci. Total Environ. 400 (1–3): 42–51. https://doi.org/10.1016/j.scitotenv.2008.07.002.
Dang, V. M., et al. 2021. “Enhancement of exchangeable Cd and Pb immobilization in contaminated soil using Mg/Al LDH-zeolite as an effective adsorbent.” RSC Adv. 11 (28): 17007–17019. https://doi.org/10.1039/d0ra10530a.
Das, D. D., R. Mahapatra, J. Pradhan, S. N. Das, and R. S. Thakur. 2000. “Removal of Cr(VI) from aqueous solution using activated cow dung carbon.” J. Colloid Interface Sci. 232 (2): 235–240. https://doi.org/10.1006/jcis.2000.7141.
Dhal, B., H. N. Thatoi, N. N. Das, and B. D. Pandey. 2013. “Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review.” J. Hazard. Mater. 250–251: 272–291. https://doi.org/10.1016/j.jhazmat.2013.01.048.
Eljamal, R., O. Eljamal, A. M. E. Khalil, B. B. Saha, and N. Matsunaga. 2018. “Improvement of the chemical synthesis efficiency of nano-scale zero-valent iron particles.” J. Environ. Chem. Eng. 6 (4): 4727–4735. https://doi.org/10.1016/j.jece.2018.06.069.
Fan, J., X. Chen, Z. Xu, X. Xu, L. Zhao, H. Qiu, and X. Cao. 2020. “One-pot synthesis of nZVI-embedded biochar for remediation of two mining arsenic-contaminated soils: Arsenic immobilization associated with iron transformation.” J. Hazard. Mater. 398: 122901. https://doi.org/10.1016/j.jhazmat.2020.122901.
Fan, Z., Q. Zhang, B. Gao, M. Li, C. Liu, and Y. Qiu. 2019. “Removal of hexavalent chromium by biochar supported nZVI composite: Batch and fixed-bed column evaluations, mechanisms, and secondary contamination prevention.” Chemosphere 217: 85–94. https://doi.org/10.1016/j.chemosphere.2018.11.009.
Filley, C. M., W. Halliday, and B. K. Kleinschmidt-DeMasters. 2004. “The effects of toluene on the central nervous system.” J. Neuropathol. Exp. Neurol. 63 (1): 1–12. https://doi.org/10.1093/jnen/63.1.1.
Fu, F., J. Ma, L. Xie, B. Tang, W. Han, and S. Lin. 2013. “Chromium removal using resin supported nanoscale zero-valent iron.” J. Environ. Manage. 128: 822–827. https://doi.org/10.1016/j.jenvman.2013.06.044.
Gao, H., Y. Liu, G. Zeng, W. Xu, T. Li, and W. Xia. 2008. “Characterization of Cr(VI) removal from aqueous solutions by a surplus agricultural waste-rice straw.” J. Hazard. Mater. 150 (2): 446–452. https://doi.org/10.1016/j.jhazmat.2007.04.126.
Garg, A., B. K. Yadav, D. B. Das, and P. J. Wood. 2022a. “Biomonitoring and phytoremediation of Cr (VI) contaminated water: Study on bioaccumulation and morphological responses in Eichhornia crassipes.” J. Environ. Eng. 148 (12): 1–14. https://doi.org/10.1061/(ASCE)EE.1943-7870.0002074.
Garg, A., B. K. Yadav, D. B. Das, and P. J. Wood. 2022b. “Improving the assessment of polluted sites using an integrated bio-physico-chemical monitoring framework.” Chemosphere 290: 133344. https://doi.org/10.1016/J.CHEMOSPHERE.2021.133344.
Garg, A., B. K. Yadav, S. Ranjan, A. Vatsa, D. B. Das, and D. Kumar. 2023. “Impact of nonaqueous phase liquid on Cr(VI) removal by nano zerovalent iron particles: Effects of contact time, pollution load, and pH.” J. Hazard. Toxic Radioact. Waste 27 (2): 1–12. https://doi.org/10.1061/jhtrbp.hzeng-1183.
Gupta, V. K., A. Rastogi, and A. Nayak. 2010. “Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material.” J. Colloid Interface Sci. 342 (1): 135–141. https://doi.org/10.1016/j.jcis.2009.09.065.
Huang, P., Z. Ye, W. Xie, Q. Chen, J. Li, Z. Xu, and M. Yao. 2013. “Rapid magnetic removal of aqueous heavy metals and their relevant mechanisms using nanoscale zero valent iron (nZVI) particles.” Water Res. 47 (12): 4050–4058. https://doi.org/10.1016/j.watres.2013.01.054.
Jain, A., and M. Agarwal. 2017. “Kinetic equilibrium and thermodynamic study of arsenic removal from water using alumina supported iron nano particles.” J. Water Process Eng. 19: 51–59. https://doi.org/10.1016/j.jwpe.2017.07.001.
Jiang, Z., L. Lv, W. Zhang, Q. Du, B. Pan, and L. Yang. 2011. “Nitrate reduction using nanosized zero-valent iron supported by polystyrene resins: Role of surface functional groups.” Water Res. 45: 2191–2198. https://doi.org/10.1016/j.watres.2011.01.005.
Jobby, R., P. Jha, A. K. Yadav, and N. Desai. 2018. “Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: A comprehensive review.” Chemosphere 207: 255–266. https://doi.org/10.1016/j.chemosphere.2018.05.050.
Kanel, S. R., R. R. Goswami, T. P. Clement, M. O. Barnett, and D. Zhao. 2008. “Two dimensional transport characteristics of surface stabilized zero-valent iron nanoparticles in porous media.” Environ. Sci. Technol. 42 (3): 896–900. https://doi.org/10.1021/es071774j.
Karimi-Maleh, H., A. Ayati, S. Ghanbari, Y. Orooji, B. Tanhaei, F. Karimi, M. Alizadeh, J. Rouhi, L. Fu, and M. Sillanpää. 2021. “Recent advances in removal techniques of Cr(VI) toxic ion from aqueous solution: A comprehensive review.” J. Mol. Liq. 329: 115062. https://doi.org/10.1016/j.molliq.2020.115062.
Khan, T., M. H. Isa, M. R. Ul Mustafa, H. Yeek-Chia, L. Baloo, T. S. Binti Abd Manan, and M. O. Saeed. 2016. “Cr(VI) adsorption from aqueous solution by an agricultural waste based carbon.” RSC Adv. 6 (61): 56365–56374. https://doi.org/10.1039/c6ra05618k.
Khayyun, T. S., and A. H. Mseer. 2019. “Comparison of the experimental results with the Langmuir and Freundlich models for copper removal on limestone adsorbent.” Appl. Water Sci. 9 (8): 1–8. https://doi.org/10.1007/s13201-019-1061-2.
Kim, S. A., S. Kamala-Kannan, K. J. Lee, Y. J. Park, P. J. Shea, W. H. Lee, H. M. Kim, and B. T. Oh. 2013. “Removal of Pb(II) from aqueous solution by a zeolite-nanoscale zero-valent iron composite.” Chem. Eng. J. 217: 54–60. https://doi.org/10.1016/j.cej.2012.11.097.
Kitis, M., S. S. Kaplan, E. Karakaya, N. O. Yigit, and G. Civelekoglu. 2007. “Adsorption of natural organic matter from waters by iron coated pumice.” Chemosphere 66 (1): 130–138. https://doi.org/10.1016/j.chemosphere.2006.05.002.
Kniivilä, M. 2007. “Industrial development and economic growth : Implications for poverty reduction and income inequality.” In Vol. 1 of Industrial development for the 21st century: Sustainable development perspectives, 295–332. New York: United Nations.
Kurniawan, T. A., G. Y. S. Chan, W. H. Lo, and S. Babel. 2006. “Physico-chemical treatment techniques for wastewater laden with heavy metals.” Chem. Eng. J. 118 (1–2): 83–98. https://doi.org/10.1016/j.cej.2006.01.015.
Lee, S., A. H. Ören, C. H. Benson, and K. Dovantzis. 2012. “Organoclays as variably permeable reactive barrier media to manage NAPLs in ground water.” J. Geotech. Geoenviron. Eng. 138 (2): 115–127. https://doi.org/10.1061/(asce)gt.1943-5606.0000572.
Le Meur, M., G. J. V. Cohen, M. Laurent, P. Höhener, and O. Atteia. 2021. “Effect of NAPL mixture and alteration on 222Rn partitioning coefficients: Implications for NAPL subsurface contamination quantification.” Sci. Total Environ. 791: 148210. https://doi.org/10.1016/j.scitotenv.2021.148210.
Li, X., M. Wang, W. Chen, and R. Jiang. 2019. “Evaluation of combined toxicity of Siduron and cadmium on earthworm (Eisenia fetida) using Biomarker Response Index.” Sci. Total Environ. 646: 893–901. https://doi.org/10.1016/j.scitotenv.2018.07.380.
Li, S., W. Wang, F. Liang, and W. X. Zhang. 2017. “Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application.” J. Hazard. Mater. 322: 163–171. https://doi.org/10.1016/j.jhazmat.2016.01.032.
Li, Z., H. K. Jones, P. Zhang, and R. S. Bowman. 2007. “Chromate transport through columns packed with surfactant-modified zeolite / zero valent iron pellets.” Chemosphere 68 (10): 1861–1866. https://doi.org/10.1016/j.chemosphere.2007.03.011.
Liang, W., et al. 2022. “Recent advances of carbon-based nano zero valent iron for heavy metals remediation in soil and water: A critical review.” J. Hazard. Mater. 426: 127993. https://doi.org/10.1016/j.jhazmat.2021.127993.
Liu, A., J. Liu, J. Han, and W. X. Zhang. 2017. “Evolution of nanoscale zero-valent iron (nZVI) in water: Microscopic and spectroscopic evidence on the formation of nano- and micro-structured iron oxides.” J. Hazard. Mater. 322: 129–135. https://doi.org/10.1016/j.jhazmat.2015.12.070.
Liu, T., Z. Wang, X. Yan, and B. Zhang. 2014. “Removal of mercury (II) and chromium (VI) from wastewater using a new and effective composite: Pumice-supported nanoscale zero-valent iron.” Chem. Eng. J. 245: 34–40. https://doi.org/10.1016/j.cej.2014.02.011.
Lv, X., Y. Hu, J. Tang, T. Sheng, G. Jiang, and X. Xu. 2013. “Effects of co-existing ions and natural organic matter on removal of chromium (VI) from aqueous solution by nanoscale zero valent iron (nZVI)-Fe3O4 nanocomposites.” Chem. Eng. J. 218: 55–64. https://doi.org/10.1016/j.cej.2012.12.026.
Lv, X., J. Xu, G. Jiang, and X. Xu. 2011. “Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes.” Chemosphere 85 (7): 1204–1209. https://doi.org/10.1016/j.chemosphere.2011.09.005.
Malakootian, M., S. Bahraini, M. Malakootian, and M. Zarrabi. 2016. “Removal of tetracycline antibiotic from aqueous solutions using modified pumice with magnesium chloride.” Adv. Environ. Biol. 10 (8): 46–56. https://doi.org/10.17795/jjhr-37583.
Marco-Brown, J. L., R. Valiente, C. P. Ramos, M. A. Fernandez, and R. Candal. 2021. “Stable nZVI-based nanocomposites for adsorption and reduction processes: The case of U (VI) removal.” Environ. Nanotechnol. Monit. Manage. 16: 100563. https://doi.org/10.1016/j.enmm.2021.100563.
Mitra, S., A. Sarkar, and S. Sen. 2017. “Removal of chromium from industrial effluents using nanotechnology: A review.” Nanotechnol. Environ. Eng. 2 (1): 1–14. https://doi.org/10.1007/s41204-017-0022-y.
Mokete, R., O. Eljamal, and Y. Sugihara. 2020. “Exploration of the reactivity of nanoscale zero-valent iron (NZVI) associated nanoparticles in diverse experimental conditions.” Chem. Eng. Process. Process Intensif. 150 (February): 107879. https://doi.org/10.1016/j.cep.2020.107879.
Mondal, P., B. Mohanty, and C. Balomajumder. 2010. “Treatment of arsenic contaminated groundwater using calcium impregnated granular activated carbon in a batch reactor: Optimization of process parameters.” CLEAN - Soil Air Water 38 (2): 129–139. https://doi.org/10.1002/clen.200900081.
Moraci, N., and P. S. Calabrò. 2010. “Heavy metals removal and hydraulic performance in zero-valent iron/pumice permeable reactive barriers.” J. Environ. Manage. 91 (11): 2336–2341. https://doi.org/10.1016/j.jenvman.2010.06.019.
Mortazavian, S., H. An, D. Chun, and J. Moon. 2018. “Activated carbon impregnated by zero-valent iron nanoparticles (AC/nZVI) optimized for simultaneous adsorption and reduction of aqueous hexavalent chromium: Material characterizations and kinetic studies.” Chem. Eng. J. 353: 781–795. https://doi.org/10.1016/j.cej.2018.07.170.
Mourhly, A., M. Khachani, A. El Hamidi, M. Kacimi, M. Halim, and S. Arsalane. 2015. “The synthesis and characterization of low-cost mesoporous silica SiO2 from local pumice rock.” Nanomater. Nanotechnol. 5: 35. https://doi.org/10.5772/62033.
Nandiyanto, A. B. D., R. Oktiani, and R. Ragadhita. 2019. “How to read and interpret ftir spectroscope of organic material.” Indones. J. Sci. Technol. 4 (1): 97–118. https://doi.org/10.17509/ijost.v4i1.15806.
Niknam Shahrak, M., M. Ghahramaninezhad, and M. Eydifarash. 2017. “Zeolitic imidazolate framework-8 for efficient adsorption and removal of Cr(VI) ions from aqueous solution.” Environ. Sci. Pollut. Res. 24 (10): 9624–9634. https://doi.org/10.1007/s11356-017-8577-5.
O’Connor, D., T. Peng, J. Zhang, D. C. W. Tsang, D. S. Alessi, Z. Shen, N. S. Bolan, and D. Hou. 2018. “Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials.” Sci. Total Environ. 619–620: 815–826. https://doi.org/10.1016/j.scitotenv.2017.11.132.
Omidvar Borna, M., M. Pirsaheb, M. Vosoughi Niri, R. Khosravi Mashizie, B. Kakavandi, M. R. Zare, and A. Asadi. 2016. “Batch and column studies for the adsorption of chromium(VI) on low-cost Hibiscus Cannabinus kenaf, a green adsorbent.” J. Taiwan Inst. Chem. Eng. 68: 80–89. https://doi.org/10.1016/j.jtice.2016.09.022.
Ossai, I. C., A. Ahmed, A. Hassan, and F. S. Hamid. 2020. “Remediation of soil and water contaminated with petroleum hydrocarbon: A review.” Environ. Technol. Innovation 17: 100526. https://doi.org/10.1016/j.eti.2019.100526.
Pal, S., S. Mukherjee, and S. Ghosh. 2014. “Application of HYDRUS 1D model for assessment of phenol-soil adsorption dynamics.” Environ. Sci. Pollut. Res. 21 (7): 5249–5261. https://doi.org/10.1007/s11356-013-2467-2.
Pandey, P. K., and S. K. Sharma. 2017. “Removal of Cr(VI) and Pb(II) from wastewater by ZeoliteNaX in fixed Bed column.” Water Conserv. Sci. Eng. 2 (3): 61–65. https://doi.org/10.1007/s41101-017-0026-2.
Pasinszki, T., and M. Krebsz. 2020. “Synthesis and application of zero-valent iron nanoparticles in water treatment, environmental remediation, catalysis, and their biological effects.” Nanomaterials 10 (5): 917. https://doi.org/10.3390/nano10050917.
Patel, H. 2019. “Fixed-bed column adsorption study: A comprehensive review.” Appl. Water Sci. 9 (3): 1–17. https://doi.org/10.1007/s13201-019-0927-7.
Phenrat, T., N. Saleh, K. Sirk, R. D. Tilton, and G. V. Lowry. 2007. “Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions.” Environ. Sci. Technol. 41 (1): 284–290. https://doi.org/10.1021/es061349a.
Ponder, S. M., J. G. Darab, and T. E. Mallouk. 2000. “Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron.” Environ. Sci. Technol. 34 (12): 2564–2569. https://doi.org/10.1021/es9911420.
Pookmanee, P., A. Wannawek, S. Satienperakul, R. Putharod, N. Laorodphan, S. Sangsrichan, and S. Phanichphant. 2016. “Characterization of diatomite, leonardite and pumice.” Mater. Sci. Forum 872: 211–215. https://doi.org/10.4028/www.scientific.net/MSF.872.211.
Pourzamani, H., M. Hashemi, B. Bina, A. Rashidi, M. M. Amin, and S. Parastar. 2018. “Toluene removal from aqueous solutions using single-wall carbon nanotube and magnetic nanoparticle–hybrid adsorbent.” J. Environ. Eng. 144 (2): 04017104. https://doi.org/10.1061/(asce)ee.1943-7870.0001318.
Prasad, S., K. K. Yadav, S. Kumar, N. Gupta, M. M. S. Cabral-Pinto, S. Rezania, N. Radwan, and J. Alam. 2021. “Chromium contamination and effect on environmental health and its remediation: A sustainable approaches.” J. Environ. Manage. 285: 112174. https://doi.org/10.1016/j.jenvman.2021.112174.
Qiu, X., Z. Fang, X. Yan, W. Cheng, and K. Lin. 2013. “Chemical stability and toxicity of nanoscale zero-valent iron in the remediation of chromium-contaminated watershed.” Chem. Eng. J. 220: 61–66. https://doi.org/10.1016/j.cej.2012.11.041.
Qu, G., L. Kou, T. Wang, D. Liang, and S. Hu. 2017. “Evaluation of activated carbon fiber supported nanoscale zero-valent iron for chromium (VI) removal from groundwater in a permeable reactive column.” J. Environ. Manage.201: 378–387. https://doi.org/10.1016/j.jenvman.2017.07.010.
Qusti, A. H. 2014. “Removal of chromium(VI) from aqueous solution using manganese oxide nanofibers.” J. Ind. Eng. Chem. 20 (5): 3394–3399. https://doi.org/10.1016/j.jiec.2013.12.025.
Rahman, M. S., Z. Ahmed, S. M. Seefat, R. Alam, A. R. M. T. Islam, T. R. Choudhury, B. A. Begum, and A. M. Idris. 2022. “Assessment of heavy metal contamination in sediment at the newly established tannery industrial estate in Bangladesh: A case study.” Environ. Chem. Ecotoxicol. 4 (October 2021): 1–12. https://doi.org/10.1016/j.enceco.2021.10.001.
Rai, D., B. M. Sass, and D. A. Moore. 1987. “Chromitim(III) hydrolysis constants and solubility of chromium (III) hydroxide.” Inorg. Chem. 26 (3): 345–349. https://doi.org/10.1021/ic00250a002.
Ranjan, S., B. K. Yadav, and H. Joshi. 2020. “Development of nZVI-pumice/zeolite composites for effective removal of arsenic (III) from aqueous solution.” J. Hazard. Toxic Radioact. Waste 24 (3): 04020014. https://doi.org/10.1061/(asce)hz.2153-5515.0000507.
Ranjan, S., B. K. Yadav, and H. Joshi. 2022. “Removal of arsenic (III and V) from aqueous solution using stable maghemite (γ-Fe2O3) loaded pumice composite.” Int. J. Environ. Sci. Technol. 19 (6): 4737–4748. https://doi.org/10.1007/s13762-021-03326-x.
Sari, A., M. Tuzen, and İ Kocal. 2017. “Application of chitosan-modified pumice for antimony adsorption from aqueous solution.” Environ. Prog. Sustainable Energy 36 (6): 1587–1596. https://doi.org/10.1002/ep.12611.
Selvan, B. K., K. Thiyagarajan, S. Das, N. Jaya, S. A. Jabasingh, P. Saravanan, M. Rajasimman, and Y. Vasseghian. 2022. “Synthesis and characterization of nano zerovalent iron-kaolin clay (nZVI-Kaol) composite polyethersulfone (PES) membrane for the efficacious As2O3 removal from potable water samples.” Chemosphere 288: 132405. https://doi.org/10.1016/j.chemosphere.2021.132405.
Shaker, M. A., and H. M. Albishri. 2014. “Dynamics and thermodynamics of toxic metals adsorption onto soil-extracted humic acid.” Chemosphere 111: 587–595. https://doi.org/10.1016/j.chemosphere.2014.04.088.
Shi, L., X. Zhang, and Z. Chen. 2011. “Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron.” Water Res. 45 (2): 886–892. https://doi.org/10.1016/j.watres.2010.09.025.
Shirani, Z., C. Santhosh, J. Iqbal, and A. Bhatnagar. 2018. “Waste Moringa oleifera seed pods as green sorbent for efficient removal of toxic aquatic pollutants.” J. Environ. Manage. 227: 95–106. https://doi.org/10.1016/j.jenvman.2018.08.077.
Singh, N., V. K. Gupta, A. Kumar, and B. Sharma. 2017. “Synergistic effects of heavy metals and pesticides in living systems.” Front. Chem. 5: 1–9. https://doi.org/10.3389/fchem.2017.00070.
Shu, Y., B. Ji, B. Cui, Y. Shi, J. Wang, M. Hu, S. Luo, and D. Guo. 2020. “Almond shell-derived, biochar-supported, nano-zero-valent iron composite for aqueous hexavalent chromium removal: Performance and mechanisms.” Nanomaterials 10 (2): 198. https://doi.org/10.3390/nano10020198.
Šimůnek, J., D. Jacques, G. Langergraber, S. A. Bradford, M. Šejna, and M. T. Van Genuchten. 2013. “Numerical modeling of contaminant transport using HYDRUS and its specialized modules.” J. Indian Inst. Sci. 93 (2): 265–284.
Šimůnek, J., M. T. van Genuchten, D. Jacques, J. W. Hopmans, M. Inoue, and M. Flury. 2002. “Solute transport during variably saturated flow — inverse methods.” In Methods of soil analysis: part 4 physical methods, edited by J. H. Dane and G. C. Topp, 1435–1449. Madison, WI: Soil Science Society of America Journal.
Šimůnek, J., M. T. van Genuchten, and M. Šejna. 2005. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Riverside, CA: Univ. California-Riverside Res. Rep.
Srivastava, V., C. H. Weng, V. K. Singh, and Y. C. Sharma. 2011. “Adsorption of nickel ions from aqueous solutions by nano alumina: Kinetic, mass transfer, and equilibrium studies.” J. Chem. Eng. Data 56 (4): 1414–1422. https://doi.org/10.1021/je101152b.
Su, C., and R. W. Puls. 2003. “In situ remediation of arsenic in simulated groundwater using zerovalent iron: Laboratory column tests on combined effects of phosphate and silicate.” Environ. Sci. Technol. 37 (11): 2582–2587. https://doi.org/10.1021/es026351q.
Thomas, H. C. 1944. “Heterogeneous ion exchange in a flowing system.” J. Am. Chem. Soc. 66 (10): 1664–1666. https://doi.org/10.1021/ja01238a017.
Tumolo, M., V. Ancona, D. De Paola, D. Losacco, C. Campanale, C. Massarelli, and V. F. Uricchio. 2020. “Chromium pollution in European water, sources, health risk, and remediation strategies: An overview.” Int. J. Environ. Res. Public Health 17 (15): 5438. https://doi.org/10.3390/ijerph17155438.
USGAO (United States Government Accountability Office). 2010. Superfund: EPA’s estimated costs to remediate existing sites exceed current funding levels and more sites are expected to be added to the national priorities list. Rep. No. GAO-10-380. Washington, DC: USGAO.
Üzüm, Ç, T. Shahwan, A. E. Ero, K. R. Hallam, T. B. Scott, and I. Lieberwirth. 2009. “Applied clay science synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions.” Appl. Clay Sci. 43 (2): 172–181. https://doi.org/10.1016/j.clay.2008.07.030.
Valentín-Reyes, J., R. B. García-Reyes, A. García-González, E. Soto-Regalado, and F. Cerino-Córdova. 2019. “Adsorption mechanisms of hexavalent chromium from aqueous solutions on modified activated carbons.” J. Environ. Manage. 236: 815–822. https://doi.org/10.1016/j.jenvman.2019.02.014.
Van Liedekerke, M., G. Prokop, S. Rabl-Berger, M. Kibblewhite, and G. Louwagie. 2014. Progress in the management of contaminated sites in Europe. No. EUR 26376 EN. Luxembourg: Publications Office of the European Union.
Ventura, D., M. Ferrante, C. Copat, A. Grasso, M. Milani, A. Sacco, F. Licciardello, and G. L. Cirelli. 2021. “Metal removal processes in a pilot hybrid constructed wetland for the treatment of semi-synthetic stormwater.” Sci. Total Environ. 754: 142221. https://doi.org/10.1016/j.scitotenv.2020.142221.
Wang, H., M. Zhang, and H. Li. 2019. “Synthesis of nanoscale zerovalent iron (nZVI) supported on biochar for chromium remediation from aqueous solution and soil.” Int. J. Environ. Res. Public Health 16 (22): 4430, https://doi.org/10.3390/ijerph16224430.
Wang, Y., A. Li, and C. Cui. 2021. “Remediation of heavy metal-contaminated soils by electrokinetic technology: Mechanisms and applicability.” Chemosphere 265: 129071. https://doi.org/10.1016/j.chemosphere.2020.129071.
Wu, J., M. Yan, S. Lv, W. Yin, H. Bu, L. Liu, P. Li, H. Deng, and X. Zheng. 2021. “Preparation of highly dispersive and antioxidative nano zero-valent iron for the removal of hexavalent chromium.” Chemosphere 262: 127733. https://doi.org/10.1016/j.chemosphere.2020.127733.
Xu, J., Z. Cao, Y. Zhang, Z. Yuan, Z. Lou, X. Xu, and X. Wang. 2018. “A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism.” Chemosphere 195: 351–364. https://doi.org/10.1016/j.chemosphere.2017.12.061.
Yadav, B. K., M. A. Siebel, and J. J. A. van Bruggen. 2011. “Rhizofiltration of a heavy metal (lead) containing wastewater using the wetland plant carex pendula.” CLEAN - Soil Air Water 39 (5): 467–474. https://doi.org/10.1002/clen.201000385.
Yavuz, M., F. Gode, E. Pehlivan, S. Ozmert, and Y. C. Sharma. 2008. “An economic removal of Cu2+ and Cr3+ on the new adsorbents: Pumice and polyacrylonitrile/pumice composite.” Chem. Eng. J. 137 (3): 453–461. https://doi.org/10.1016/j.cej.2007.04.030.
Ye, S., et al. 2017. “Biological technologies for the remediation of co-contaminated soil.” Crit. Rev. Biotechnol. 37 (8): 1062–1076. https://doi.org/10.1080/07388551.2017.1304357.
Yoon, Y. H. E. E., and J. H. Nelson. 1984. “Application of gas adsorption kinetics I. A theoretical model for respirator cartridge service life.” Am. Ind. Hyg. Assoc. J. 45 (8): 509–516. https://doi.org/10.1080/15298668491400197.
Yücel, M., M. Takagi, M. Walterfang, and D. I. Lubman. 2008. “Toluene misuse and long-term harms: A systematic review of the neuropsychological and neuroimaging literature.” Neurosci. Biobehav. Rev. 32 (5): 910–926. https://doi.org/10.1016/j.neubiorev.2008.01.006.
Yusmartini, E. S., S. Ridwan, D. Setiabudidaya, M. Faizal, and M. Marsi. 2019. “Synthesis and characterizations of nZVI-AC composites from coconut shells and its application for the adsorption of Pb(II) and Cr(VI) ions.” In 13th JOC, IOP Conf. Series: Materials Science and Engineering. Bristol, UK: IOP Publishing.
Zhang, H., X. Yuan, T. Xiong, H. Wang, and L. Jiang. 2020. “Bioremediation of co-contaminated soil with heavy metals and pesticides: Influence factors, mechanisms and evaluation methods.” Chem. Eng. J. 398: 125657. https://doi.org/10.1016/j.cej.2020.125657.
Zhang, X., Y. M. Lin, X. Q. Shan, and Z. L. Chen. 2010. “Degradation of 2,4,6-trinitrotoluene (TNT) from explosive wastewater using nanoscale zero-valent iron.” Chem. Eng. J. 158 (3): 566–570. https://doi.org/10.1016/J.CEJ.2010.01.054.
Zhang, Y., Y. Li, J. Li, L. Hu, and X. Zheng. 2011. “Enhanced removal of nitrate by a novel composite : Nanoscale zero valent iron supported on pillared clay.” Chem. Eng. J. 171 (2): 526–531. https://doi.org/10.1016/j.cej.2011.04.022.
Zhou, C., C. Han, X. Min, and T. Yang. 2021. “Simultaneous adsorption of As (V) and Cr (VI) by zeolite supporting sulfide nanoscale zero-valent iron: Competitive reaction, affinity and removal mechanism.” J. Mol. Liq. 338 (14): 116619. https://doi.org/10.1016/j.molliq.2021.116619.
Zou, Y., X. Wang, A. Khan, P. Wang, Y. Liu, A. Alsaedi, T. Hayat, and X. Wang. 2016. “Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: A review.” Environ. Sci. Technol. 50 (14): 7290–7304. https://doi.org/10.1021/acs.est.6b01897.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 28Issue 3July 2024

History

Received: Oct 13, 2023
Accepted: Jan 20, 2024
Published online: Apr 3, 2024
Published in print: Jul 1, 2024
Discussion open until: Sep 3, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Anuradha Garg [email protected]
Post-doctoral Research Associate, Dept. of Soil, Water and Climate, Univ. of Minnesota, St. Paul 55108, MN. Email: [email protected]; [email protected]; [email protected]
Brijesh Kumar Yadav [email protected]
Professor, Dept. of Hydrology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India (corresponding author). Email: [email protected]; [email protected]
Research Associate, National Institute of Hydrology Roorkee, Roorkee 247667, Uttarakhand, India. ORCID: https://orcid.org/0000-0003-4292-3201. Email: [email protected]; [email protected]
M.Sc. Student, Dept. of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India. ORCID: https://orcid.org/0009-0009-8043-6130. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share