Technical Papers
Nov 10, 2023

Full Nonlinearity in Weakly Dispersive Boussinesq Models: Luxury or Necessity

Publication: Journal of Hydraulic Engineering
Volume 150, Issue 1

Abstract

Boussinesq-type (BT) models play a major role in coastal engineering applications. Due to their asymptotic nature, these models have lent themselves to constant study and improvement based on the inclusion/removal of asymptotically small terms. In this work, we go back to the fundamental question of whether full nonlinearity in weakly dispersive BT models is a necessity. We reconsider the tests first used in the literature to address this issue, as well as a number of more demanding issues. We also consider different families of weakly nonlinear BT models, with different shoaling characteristics, especially when nonlinear waves are involved. Our study allows us to point out that for many cases, it is quite hard to conclude whether full nonlinearity is really necessary. There are a few discriminant cases, which are unfortunately not those mostly used in the literature proposing new models or new numerical methods.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors are grateful to Prof. Oscar Castro-Orgaz (Universidad de Cordoba, Spain) for inviting them to contribute to this special issue. The authors also want to thank Prof. Frederic Dias (University College Dublin, ENS-Paris-Saclay) for kindly providing the Euler solution for the test case extreme runup on a vertical barrier.

References

Arpaia, L., and M. Ricchiuto. 2018. “r− adaptation for Shallow Water flows: Conservation, well balancedness, efficiency.” Comput. Fluids 160 (Jan): 175–203. https://doi.org/10.1016/j.compfluid.2017.10.026.
Bacigaluppi, P., M. Ricchiuto, and P. Bonneton. 2020. “Implementation and evaluation of breaking detection criteria for a hybrid Boussinesq model.” Water Waves 2 (2): 207–241. https://doi.org/10.1007/s42286-019-00023-8.
Beji, S., and J. A. Battjes. 1994. “Numerical simulation of nonlinear wave propagation over a bar.” Coastal Eng. 23 (1–2): 1–16. https://doi.org/10.1016/0378-3839(94)90012-4.
Beji, S., and K. Nadaoka. 1996. “A formal derivation and numerical modeling of the improved Boussinesq equations for varying depth.” Ocean Eng. 23 (8): 691–704. https://doi.org/10.1016/0029-8018(96)84408-8.
Benoit, M., F. Dias, J. Herterich, and Y.-M. Scolan. 2018. “Un Cas-Test Discriminant pour la Simulation de la Propagation et du Run-up de Trains de vagues de Type Tsunami.” In Actes des 16èmes Journées de l’Hydrodynamique, 1–14. Nantes, France: Nantes Univ.
Bonneton, P., F. Chazel, D. Lannes, F. Marche, and M. Tissier. 2011. “A splitting approach for the fully nonlinear and weakly dispersive Green–Naghdi model.” J. Comput. Phys. 230 (4): 1479–1498. https://doi.org/10.1016/j.jcp.2010.11.015.
Boussinesq, J. 1872. “Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond (theory of waves and eddies propagating along a horizontal rectangular channel, imparting to the liquid contained therein similar velocities from the surface to bottom).” Journal de Mathématiques Pures et Appliquées 17 (Apr): 55–108.
Brocchini, M. 2013. “A reasoned overview on Boussinesq-type models: The interplay between physics, mathematics and numerics.” Proc. R. Soc. A 469 (2160): 20130496. https://doi.org/10.1098/rspa.2013.0496.
Castro, M., A. F. Ferreiro, J. Garcia-Rodriguez, J. Gonzalez-Vida, J. Macias, C. Pares, and M. Vazquez-Cendon. 2005. “The numerical treatment of wet/dry fronts in shallow flows: Application to one-layer and two-layer systems.” Math. Comput. Modell. 42 (3–4): 419–439. https://doi.org/10.1016/j.mcm.2004.01.016.
Castro, M., J. Gonzalez-Vida, and C. Pares. 2006. “Numerical treatment of wet/dry fronts in shallow flows with a Roe scheme.” Math. Models Methods Appl. Sci. 16 (6): 897–931. https://doi.org/10.1142/S021820250600139X.
Castro-Orgaz, O., W. H. Hager, and F. N. Cantero-Chinchilla. 2022. “Shallow flows over curved beds: Application of the Serre–Green–Naghdi theory to weir flow.” J. Hydraul. Eng. 148 (1): 04021053. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001954.
Castro-Orgaz, O., W. H. Hager, and N. D. Katopodes. 2023. “Variational models for nonhydrostatic free-surface flow: A unified outlook to maritime and open-channel hydraulics developments.” J. Hydraul. Eng. 149 (7): 04023014. https://doi.org/10.1061/JHEND8.HYENG-13338.
Chassagne, R., A. G. Filippini, M. Ricchiuto, and P. Bonneton. 2019. “Dispersive and dispersive-like bores in channels with sloping banks.” J. Fluid Mech. 870 (Jul): 595–616. https://doi.org/10.1017/jfm.2019.287.
Chazel, F., D. Lannes, and F. Marche. 2011. “Numerical simulation of strongly nonlinear and dispersive waves using a Green–Naghdi model.” J. Sci. Comput. 48 (1): 105–116. https://doi.org/10.1007/s10915-010-9395-9.
Clamond, D., D. Dutykh, and D. Mitsotakis. 2017. “Conservative modified Serre–Green–Naghdi equations with improved dispersion characteristics.” Commun. Nonlinear Sci. Numer. Simul. 45 (Apr): 245–257. https://doi.org/10.1016/j.cnsns.2016.10.009.
Costabel, M. 1991. “A coercive bilinear form for Maxwell’s equations.” J. Math. Anal. Appl. 157 (2): 527–541. https://doi.org/10.1016/0022-247X(91)90104-8.
Dhia, A. S. B. B., È.-M. Duclairoir, G. Legendre, and J.-F. Mercier. 2007. “Time-harmonic acoustic propagation in the presence of a shear flow.” J. Comput. Appl. Math. 204 (2): 428–439. https://doi.org/10.1016/j.cam.2006.02.048.
DHI (Dansk Hydraulisk Institut). 2008. “MIKE 21 Boussinesq waves module—Scientific documentation.” Accessed October 1, 2018. https://www.mikepoweredbydhi.com/.
Duran, A., and F. Marche. 2017. “A discontinuous Galerkin method for a new class of Green–Naghdi equations on simplicial unstructured meshes.” Appl. Math. Modell. 45 (May): 840–864. https://doi.org/10.1016/j.apm.2017.01.030.
Favre, H. 1935. “Etude theorique et experimental des ondes de translation dans les canaux decouverts (theoretical and experimental study of translational waves in open channels).” In Vol. 150 of Publications du laboratoire de recherches hydrauliques annexé à l’Ecole polytechnique fédérale de Zurich, edited by Dunod, 205–209. Paris: Dunod.
Filippini, A. G., S. Bellec, M. Colin, and M. Ricchiuto. 2015. “On the nonlinear behaviour of Boussinesq type models: Amplitude-velocity vs amplitude-flux forms.” Coastal Eng. 99 (May): 109–123. https://doi.org/10.1016/j.coastaleng.2015.02.003.
Filippini, A. G., M. Kazolea, and M. Ricchiuto. 2016. “A flexible genuinely nonlinear approach for nonlinear wave propagation, breaking and run-up.” J. Comput. Phys. 310 (Apr): 381–417. https://doi.org/10.1016/j.jcp.2016.01.027.
Gallerano, F., G. Cannata, and M. Villani. 2014. “An integral contravariant formulation of the fully non-linear Boussinesq equations.” Coastal Eng. 83 (Jan): 119–136. https://doi.org/10.1016/j.coastaleng.2013.09.006.
Green, A. E., and P. M. Naghdi. 1976. “A derivation of equations for wave propagation in water of variable depth.” J. Fluid Mech. 78 (2): 237–246. https://doi.org/10.1017/S0022112076002425.
Grilli, S., R. Subramanya, I. Svendsen, and J. Veeramony. 1995. “Shoaling of solitary waves on plane beaches.” J. Waterw. Port Coast. Ocean Eng. 120 (6): 609–628.
Hébert, H. 2018. “Project TANDEM (Tsunamis in the Atlantic and the English ChaNnel: Definition of the effects through numerical modeling) (2014–2017): Main results and perspectives.” In Vol. 9511 of Proc., EGU General Assembly Conf. Abstracts, EGU General Assembly Conf. Abstracts. Munich, Germany: European Geosciences Union.
Joshi, S. M., M. Kazolea, and M. Ricchiuto. 2022. “Parameter sensitivity for wave-breaking closures in Boussinesq-type models.” Water Waves 4 (3): 491–515. https://doi.org/10.1007/s42286-022-00068-2.
Kazakova, M., and P. Noble. 2020. “Discrete transparent boundary conditions for the linearized Green–Naghdi system of equations.” SIAM J. Numer. Anal. 58 (1): 657–683. https://doi.org/10.1137/18M1220248.
Kazolea, M., et al. 2019. “Wave propagation, breaking, and overtopping on a 2D reef: A comparative evaluation of numerical codes for tsunami modelling.” Eur. J. Mech. B Fluids 73 (Jan): 122–131. https://doi.org/10.1016/j.euromechflu.2017.10.010.
Kazolea, M., and A. Delis. 2013. “A well-balanced shock-capturing hybrid finite volume–finite difference numerical scheme for extended 1d Boussinesq models.” Appl. Numer. Math. 67 (May): 167–186. https://doi.org/10.1016/j.apnum.2011.07.003.
Kazolea, M., A. Delis, I. Nikolos, and C. Synolakis. 2012. “An unstructured finite volume numerical scheme for extended 2D Boussinesq-type equations.” Coastal Eng. 69 (Nov): 42–66. https://doi.org/10.1016/j.coastaleng.2012.05.008.
Kazolea, M., A. I. Delis, and C. E. Synolakis. 2014. “Numerical treatment of wave breaking on unstructured finite volume approximations for extended Boussinesq-type equations.” J. Comput. Phys. 271 (Aug): 281–305. https://doi.org/10.1016/j.jcp.2014.01.030.
Kazolea, M., A. Filippini, and M. Ricchiuto. 2023. “Low dispersion finite volume/element discretization of the enhanced Green–Naghdi equations for wave propagation, breaking and runup on unstructured meshes.” Ocean Modell. 182 (Apr): 102157. https://doi.org/10.1016/j.ocemod.2022.102157.
Kazolea, M., and M. Ricchiuto. 2018. “On wave breaking for Boussinesq-type models.” Ocean Modell. 123 (Mar): 16–39. https://doi.org/10.1016/j.ocemod.2018.01.003.
Kirby, J. T. 2016. “Boussinesq models and their application to coastal processes across a wide range of scales.” J. Waterw. Port Coastal Ocean Eng. 142 (6): 03116005. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000350.
Lannes, D. 2020. “Modeling shallow water waves.” Nonlinearity 33 (5): R1. https://doi.org/10.1088/1361-6544/ab6c7c.
Lannes, D., and P. Bonneton. 2009. “Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation.” Phys. Fluids 21 (1): 016601. https://doi.org/10.1063/1.3053183.
Lannes, D., and F. Marche. 2015. “A new class of fully nonlinear and weakly dispersive Green–Naghdi models for efficient 2D simulations.” J. Comput. Phys. 282 (Feb): 238–268. https://doi.org/10.1016/j.jcp.2014.11.016.
Lannes, D., and L. Weynans. 2020. “Generating boundary conditions for a Boussinesq system.” Nonlinearity 33 (12): 6868. https://doi.org/10.1088/1361-6544/abaa9e.
Li, M., L. Xu, and Y. Cheng. 2019. “A CDG-FE method for the two-dimensional Green-Naghdi model with the enhanced dispersive property.” J. Comput. Phys. 399 (Dec): 108953. https://doi.org/10.1016/j.jcp.2019.108953.
Lun, A. T. 2022. “Basilisk: A bioconductor package for managing python environments.” J. Open Source Software 7 (79): 4742. https://doi.org/10.21105/joss.04742.
Lynett, P. J., L.-F. L. Philip, K. I. Sitanggang, and D.-H. Kim. 2008. Modeling wave generation, evolution, and interaction with depth-integrated, dispersive wave equations. COULWAVE Code Manual. Ithaca, NY: Cornell Univ.
Madsen, P. A., R. Murray, and O. R. Sørensen. 1991. “A new form of the Boussinesq equations with improved linear dispersion characteristics.” Coastal Eng. 15 (4): 371–388. https://doi.org/10.1016/0378-3839(91)90017-B.
Madsen, P. A., O. Sørensen, and H. Schäffer. 1997. “Surf zone dynamics simulated by a Boussinesq type model. Part I. Model description and cross-shore motion of regular waves.” Coastal Eng. 32 (4): 255–287. https://doi.org/10.1016/S0378-3839(97)00028-8.
Madsen, P. A., and O. R. Sørensen. 1992. “A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2. A slowly-varying bathymetry.” Coastal Eng. 18 (3–4): 183–204. https://doi.org/10.1016/0378-3839(92)90019-Q.
Mardal, K. A., X.-C. Tai, and R. Winther. 2002. “A robust finite element method for Darcy–Stokes flow.” SIAM J. Numer. Anal. 40 (5): 1605–1631. https://doi.org/10.1137/S0036142901383910.
Melito, L., M. Antuono, and M. Brocchini. 2023. “From Boussinesq-type to quasi-3D models: A comparative analysis.” J. Hydraul. Eng. 149 (8): 04023025. https://doi.org/10.1061/JHEND8.HYENG-13508.
Michalak, C., and C. Ollivier-Gooch. 2009. “Accuracy preserving limiter for the high-order accurate solution of the Euler equations.” J. Comput. Phys. 228 (23): 8693–8711. https://doi.org/10.1016/j.jcp.2009.08.021.
Mitsotakis, D., B. Ilan, and D. Dutykh. 2014. “On the Galerkin/finite-element method for the Serre equations.” J. Sci. Comput. 61 (1): 166–195. https://doi.org/10.1007/s10915-014-9823-3.
Mohapatra, P. K., and M. H. Chaudhry. 2004. “Numerical solution of Boussinesq equations to simulate dam-break flows.” J. Hydraul. Eng. 130 (2): 156–159. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:2(156).
Noelle, S., M. Parisot, and T. Tscherpel. 2022. “A class of boundary conditions for time-discrete Green–Naghdi equations with bathymetry.” SIAM J. Numer. Anal. 60 (5): 2681–2712. https://doi.org/10.1137/21M1426031.
Nwogu, O. 1993. “Alternative form of Boussinesq equations for nearshore wave propagation.” J. Waterw. Port Coastal Ocean Eng. 119 (6): 618–638. https://doi.org/10.1061/(ASCE)0733-950X(1993)119:6(618).
Nwogu, O., and Z. Demirbilek. 2001. BOUSS-2D: A Boussinesq wave model for coastal regions and harbors. Washington, DC: USACE.
Panda, N., C. Dawson, Y. Zhang, A. B. Kennedy, J. J. Westerink, and A. S. Donahue. 2014. “Discontinuous Galerkin methods for solving Boussinesq–Green–Naghdi equations in resolving non-linear and dispersive surface water waves.” J. Comput. Phys. 273 (Sep): 572–588. https://doi.org/10.1016/j.jcp.2014.05.035.
Parisot, M. 2019. “Entropy-satisfying scheme for a hierarchy of dispersive reduced models of free surface flow.” Int. J. Numer. Methods Fluids 91 (10): 509–531. https://doi.org/10.1002/fld.4766.
Park, H., D. T. Cox, P. J. Lynett, D. M. Wiebe, and S. Shin. 2013. “Tsunami inundation modeling in constructed environments: A physical and numerical comparison of free-surface elevation, velocity, and momentum flux.” Coastal Eng. 79 (Sep): 9–21. https://doi.org/10.1016/j.coastaleng.2013.04.002.
Peregrine, D. H. 1966. “Calculations of the development of an undular bore.” J. Fluid Mech. 25 (2): 321–330. https://doi.org/10.1017/S0022112066001678.
Peregrine, D. H. 1967. “Long waves on a beach.” J. Fluid Mech. 27 (4): 815–827. https://doi.org/10.1017/S0022112067002605.
Pitt, J. P., C. Zoppou, and S. G. Roberts. 2022. “Numerical scheme for the generalised Serre–Green–Naghdi model.” Wave Motion 115 (Nov): 103077. https://doi.org/10.1016/j.wavemoti.2022.103077.
Popinet, S. 2015. “A quadtree-adaptive multigrid solver for the Serre–Green–Naghdi equations.” J. Comput. Phys. 302 (Dec): 336–358. https://doi.org/10.1016/j.jcp.2015.09.009.
Ricchiuto, M. 2015. “An explicit residual based approach for shallow water flows.” J. Comput. Phys. 280 (Jan): 306–344. https://doi.org/10.1016/j.jcp.2014.09.027.
Ricchiuto, M., and A. Filippini. 2014. “Upwind residual discretization of enhanced Boussinesq equations for wave propagation over complex bathymerties.” J. Comput. Phys. 271 (Aug): 306–341. https://doi.org/10.1016/j.jcp.2013.12.048.
Roeber, V. 2010. “Boussinesq-type model for nearshore wave processes in fringing reef environment.” Ph.D. thesis, Dept. of Ocean and Resources Engineering, Univ. of Hawaii at Manoa.
Roeber, V., and K. F. Cheung. 2012. “Boussinesq-type model for energetic breaking waves in fringing reef environments.” Coastal Eng. 70 (Dec): 1–20. https://doi.org/10.1016/j.coastaleng.2012.06.001.
Serre, F. 1953. “Contribution à l’étude des écoulements permanents et variables dans les canaux (Contribution to the study of steady and variable channel flows).” Houille Blanche 1 (6): 830–872. https://doi.org/10.1051/lhb/1953058.
Shi, F., J. T. Kirby, J. C. Harris, J. D. Geiman, and S. T. Grilli. 2012. “A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation.” Ocean Modell. 43 (Jan): 36–51. https://doi.org/10.1016/j.ocemod.2011.12.004.
Shi, F., J. T. Kirby, B. Tehranirad, J. C. Harris, and S. Grilli. 2011. FUNWAVE-TVD, fully nonlinear Boussinesq wave model with TVD Solver, documentation and user’s manual. Newark, DE: Center for Applied Coastal Research.
Stoker, J. J. 1957. “Water waves: The mathematical theory with applications.” In Pure and applied mathematics. New York: Interscience Publishers.
Tavakkol, S., and P. Lynett. 2017. “Celeris: A GPU-accelerated open source software with a Boussinesq-type wave solver for real-time interactive simulation and visualization.” Comput. Phys. Commun. 217 (Aug): 117–127. https://doi.org/10.1016/j.cpc.2017.03.002.
Tavakkol, S., and P. Lynett. 2020. “Celeris base: An interactive and immersive Boussinesq-type nearshore wave simulation software.” Comput. Phys. Commun. 248 (Mar): 106966. https://doi.org/10.1016/j.cpc.2019.106966.
Tkachenko, S., S. Gavrilyuk, and J. Massoni. 2023. “Extended Lagrangian approach for the numerical study of multidimensional dispersive waves: Applications to the Serre-Green-Naghdi equations.” J. Comput. Phys. 477 (Mar): 111901. https://doi.org/10.1016/j.jcp.2022.111901.
Tonelli, M., and M. Petti. 2011. “Simulation of wave breaking over complex bathymetries by a Boussinesq model.” J. Hydraul. Res. 49 (4): 473–486. https://doi.org/10.1080/00221686.2010.538570.
Treske, A. 1994. “Undular bores (Favre-waves) in open channels—Experimental studies.” J. Hydraul. Res. 32 (3): 355–370. https://doi.org/10.1080/00221689409498738.
Violeau, D. 2023. “Serre equations in channels and rivers of arbitrary cross section.” J. Hydraul. Eng. 149 (7): 04023021. https://doi.org/10.1061/JHEND8.HYENG-13406.
Viotti, C., F. Carbone, and F. Dias. 2014. “Conditions for extreme wave runup on a vertical barrier by nonlinear dispersion.” J. Fluid Mech. 748 (Jun): 768–788. https://doi.org/10.1017/jfm.2014.217.
Wei, G., J. T. Kirby, S. T. Grilli, and R. Subramanya. 1995. “A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves.” J. Fluid Mech. 294 (Jul): 71–92. https://doi.org/10.1017/S0022112095002813.

Information & Authors

Information

Published In

Go to Journal of Hydraulic Engineering
Journal of Hydraulic Engineering
Volume 150Issue 1January 2024

History

Received: Mar 26, 2023
Accepted: Sep 7, 2023
Published online: Nov 10, 2023
Published in print: Jan 1, 2024
Discussion open until: Apr 10, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Resercher, National Institute for Research in Digital Science and Technology (INRIA), Univ. Bordeaux, French National Centre for Scientific Research (CNRS), Bordeaux Institus Nationaux Polytechniques (INP), Institut de Mathématiques de Bordeaux (IMB), Unité mixte de recherche (UMR) 5251, 200 Ave. de la Vieille Tour, Talence cedex 33405, France (corresponding author). ORCID: https://orcid.org/0000-0002-6084-012X. Email: [email protected]
Mario Ricchiuto [email protected]
Resercher, National Institute for Research in Digital Science and Technology (INRIA), Univ. Bordeaux, French National Centre for Scientific Research (CNRS), Bordeaux Institus Nationaux Polytechniques (INP), Institut de Mathématiques de Bordeaux (IMB), Unité mixte de recherche (UMR) 5251, 200 Ave. de la Vieille Tour, Talence cedex 33405, France. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share