Abstract

Unpaved roads often are in poor condition, especially in developing countries, due to limited resources, resulting in discomfort, accident risk, vehicle operating costs (VOCs), freight transport damage, and difficulties accessing essential services by rural populations. Previous studies proposed methods that do not enable a complete and cost-effective unpaved road evaluation in the context of an integrated unpaved road management system (URMS). Developing global condition indexes is crucial in establishing a hierarchical classification of the whole road network, rationalizing resource allocation, and facilitating planning maintenance and rehabilitation candidate projects within a medium to long timeframe. The Global Quality Index of Unpaved Roads (GQIUR) development in this work provides data for management at the network and project levels, allowing the evaluation of riding quality and both distress at specific road sections. The GQIUR combines the Ride Quality Index of Unpaved Roads (RQIUR), proposed in this study, with the Unsurfaced Road Condition Index (URCI). By capturing data from cameras, accelerometers, and Global Positioning System (GPS) sensors on smartphones affixed to a vehicle’s windshield, it is possible to determine the RQIUR by evaluating ride quality while traveling. Recording surface distresses during walking surveys allows URCI calculation. The URCI and RQIUR classification was established based on the existing literature and the practicality of URMS. The GQIUR incorporates these attributes in a balanced manner, considering the comparable importance of the URCI and RQIUR for managers and users. The evaluation covered more than 10 km of unpaved roads. Asphalt and cobblestone pavement samples were compared with unpaved road data. GIS application to the GQIUR shows the general classification of unpaved roads. Unpaved roads present structural and functional distresses, and gravel roads cause excessive vibrations due to roughness and loose aggregates. The method enables priority section identification in a practical, objective, and cost-effective manner.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or codes that support the findings of this study are available from the corresponding author upon reasonable request (acceleration and GPS data from smartphones).

Acknowledgments

The authors are grateful for the support provided by the Federal University of Technology–Paraná.
Author contributions: All authors contributed equally to the conception and writing of the manuscript. All authors critically reviewed the manuscript and approved the final version.

References

Alatoom, Y. I., and T. I. Obaidat. 2022. “Measurement of street pavement roughness in urban areas using smartphone.” Int. J. Pavement Res. Technol. 15 (4): 1003–1020. https://doi.org/10.1007/s42947-021-00069-3.
Aleadelat, W., C. H. G. Wright, and K. Ksaibati. 2018. “Estimation of gravel roads ride quality through an Android-based smartphone.” Transp. Res. Rec. 2672 (40): 14–21. https://doi.org/10.1177/0361198118758693.
Alhasan, A., D. J. White, and K. De Brabanter. 2017. “Spatial pavement roughness from stationary laser scanning.” Int. J. Pavement Eng. 18 (1): 83–96. https://doi.org/10.1080/10298436.2015.1065403.
Almeida, L. C. D., F. H. L. D. Oliveira, and S. P. Ramos. 2018. “Estudo da condição de superfície em rodovias por meio do uso de aplicativo para smartphone.” Transportes 26 (2): 70–83. https://doi.org/10.14295/transportes.v26i2.1406.
Baesso, D. P., and F. L. R. Gonçalves. 2003. Estradas Rurais—Técnicas Adequadas de Manutenção. Florianópolis, Brazil: Departamento de Infraestrutura do Estado de Santa Catarina.
Balena, R., E. Bortolini, and J. C. Tomazoni. 2009. “Caracterização dos tipos de solo do município de Pato Branco através técnicas de geoprocessamento.” Synergismus Scyentifica UTFPR 4 (1): 2.
Bast, S., D. Stephens, M. Mohammed, M. Souliman, M. Vechione, M. Shirvaikar, and Y. Li. 2021. “SMARTP3M: Smart pavement monitoring, management, and maintenance.” Accessed May 26, 2023. http://hdl.handle.net/10950/3002.
Bisconsini, D. R. 2020. “Análise de Fatores Intervenientes na Avaliação da Condição Funcional de Pavimentos com Smartphones.” Ph.D. thesis, Postgraduate Program in Transportation, São Carlos School of Engineering, Univ. of São Paulo.
Bisconsini, D. R., J. Loureiro, and J. L. Fernandes Jr. 2019. “Análise da influência de fatores relacionados ao uso de smartphones para a avaliação da irregularidade longitudinal de pavimentos.” In Proc., 33rd Annual Congress on Transportation Research and Education, 1351–1362. Balneário Camboriú, Brazil: National Association of Transport Research and Education.
Bisconsini, D. R., V. Pegorini, D. Casanova, R. A. de Oliveira, B. A. Farias, and J. L. F. Júnior. 2021. “Intervening factors in pavement roughness assessment with smartphones: Quantifying the effects and proposing mitigation.” J. Transp. Eng. Part B Pavements 147 (4): 04021051. https://doi.org/10.1061/JPEODX.0000303.
Bridgelall, R., M. T. Rahman, D. D. Tolliver, and J. F. Daleiden. 2016. “Use of connected vehicles to characterize ride quality.” Transp. Res. Rec. 2589 (1): 119–126. https://doi.org/10.3141/2589-13.
Byrne, M., and R. Isola. 2012. “Technical note: All the data eggs in the one laser basket.” Road Transp. Res. 21 (3): 86–87.
Cabral, F. S., H. Fukai, and S. Tamura. 2019. “Feature extraction methods proposed for speech recognition are effective on road condition monitoring using smartphone inertial sensors.” Sensors 19 (16): 3481. https://doi.org/10.3390/s19163481.
Cabral, F. S., M. Pinto, F. A. L. N. Mouzinho, H. Fukai, and S. Tamura. 2018. “An automatic survey system for paved and unpaved road classification and road anomaly detection using smartphone sensor.” In Proc., 2018 IEEE Int. Conf. Serv. Oper. Logist. Informatics, 65–70. New York: IEEE. https://doi.org/10.1109/SOLI.2018.8476788.
Camilo, I. B. 2007. Recomendações técnicas para adequação de estradas rurais. Cuiabá, Brazil: EMPAER-MT.
Chou, C.-P., G.-J. Siao, A.-C. Chen, and C.-C. Lee. 2020. “Algorithm for estimating international roughness index by response-based measuring device.” J. Transp. Eng. Part B Pavements 146 (3): 04020031. https://doi.org/10.1061/JPEODX.0000183.
da Silva, D. P. 2011. “Modelo para dimensionamento de sistemas de drenagem de superfície em estradas não pavimentadas.” Ph.D. thesis, Postgraduate in Agricultural Engineering, Universidade Federal de Viçosa.
D’ávila, A. L. M. 1996. “Bases de um sistema de gerência de estradas municipais do Estado do Rio Grande do Sul.” Ph.D. thesis, Postgraduate Program in Transportation, São Carlos School of Engineering, Univ. of São Paulo.
Eaton, R. A., S. Gerard, and R. S. Dattilo. 1987. “A method for rating unsurfaced roads.” Transp. Res. Rec. 1106 (Mar): 34–43.
Farias, B. A., D. S. Pereira, L. P. Specht, V. Pegorini, and D. R. Bisconsini. 2023. “Aplicação de dados de smartphones a sistemas de informações geográficas para a avaliação da irregularidade longitudinal de pavimentos.” In Revista Técnico-Científica do CREA-PR, Esp. Ed., 1–14. Curitiba-PR, Brazil: CREA-PR.
Ferreira, F. M. 2004. “Uma Aplicação Comparativa de Métodos de Avaliação das Condições Superficiais de Estrada.” Master’s thesis, Faculty of Civil Engineering, Universidade Estadual de Campinas.
FHWA (Federal Highway Administration). 2015. “Gravel roads construction and maintenance guide.” Accessed October 4, 2023. https://www.fhwa.dot.gov/construction/pubs/ots15002.pdf.
Fukubayashi, Y., and M. Kimura. 2014. “Improvement of rural access roads in developing countries with initiative for self-reliance of communities.” Soils Found. 54 (1): 23–35. https://doi.org/10.1016/j.sandf.2013.12.003.
Gillespie, T. D. 1992. “Everything you always wanted to know about the IRI, but were afraid to ask!” In Proc., Road Profile Users Group Meeting. Ann Arbor, MI: Univ. of Michigan Transportation Research Institute.
Giné, M. A. C. 2012. “Development of a sustainable management system for rural road networks in developing countries.” Ph.D. thesis, Dept. of Civil and Environmental Engineering, Univ. of Waterloo.
Haas, R., W. R. Hudson, and J. Zaniewski. 1994. Modern pavement management. Malamar, FL: Krieger.
Harral, C. G., and A. Faiz. 1988. Road deterioration in developing countries: Causes and remedies. Washington, DC: The World Bank.
Hine, J., M. Sasidharan, T. M. Eskandari, M. P. N. Burrow, and K. Usman. 2019. Evidence on impact of rural roads on poverty and economic development. K4D Helpdesk Rep. Brighton, UK: Institute of Development Studies.
ISO. 1997. Mechanical Vibration and shock—Evaluation of human exposure to whole-body vibration—Part 1: General requirements. ISO 2631-1. Geneve: ISO.
Kumar, L., T. Tallam, N. K. ChikkaKrishna, M. K. Reddy, and S. P. Reddy. 2022. “Response type road roughness measuring system from a vehicle mounted Android smartphone.” In Proc., 2022 IEEE Delhi Section Conf. DELCON 2022, 1–4. New York: IEEE. https://doi.org/10.1109/DELCON54057.2022.9753508.
Kumar, R., A. Mukherjee, and V. P. Singh. 2017. “Community sensor network for monitoring road roughness using smartphones.” J. Comput. Civ. Eng. 31 (3): 04016059. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000624.
Kyriakou, C., and S. E. Christodoulou. 2022. “A low-cost pavement-rating system, based on machine learning, utilising smartphone sensors.” Proc. Inst. Civ. Eng.-Smart Infrastruct. Constr. 175 (4): 152–159. https://doi.org/10.1680/jsmic.21.00030.
Laubis, K., V. Simko, A. Schuller, and C. Weinhardt. 2017. “Road condition estimation based on heterogeneous extended floating car data.” In Proc., Annual Hawaii Int. Conf. on System Sciences, 1582–1591. New York: IEEE. https://doi.org/10.24251/HICSS.2017.191.
Lebo, J., and D. Schelling. 2001. “Design and appraisal of rural transport infrastructure.” Indian J. Public Adm. 47 (3): 590–601. https://doi.org/10.1177/0019556120010319.
Lee, T., C. Chun, and S.-K. Ryu. 2021. “Detection of road-surface anomalies using a smartphone camera and accelerometer.” Sensors 21 (2): 561. https://doi.org/10.3390/s21020561.
Lima, L. C., V. J. P. Amorim, I. M. Pereira, F. N. Ribeiro, and R. A. R. Oliveira. 2016. “Using crowdsourcing techniques and mobile devices for asphaltic pavement quality recognition.” In Proc., Brazilian Symp. Computer System Engineering SBESC, 144–149. New York: IEEE. https://doi.org/10.1109/SBESC.2016.029.
Limi, A., E. R. Lancelot, I. Manelici, and S. Ogita. 2015. Social and economic impacts of rural road improvements in the state of Tocantins, Brazil. Washington, DC: The World Bank.
Liu, C., D. Wu, Y. Li, and Y. Du. 2021. “Large-scale pavement roughness measurements with vehicle crowdsourced data using semi-supervised learning.” Transp. Res. Part C Emerging Technol. 125 (Apr): 103048. https://doi.org/10.1016/j.trc.2021.103048.
Medina, J. R., R. Salim, B. S. Underwood, and K. Kaloush. 2020. “Experimental study for crowdsourced ride quality index estimation using smartphones.” J. Transp. Eng. Part B Pavements 146 (4): 04020070. https://doi.org/10.1061/JPEODX.0000225.
Nitsche, P. R., P. H. Caramori, W. D. Ricce, and L. F. D. Pinto. 2019. Atlas Climático do Estado do Paraná. Londrina, Brazil: IAPAR.
Nunes, T. V. L. 2003. “Método de previsão de defeitos em estradas vicinais de terra com base no uso das redes neurais artificiais: Trecho de Aquiraz-CE.” Master’s thesis, Technology Center, Federal Univ. of Ceará.
Nuñez, J. Y. M., D. R. Bisconsini, and A. N. R. da Silva. 2020. “Combining environmental quality assessment of bicycle infrastructures with vertical acceleration measurements.” Transp. Res. Part A Policy Pract. 137 (Jul): 447–458. https://doi.org/10.1016/j.tra.2018.10.032.
Oda, S. 1995. “Caracterização de uma rede municipal de estradas não-pavimentadas.” [In Portuguese.] Master’s thesis, Postgraduate Program in Transportation, São Carlos School of Engineering, Univ. of São Paulo.
Opara, K. R., K. Brzezinski, M. Bukowicki, and K. Kaczmarek-Majer. 2022. “Road roughness estimation through smartphone-measured acceleration.” IEEE Intell. Transp. Syst. Mag. 14 (2): 209–220. https://doi.org/10.1109/MITS.2021.3049382.
Riva, D. J., and G. Polachini. 2017. “Adequação da arquitetura ao clima: características físicas da cidade de Pato Branco–PR.” Accessed October 4, 2023. https://anteriores.aprepro.org.br/conbrepro/2017/anais.php.
Saeed, N., M. Dougherty, R. G. Nyberg, P. Rebreyend, and D. Jomaa. 2020. “A review of intelligent methods for unpaved roads condition assessment.” In Proc., 15th IEEE Conf. Industrial Electronics and Applications ICIEA 2020, 79–84. New York: IEEE.
Sandamal, R. M. K., and H. R. Pasindu. 2022. “Applicability of smartphone-based roughness data for rural road pavement condition evaluation.” Int. J. Pavement Eng. 23 (3): 663–672. https://doi.org/10.1080/10298436.2020.1765243.
Santos, A. R., E. L. Pastore, F. Augusto Jr., and M. A. Cunha. 2019. Estradas Vicinais de Terra—Manual Técnico para Conservação e Recuperação. São Paulo, Brazil: Instituto de Pesquisas Tecnológicas do Estado de São Paulo.
Sayers, M. W., and M. S. Karamihas. 1998. The little book of profiling. Ann Arbor, MI: The Regent of the Univ. of Michigan.
Singh, G., D. Bansal, S. Sofat, and N. Aggarwal. 2017. “Smart patrolling: An efficient road surface monitoring using smartphone sensors and crowdsourcing.” Pervasive Mob. Comput. 40 (Sep): 71–88. https://doi.org/10.1016/j.pmcj.2017.06.002.
Stephens, D., M. I. Souliman, M. Vechione, M. Shirvaikar, and Y. Li. 2022. “Development of a smartphone application serving pavement management engineers.” Transp. Res. Rec. 2676 (6): 182–196. https://doi.org/10.1177/03611981211073310.
USGAO (United States Government Accountability Office). 2022. National highways: Analysis of available data could better ensure equitable pavement condition. Washington, DC: USGAO.
Viviani, E. 1998. “A utilização de um Sistema de Informação Geográfica como auxílio à gerência de manutenção de estradas rurais não-pavimentadas.” Ph.D. thesis, Postgraduate Program in Transportation, São Carlos School of Engineering, Univ. of São Paulo.
Wang, G., M. Burrow, and G. Ghataora. 2020. “Study of the factors affecting road roughness measurement using smartphones.” J. Infrastruct. Syst. 26 (3): 04020020. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000558.
Yang, X., H. U. Ahmed, L. Hu, R. Bridgelall, L. Chia, Y. Huang, and P. Lu. 2020. “Evaluating the ride quality of unpaved roads using smartphones.” In Sensors and smart structures technologies for civil, mechanical, and aerospace systems, edited by D. Zonta and H. Huang, 22. Bellingham, WA: Society of Photo-Optical Instrumentation Engineers.
Yu, Q., Y. Fang, and R. Wix. 2022. “Pavement roughness index estimation and anomaly detection using smartphones.” Autom. Constr. 141 (Sep): 104409. https://doi.org/10.1016/j.autcon.2022.104409.
Zeng, H., H. Park, M. D. Fontaine, B. L. Smith, and K. K. McGhee. 2015. “Identifying deficient pavement sections by means of an improved acceleration-based metric.” Transp. Res. Rec. 2523 (1): 133–142. https://doi.org/10.3141/2523-15.
Zhang, C. 2008. “Monitoring the condition of unpaved roads with remote sensing and other technology: Final report for US DOT DTPH56-06-BAA-0002.” Brookings. Accessed October 4, 2023. https://rosap.ntl.bts.gov/view/dot/36464/dot_36464_DS1.pdf.
Zhang, C., and A. Elaksher. 2012. “An unmanned aerial vehicle-based imaging system for 3D measurement of unpaved road surface distresses.” Comput. Civ. Infrastruct. Eng. 27 (2): 118–129. https://doi.org/10.1111/j.1467-8667.2011.00727.x.

Information & Authors

Information

Published In

Go to Journal of Construction Engineering and Management
Journal of Construction Engineering and Management
Volume 150Issue 1January 2024

History

Received: May 31, 2023
Accepted: Aug 31, 2023
Published online: Oct 27, 2023
Published in print: Jan 1, 2024
Discussion open until: Mar 27, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Civil Engineer, Itagiba Empreendimentos Imobiliarios Scp, Federal Univ. of Technology–Paraná, Pato Branco, PR 85503-390, Brazil. ORCID: https://orcid.org/0009-0004-9472-7469. Email: [email protected]
Civil Engineer, Pado Empreendimentos Imobiliários, Federal Univ. of Technology-Paraná, Pato Branco, PR 85503-390, Brazil. ORCID: https://orcid.org/0009-0009-9930-0049. Email: [email protected]
Computer Engineer, Dept. of Computer Engineering, Federal Univ. of Technology–Paraná, Pato Branco, PR 85503-390, Brazil. ORCID: https://orcid.org/0009-0009-7130-067X. Email: [email protected]
Professor, Dept. of Computer Engineering, Federal Univ. of Technology–Paraná, Pato Branco, PR 85503-390, Brazil. ORCID: https://orcid.org/0000-0002-1399-9277. Email: [email protected]
Professor, Dept. of Computer Engineering, Federal Univ. of Technology–Paraná, Pato Branco, PR 85503-390, Brazil. ORCID: https://orcid.org/0000-0002-1905-4602. Email: [email protected]
Professor, Dept. of Civil Engineering, Federal Univ. of Technology–Paraná, Pato Branco, PR 85503-390, Brazil (corresponding author). ORCID: https://orcid.org/0000-0001-9780-6016. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share