Case Studies
Jan 10, 2023

Climate Change Adaptation of Elbe River Flood Embankments via Suction-Based Design

Publication: International Journal of Geomechanics
Volume 23, Issue 3

Abstract

Flood embankments are generally designed by assuming steady-state flow conditions and dry soil above the phreatic surface. However, steady-state conditions are rarely achieved and a significant portion of the embankment remains unsaturated upon a flood event. If transient water flow and partial saturation are considered, the flood embankment can be designed with steeper slopes on the landside, which may lead to significant savings in terms of earthfill material (i.e., embodied carbon) and footprint (i.e., habitat suppression and expropriation costs). This paper examines the case of flood embankments in the tidal area of the Elbe River in Germany. These embankments must be retrofitted by raising their crest from 5 to 7 m because of the new projection of extreme river levels due to climate change. In this paper, the conventional “prescriptive” design consisting of raising the embankment by maintaining the 1:3 inclination of the landside slope is compared with the “performance-based” design where the inclination of the slope on the landside could be potentially increased up to 1:1, which is shown to be sustainable if partial saturation and transient water flow are considered. Raising the flood embankment with 1:1 landside slope (rather than 1:3) could lead to expropriation cost savings on the order of €3.9 M/km. For the case of a newly built embankment of 7 m height, the saving would become €4.5 M/km. An approximate estimation of embodied carbon suggests that the carbon saving would be on the order of 3,100–4,200 tCO2e/km.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgements

The authors wish to acknowledge the support of the European Commission via the Marie Skłodowska-Curie Innovative Training Networks (ITN–ETN) project TERRE “Training Engineers and Researchers to Rethink Geotechnical Engineering for a Low-Carbon Future” (H2020-MSCA-ITN-2015-675762).

References

Baets, S. D., D. Torri, J. Poesen, M. P. Salvador, and J. Meersmans. 2008. “Modelling increased soil cohesion due to roots with EUROSEM.” Earth Surf. Processes Landforms 33 (13): 1948–1963. https://doi.org/10.1002/esp.1647.
Baral, S., J. X. Wang, S. Alam, and W. B. Patterson. 2019. “Experimental and analytical studies on the root reinforcement effect of a grass species, spartina alterniflora.” In Geo-Congress 2019: Soil erosion, underground engineering, and risk assessment, 86–96. Reston, VA: ASCE.
Barnard, P. L., et al. 2019. “Dynamic flood modeling essential to assess the coastal impacts of climate change.” Sci. Rep. 9: 4309. https://doi.org/10.1038/s41598-019-40742-z.
Bhaskar, P., A. J. Puppala, and B. Boluk. 2022. “Influence of unsaturated hydraulic properties on transient seepage and stability analysis of an earthen dam.” Int. J. Geomech. 22 (7): 04022105. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002414.
Bishop, A. W. 1955. “The use of the slip circle in the stability analysis of slopes.” Géotechnique 5 (1): 7–17. https://doi.org/10.1680/geot.1955.5.1.7.
BUE (Behörde für Umwelt und Energie). 2018a. “Behörde für Umwelt und Energie (BUE).” Geologisches Landesamt. Accessed June 1, 2020. https://suche.transparenz.hamburg.de/data set/bohrarchiv13.
BUE (Behörde für Umwelt und Energie). 2018b. “Behörde für Umwelt und Energie (BUE).” Geologisches Landesamt. Accessed June 1, 2020. https://suche.transparenz.hamburg.de/data set/digitale-stadtkarte-hamburg-historisch6.
BUE (Behörde für Umwelt und Energie). 2018c. “Behörde für Umwelt und Energie (BUE).” Geologisches Landesamt. Accessed June 1, 2020. https://suche.transparenz.hamburg.de/data set/geologische-profilschnitte-hamburg18.
Comino, E., P. Marengo, and V. Rolli. 2010. “Root reinforcement effect of different grass species: A comparison between experimental and models results.” Soil Tillage Res. 110 (1): 60–68. https://doi.org/10.1016/j.still.2010.06.006.
Committee for coastal protection works of the German Society for Earthworks and Foundation Engineering and the Society for Port Engineering (Ausschuss für Küstenschutzwerke der Deutschen Gesellschaft für Erd- und Grundbau und der Hafenbautechnischen Gesellschaft). 2020. “Recommendations B 2002 - geotechnical investigations of sea and tidal current dike (Empfehlungen B 2002 - Geotechnische Untersuchungen von See- und Tidestromdeichen).” In Die Küste 88, 303–337. Karlsruhe: Bundesanstalt für Wasserbau. S. https://doi.org/10.18171/1.088100.
Committee on Climate Change. 2013. Managing the land in a changing climate. Adaptation Sub-Committee Progress Report 2013. London: Committee on Climate Change.
DEFRA (Department for Environment, Food and Rural Affairs). 2002. Directing the flow: Priorities for future water policy. London: Defra.
DEFRA. 2010. “Understanding the impact of flood and coastal erosion risk management on the causes of climate change.” DEFRA/EA R&D Technical Report FD2622/TR. London: Department for Environment, Food and Rural Affairs. Accessed June 1, 2020. https://randd.defra.gov.uk/ProjectDetails?ProjectId=16221.
Esteves, L. S., and K. Thomas. 2014. “Managed realignment in practice in the UK: Results from two independent surveys.” J. Coastal Res. 70: 407–413. Special Issue. https://doi.org/10.2112/SI70-069.1.
GeoSlope. 2019. Seepage modelling with SEEP/W 2012 – An engineering methodology. 4th ed. Alberta, Canada: GeoSlope International.
Glass, J., T. Dyer, C. Georgopoulos, C. Goodier, K. Paine, T. Parry, H. Baumann, and P. Gluch. 2013. “Future use of life-cycle assessment in civil engineering.” Proc. Inst. Civ. Eng. Constr. Mater. 166 (4): 204–212. https://doi.org/10.1680/coma.12.00037.
GLH (Geologisches Landesamt Hamburg). 2017a. “Geologisches Landesamt Hamburg.” Accessed June 1, 2020. http://ingdata.hamburg.de/.
GLH (Geologisches Landesamt Hamburg). 2017b. “Geologisches Landesamt Hamburg.” Accessed June 1, 2020. http://ingdata.hamburg.de/pdf/KLabf3axKohaeReibD_s.pdf.
GLH (Geologisches Landesamt Hamburg). 2017c. “Geologisches Landesamt Hamburg.” Accessed June 1, 2020. http://ingdata.hamburg.de/pdf/KLabf3axKohaeReibCU_s.pdf.
GLH (Geologisches Landesamt Hamburg). 2017d. “Geologisches Landesamt Hamburg.” Accessed June 1, 2020. http://ingdata.hamburg.de/pdf/tvc-DBrue-B83-1,90-22,33-7,29.pdf.
GLH (Geologisches Landesamt Hamburg). 2017e. “Geologisches Landesamt Hamburg.” Accessed June 1, 2020. http://ingdata.hamburg.de/pdf/tvc-CND-B3-2,50-19,57-8,28.pdf.
Gragnano, C. G., I. Rocchi, and G. Gottardi. 2021. “Field monitoring and laboratory testing for an integrated modeling of river embankments under transient conditions.” J. Geotech. Geoenviron. Eng. 147 (9): 05021006. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002571.
Hammond, G. P., and C. I. Jones. 2008. “Embodied energy and carbon in construction materials.” Proc. Inst. Civ. Eng. Energy 161 (2): 87–98. https://doi.org/10.1680/ener.2008.161.2.87.
HPA (Hamburg Port Authority). 2008. Technische rahmenbedingungen (TR HWS-Bau). Hamburg: HPA.
Johari, A., and A. Talebi. 2019. “Stochastic analysis of rainfall-induced slope instability and steady-state seepage flow using random finite-element method.” Int. J. Geomech. 19 (8): 04019085. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001455.
Khalilzad, M., M. A. Gabr, and M. E. Hynes. 2015. “Deformation-based limit state analysis of embankment dams including geometry and water level effects.” Int. J. Geomech. 15 (5): 04014086. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000435.
LBS. 2020. “Immobilien markt atlas 2020 Hamburg und Umland.” Accessed June 1, 2020. https://www.lbs.de/unternehmen/schleswig_holstein_hamburg_6/regionales_thema_68/regionales_thema_63.jsp.
Lee, S., J. Cass, S. Cornick, and M. Bradley. 2010. “Cobbins brook flood storage reservoir.” In Managing dams challenges in a time of change, edited by A. Pepper, 364–375. London: Thomas Telford Ltd.
Lu, N., and W. J. Likos. 2004. Unsaturated soil mechanics. Hoboken, NJ: John Wiley & Sons, Inc.
Monroy, R., L. Zdravkovic, and A. Ridley. 2010. “Evolution of microstructure in compacted London Clay during wetting and loading.” Géotechnique 60 (2): 105–119. https://doi.org/10.1680/geot.8.P.125.
Ngo, P. S. N., L. E. O. Garciano, M. P. De Leon, N. S. A. Lopez, H. Ishii, K. Iimura, J. J. P. Valdez, and T. Shibayama. 2022. “Experimental and numerical modeling of a tide embankment section subjected to storm surge in Tacloban City, Philippines.” Nat. Hazard. Rev. 23 (4): 05022007. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000575.
Quast, P. 1977. Ein Beitrag zum Kriechverhalten eines norddeut-schen Kleis, Mitteilungen des Lehrstuhls für Grundbau, Bodenmechanik und Energiewasserbau der TU Hannover, Heft 11.
Showkat, R., H. Mohammadi, and G. L. S. Babu. 2022. “Effect of rainfall infiltration on the stability of compacted embankments.” Int. J. Geomech. 22 (7): 04022104. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002425.
Spalding, M. D., S. Ruffo, C. Lacambra, I. Meliane, L. Z. Hale, C. C. Shepard, and M. W. Beck. 2014. “The role of ecosystems in coastal protection: Adapting to climate change and coastal hazards.” Ocean Coastal Manage. 90: 50–57. https://doi.org/10.1016/j.ocecoaman.2013.09.007.
Spencer, K. L., and G. L. Harvey. 2012. “Understanding system disturbance and ecosystem services in restored saltmarshes: Integrating physical and biogeochemical processes.” Estuarine Coastal Shelf Sci. 106: 23–32. https://doi.org/10.1016/j.ecss.2012.04.020.
Sundseth, K. 2018. The EU birds and habitats directives: For nature and people in Europe. European Commission, Directorate-General for Environment. https://data.europa.eu/doi/10.2779/49288.
Tarantino, A., and A. Di Donna. 2019. “Mechanics of unsaturated soils: Simple approaches for routine engineering practice.” Italian Geotech. J. 4: 6–46.
Tarantino, A., and G. El Mountassir. 2013. “Making unsaturated soil mechanics accessible for engineers: Preliminary hydraulic–mechanical characterisation & stability assessment.” Eng. Geol. 165: 89–104. https://doi.org/10.1016/j.enggeo.2013.05.025.
Vahedifard, F., F. H. Jasim, F. T. Tracy, M. Abdollahi, A. Alborzi, and A. AghaKouchak. 2020. “Levee fragility behavior under projected future flooding in a warming climate.” J. Geotech. Geoenviron. Eng. 146 (12): 04020139. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002399.
Vanapalli, S. K., D. G. Fredlund, D. E. Pufahl, and A. W. Clifton. 1996. “Model for the prediction of shear strength with respect to soil suction.” Can. Geotech. J. 33 (3): 379–392. https://doi.org/10.1139/t96-060.
van Genuchten, M. T. 1980. “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.” Soil Sci. Soc. Am. J. 44 (5): 892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x.
von Storch, H., I. Meinke, and M. Claußen. 2017. Hamburger Klimabericht–Wissen über Klima, Klimawandel und Auswirkungen in Hamburg und Norddeutschland. Berlin, Heidelberg: Springer Nature.
Vousdoukas, M., L. Mentaschi, E. Voukouvalas, M. Verlaan, and L. Feyen. 2017. “Extreme sea levels on the rise along Europe’s coasts.” Earth's Future 5: 304–323. https://doi.org/10.1002/2016EF000505.
Weder, C., G. Müller, and B. Brümmer. 2017. “Precipitation extremes on time scales from minute to month measured at the Hamburg Weather Mast 1997-2014 and their relation to synoptic weather types.” Meteorol. Z. 26: 507–524. https://doi.org/10.1127/metz/2017/0812.
Zhang, Z., X. Fu, Q. Sheng, Y. Du, Y. Zhou, and J. Huang. 2021. “Stability of cracking deposit slope considering parameter deterioration subjected to rainfall.” Int.l J. Geomech.21 (7): 05021001. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002045.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 23Issue 3March 2023

History

Received: Jan 27, 2022
Accepted: Sep 27, 2022
Published online: Jan 10, 2023
Published in print: Mar 1, 2023
Discussion open until: Jun 10, 2023

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Dept. of Civil and Environmental Engineering, Univ. of Strathclyde, James Weir Building - Level 5, 75 Montrose St., Glasgow G11XJ, UK (corresponding author). ORCID: https://orcid.org/0000-0003-1818-922X. Email: [email protected]
Dept. of Civil and Environmental Engineering, Univ. of Strathclyde, 75 Montrose St., Glasgow G11XJ, UK. ORCID: https://orcid.org/0000-0001-6690-748X. Email: [email protected]
Patrick Becker [email protected]
Kempfert Geotechnik GmbH, Hasenhöhe 128, 22587 Hamburg, Germany. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share