Chapter
Dec 31, 2015

Undistorted Froude Model for Surf Zone Sediment Transport

Publication: Coastal Engineering 1986

Abstract

Small scale movable bed wave tank experiments were carried out according to undistorted Froude model laws with the sediment fall time, H/wT, as the governing parameter for scaling the model sediment. Four questions addressed in this study included: (a) the ability to reproduce larger scale model results for both erosional and accretive conditions, (b) the effects of more realistic concave upward initial beach profiles instead of the more usual planar initial slopes, (c) the criterion for onshore-offshore sediment transport, and (d) the capability of the model to simulate post-storm recovery.
Based on a comparison with large scale results of Saville (1957), it was found that the model provided good agreement for erosive conditions. For accretive conditions, the results were less conclusive although the general patterns of profile change were similar. The final beach profiles resulting from concave upward initial profiles were found to be substantially different from those for an initially planar profile. It appears that the initially planar profile unrealistically affects the breaker type and results in a more pronounced longshore bar and offshore slopes that are steeper than found in nature. Tests conducted to evaluate the criterion separating onshore-offshore transport suggested a higher value of the fall time parameter, H/wT, than was originally proposed by Dean (1973); this is interpreted to be due to scale effects in most of the model data used in the original development. Tests to simulate post-storm recovery were affected by the presence of “reflection bars” associated with a partial standing wave system. The reflection bars appear to strongly affect the sediment transport limiting the post-storm profile recovery. The most effective recovery was induced by continually changing wave conditions to maintain the wave breakpoint slightly landward of the bar crest.

Get full access to this article

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to Coastal Engineering 1986
Coastal Engineering 1986
Pages: 1296 - 1310

History

Published online: Dec 31, 2015

Permissions

Request permissions for this article.

Authors

Affiliations

D. L. Kriebel
Graduate Research Assistant, Coastal and Oceanographic Engineering Department, University of Florida, Gainesville, FL 32611
W. R. Dally
Graduate Research Assistant, Coastal and Oceanographic Engineering Department, University of Florida, Gainesville, FL 32611
R. G. Dean
Graduate Research Professor, Coastal and Oceanographic Engineering Department, University of Florida, Gainesville, FL 32611 and Director, Division of Beaches and Shores, Department of Natural Resources Tallahassee, FL 32303

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart
Buy E-book
$237.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart
Buy E-book
$237.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share