ABSTRACT

Pavement maintenance management requires artificial intelligent techniques to evaluate pavement condition automatically, predict pavement deterioration, and optimize maintenance actions under restrictive budgets. This paper presents three techniques that address the three objectives raised. First, Convolutional Neural Networks (CNN) are used to analyze images obtained by a camera installed on a vehicle. Several CNNs are trained to detect, classify, and quantify the 3D distresses. Second, pavement deterioration is predicted by Feed-forward Neural Networks (FNN). Pavement Condition Index (PCI) throughout a planning horizon is estimated from the information obtained by the inspection and the traffic and climate conditions. Third, heuristic optimization algorithms are used to determine the optimal maintenance plan. This plan indicates which sections should be repaired each year of the planning horizon and the treatment that must be used to optimize the maintenance cost, the CO2 emissions, the user cost, the network condition, and the accidents. These techniques are presented and discussed in this paper.

Get full access to this article

View all available purchase options and get full access to this chapter.

REFERENCES

AASHTO. 2012. Pavement Management Guide. American Association of State Highway and Transportation Officials (AASHTO). Washington D.C., USA.
Abdelaziz, N., R. T. Abd El-Hakim, S. M. El-Badawy, and H. A. Afify. 2020. “International Roughness Index prediction model for flexible pavements”. Int. J. Pavement Eng., 21 (1): 88–99. https://doi.org/10.1080/10298436.2018.1441414.
ASTM. 2018. Standard practice for roads and parking lots pavement condition index surveys (No. ASTM D6433-18). American Society for Testing and Materials. West Conshohocken, PA.
Augeri, M. G., S. Greco, and V. Nicolosi. 2019. “Planning urban pavement maintenance by a new interactive multiobjective optimization approach”. Eur. Transp. Res. Rev., 11 (1). https://doi.org/10.1186/s12544-019-0353-9.
Chen, W., and M. Zheng. 2021. “Multi-objective optimization for pavement maintenance and rehabilitation decision-making: A critical review and future directions”. Autom. Constr., 130: 103840. https://doi.org/10.1016/j.autcon.2021.103840.
Coenen, T. B. J., and A. Golroo. 2017. “A review on automated pavement distress detection methods”. Cogent Eng., 4 (1): 1374822. https://doi.org/10.1080/23311916.2017.1374822.
Donev, V., and M. Hoffmann. 2020. “Optimisation of pavement maintenance and rehabilitation activities, timing and work zones for short survey sections and multiple distress types”. Int. J. Pavement Eng., 21 (5): 583–607. https://doi.org/10.1080/10298436.2018.1502433.
García-Segura, T., L. Montalbán-Domingo, D. Llopis-Castelló, A. Sanz-Benlloch, and E. Pellicer. 2023. “Integration of deep learning techniques and sustainability-based concepts into an urban pavement management system”. Expert Syst. Appl., 231: 120851. https://doi.org/https://doi.org/10.1016/j.eswa.2023.120851.
Gouda, M., I. Chowdhury, J. Weiß, A. Epp, and K. El-Basyouny. 2021. “Automated assessment of infrastructure preparedness for autonomous vehicles”. Autom. Constr., 129: 103820. https://doi.org/https://doi.org/10.1016/j.autcon.2021.103820.
Hankach, P., T. Lorino, and P. Gastineau. 2019. “A constraint-based, efficiency optimisation approach to network-level pavement maintenance management”. Struct. Infrastruct. Eng., 15 (11): 1450–1467. https://doi.org/10.1080/15732479.2019.1624787.
Hou, Y., Q. Li, C. Zhang, G. Lu, Z. Ye, Y. Chen, L. Wang, and D. Cao. 2021. “The state-of-the-art review on applications of intrusive sensing, image processing techniques, and machine learning methods in pavement monitoring and analysis”. Engineering, 7 (6): 845–856. https://doi.org/https://doi.org/10.1016/j.eng.2020.07.030.
Jato-Espino, D., J. Rodriguez-Hernandez, V. C. Andrés-Valeri, and F. Ballester-Muñoz. 2014. “A fuzzy stochastic multi-criteria model for the selection of urban pervious pavements”. Expert Syst. Appl., 41 (15): 6807–6817. https://doi.org/10.1016/j.eswa.2014.05.008.
De La Garza, J. M., S. Akyildiz, D. R. Bish, and D. A. Krueger. 2011. “Network-level optimization of pavement maintenance renewal strategies”. Adv. Eng. Informatics, 25 (4): 699–712. https://doi.org/10.1016/J.AEI.2011.08.002.
Llopis-Castelló, D., T. García-Segura, L. Montalbán-Domingo, A. Sanz-Benlloch, and E. Pellicer. 2020. “Influence of pavement structure, traffic, and weather on urban flexible pavement deterioration”. Sustain., 12 (22): 1–20. https://doi.org/10.3390/su12229717.
Llopis-Castelló, D., R. Paredes, M. Parreño-Lara, T. García-Segura, and E. Pellicer. 2021. “Automatic classification and quantification of basic distresses on urban flexible pavement through convolutional neural networks”. J. Transp. Eng. Part B Pavements, 147 (4): 04021063. https://doi.org/https://doi.org/10.1061/JPEODX.0000321.
Peraka, N. S. P., and K. P. Biligiri. 2020. “Pavement asset management systems and technologies: A review”. Autom. Constr., 119. https://doi.org/10.1016/j.autcon.2020.103336.
Soncim, S. P., I. C. S. de Oliveira, and F. B. Santos. 2019. “Development of fuzzy models for asphalt pavement performance”. Acta Sci. - Technol., 41: 1–7. https://doi.org/10.4025/actascitechnol.v41i1.35626.
Tarawneh, B., and M. D. Nazzal. 2014. “Optimization of resilient modulus prediction from FWD results using artificial neural network”. Period. Polytech. Civ. Eng., 58 (2): 143–154. https://doi.org/10.3311/PPci.2201.
Torres-Machi, C., E. Pellicer, V. Yepes, and A. Chamorro. 2017. “Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions”. J. Clean. Prod., 148: 90–102. https://doi.org/10.1016/J.JCLEPRO.2017.01.100.
Yepes, V., C. Torres-Machi, A. Chamorro, and E. Pellicer. 2016. “Optimal pavement maintenance programs based on a hybrid Greedy Randomized Adaptive Search Procedure Algorithm”. J. Civ. Eng. Manag., 22 (4): 540–550. https://doi.org/10.3846/13923730.2015.1120770.
Zimmerman, K. A., D. G. Peshkin, A. Wolters, and O. Smadi. 2011. Update to AASHTO Pavement Management Guide. Washington, DC, USA.

Information & Authors

Information

Published In

Go to Construction Research Congress 2024
Construction Research Congress 2024
Pages: 1097 - 1106

History

Published online: Mar 18, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Noelia Molinero-Perez [email protected]
1Researcher, School of Civil Engineering, Universitat Politècnica de València, Valencia, Spain. ORCID: https://orcid.org/0000-0001-8279-4585. Email: [email protected]
Tatiana García-Segura, Ph.D. [email protected]
2Assistant Professor, Construction Project Management Research Group, Universitat Politècnica de València, Valencia, Spain. ORCID: https://orcid.org/0000-0002-7059-0566. Email: [email protected]
Laura Montalban-Domingo, Ph.D. [email protected]
3Assistant Professor, Construction Project Management Research Group, Universitat Politècnica de València, Valencia, Spain. ORCID: https://orcid.org/0000-0002-9506-0350. Email: [email protected]
Amalia Sanz-Benlloch, Ph.D. [email protected]
4Associate Professor, Construction Project Management Research Group, Universitat Politècnica de València, Valencia, Spain. ORCID: https://orcid.org/0000-0001-8051-0649. Email: [email protected]
Jordi Mansanet, Ph.D. [email protected]
Eugenio Pellicer, Ph.D., M.ASCE [email protected]
6Professor, Construction Project Management Research Group, Universitat Politècnica de València, Valencia, Spain. ORCID: https://orcid.org/0000-0001-9100-0644. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart
Buy E-book
$276.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart
Buy E-book
$276.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share