Chapter
Oct 13, 2023
Chapter 4

Water Quality in Premise Plumbing Systems

Publication: Premise Plumbing Modeling

Abstract

Water quality in buildings is complex and impacted by initial water quality and highly variable periods of both stagnation and flow. Calculating water age is the simplest of water quality problems, where water ages uniformly within a system for all pipes. This chapter discusses recent modeling efforts in PPS water quality modeling. The topic areas included in this chapter are dispersion and its impact on water quality, chemical species modeling, biological species modeling, and nonnetwork models such as data-driven or statistical modeling. The chapter provides a brief introduction to secondary disinfection and then describes disinfectant residual models that have been developed and used for pipe networks and how they might be applied for building water system modeling. It presents surveys of models for processes in the water system component portion of the exposure route. The chapter concludes with a summary of modeling needs related to PPS water quality modeling.

Get full access to this article

View all available purchase options and get full access to this chapter.

References

Abokifa, A. A., and P. Biswas. 2017. “Modeling soluble and particulate lead release into drinking water from full and partially replaced lead service lines.” Environ. Sci. Technol. 51 (6): 3318–3326.
Bailey, R. J., and P. F. Russel. 1981. “Predicting drinking water lead levels.” Environ. Technol. Lett. 2 (2): 57–66.
Barnes, D., P. A. FitzGerald, and H. B. Swan. 1989. “Catalysed formation of chlorinated organic materials in waters.” Water Sci. Technol. 21 (2): 59–63.
Bartrand, T. A., B. Farouk, and C. N. Haas. 2009. “Countercurrent gas/liquid flow and mixing: Implications for water disinfection.” Int. J. Multiphase Flow 35 (2): 171–184.
Blatchley III, E. R., D. Margetas, and R. Duggirala. 2003. “Copper catalysis in chloroform formation during water chlorination.” Water Res. 37 (18): 4385–4394.
Boccelli, D. L., M. E. Tryby, J. G. Uber, and R. S. Summers. 2003. “A reactive species model for chlorine decay and THM formation under rechlorination conditions.” Water Res. 37 (11): 2654–2666.
Boe-Hansen, R., H.-J. Albrechtsen, E. Arvin, and C. Jørgensen. 2002. “Bulk water phase and biofilm growth in drinking water at low nutrient conditions.” Water Res. 36 (18): 4477–4486.
Bois, F. Y., T. Fahmy, J.-C. Block, and D. Gatel. 1997. “Dynamic modeling of bacteria in a pilot drinking-water distribution system.” Water Res. 31 (12): 3146–3156.
Bradley, T. C., C. N. Haas, and C. M. Sales. 2020. “Nitrification in premise plumbing: A review.” Water 12 (3): 830.
Buchanan, R. L., R. C. Whiting, and W. C. Damert. 1997. “When is simple good enough: A comparison of the Gompertz, Baranyi, and three-phase linear models for fitting bacterial growth curves.” Food Microbiol. 14 (4): 313–326.
Burkhardt, J. B., H. Woo, J. Mason, F. Shang, et al. 2020. “Framework for modeling lead in premise plumbing systems using EPANET.” J. Water Resour. Plann. Manage. 146 (12): 04020094.
Buse, H. Y., and N. J. Ashbolt. 2011. “Differential growth of Legionella pneumophila strains within a range of amoebae at various temperatures associated with in-premise plumbing.” Lett. Appl. Microbiol. 53 (2): 217–224.
Cardew, P. T. 2006. “Development of a convective diffusion model for lead pipe rigs operating in laminar flow.” Water Res. 40 (Jun): 2190–2200.
Cervero-Aragó, S., S. Rodríguez-Martínez, A. Puertas-Bennasar, and R. M. Araujo. 2015. “Effect of common drinking water disinfectants, chlorine and heat, on free Legionella and amoebae-associated Legionella.” PLoS ONE 10 (8): e0134726.
Choi, Y. C., and E. Morgenroth. 2003. “Monitoring biofilm detachment under dynamic changes in shear stress using laser-based particle size analysis and mass fractionation.” Water Sci. Technol. 47 (5): 69–76.
Clark, R. M. 1998. “Chlorine demand and TTHM formation kinetics: A second-order model.” J. Environ. Eng. 124 (1): 16–24.
Cunliffe, D. A. 1990. “Inactivation of Legionella pneumophila by monochloramine.” J. Appl. Bacteriol. 68 (5): 453–459.
Danckwerts, P. V. 1953. “Continuous flow systems: Distribution of residence times.” Chem. Eng. Sci. 2 (1): 1–13.
Declerck, P., J. Behets, A. Margineanu, V. van Hoef, et al. 2009. “Replication of Legionella pneumophila in biofilms of water distribution pipes.” Microbiol. Res. 164 (6): 593–603.
DiGiano, F. A., and W. Zhang. 2004. “Uncertainty analysis in a mechanistic model of bacterial regrowth in distribution systems.” Environ. Sci. Technol. 38 (22): 5925–5931.
Douterelo, I., S. Husband, V. Loza, and J. Boxall. 2016. “Dynamics of biofilm regrowth in drinking water distribution systems.” Appl. Environ. Microbiol. 82 (14): 4155–4168.
Dupuy, M., S. Mazoua, F. Berne, C. Bodet, et al. 2011. “Efficiency of water disinfectants against Legionella pneumophila and Acanthamoeba.” Water Res. 45 (3): 1087–1094.
Eisenreich, W., and K. Heuner. 2016. “The life stage-specific pathometabolism of Legionella pneumophila.” FEBS Lett. 590 (21): 3868–3886.
Ekambara, K., and J. B. Joshi. 2003. “Axial mixing in pipe flows: Turbulent and transition regions.” Chem. Eng. Sci. 58 (12): 2715–2724.
Ekambara, K., and J. B. Joshi. 2004. “Axial mixing in laminar pipe flows.” Chem. Eng. Sci. 59 (18): 3929–3944.
Fisher, I., G. Kastl, and A. Sathasivan. 2017. “New model of chlorine-wall reaction for simulating chlorine concentration in drinking water distribution systems.” Water Res. 125 (15): 427–437.
Fisher, I., G. Kastl, A. Sathasivan, and V. Jegatheesan. 2011. “Suitability of chlorine bulk decay models for planning and management of water distribution systems.” Crit. Rev. Environ. Sci. Technol. 41 (20): 1843–1882.
Flint, L. F., and P. Eisenklam. 1969. “Longitudinal gas dispersion in transitional and turbulent flow through a straight tube.” Can. J. Chem. Eng. 47 (2): 101–106.
Fowler, F. C., and G. G. Brown. 1943. “Contamination by successive flow in pipe lines.” Am. Inst. Chem. Eng. 39 (May): 491–516.
Fu, J., J. Qu, R. Liu, Z. Qiang, et al. 2009. “Cu(II)-catalyzed THM formation during water chlorination and monochloramination: A comparison study.” J. Hazard. Mater. 170 (1): 58–65.
Gibson, M. C., and T. A. Bartrand. 2021. “Using EPA data to evaluate community water system disinfection practices.” J. Am. Water Works Assoc. 113 (6): 38–46.
Gill, W. N., and R. Sankarasubramanian. 1970. “Exact analysis of unsteady convective diffusion.” Proc. R. Soc. 316 (1526): 341–350.
Greene, D. J., B. Farouk, and C. N. Haas. 2004. “CFD design approach for chlorine disinfection processes.” J. Am. Water Works Assoc. 96 (8): 138–150.
Greene, D. J., C. N. Haas, and B. Farouk. 2006. “Computational fluid dynamics analysis of the effects of reactor configuration on disinfection efficiency.” Water Environ. Res. 78 (9): 909–919.
Haas, C. N. 1999. “Disinfection.” In Water quality and treatment, 14.22–14.24. New York: McGraw-Hill.
Hallam, N. B., J. R. West, C. F. Forster, J. C. Powell, et al. 2002. “The decay of chlorine associated with the pipe wall in water distribution systems.” Water Res. 36 (14): 3479–3488.
Hart, J. R., I. Guymer, F. Sonnenwald, and V. R. Stovin. 2016. “Residence time distributions for turbulent, critical, and laminar pipe flow.” J. Hydraul. Eng. 142 (9): 04016024.
Hart, J. R., F. Sonnenwald, V. R. Stovin, and I. Guymer. 2021. “Longitudinal dispersion in unsteady pipe flows.” J. Hydraul. Eng. 147 (9): 04021033.
Haupert, L. M., and M. L. Magnuson. 2019. “Numerical model for decontamination of organic contaminants in polyethylene drinking water pipes in premise plumbing by flushing.” J. Environ. Eng. 145 (7): 04019034.
Hayes, C. R. 2009. “Computational modelling to investigate the sampling of lead in drinking water.” Water Res. 43 (10): 2647–2656.
Hayes, C. R., T. N. Croft, J. A. Campbell, I. P. Douglas, et al. 2013. “Optimization of corrosion control for lead in drinking water using computational modeling techniques.” J. New Engl. Water Works Assoc. 127 (January): 232–251.
Hayes, C. R., T. N. Croft, J. A. Campbell, I. P. Douglas, et al. 2014. “Computational modelling techniques in the optimization of corrosion control for reducing lead in Canadian drinking water.” Water Qual. Res. J. 49 (1): 82–93.
Horn, H., H. Reiff, and E. Morgenroth. 2003. “Simulation of growth and detachment in biofilm systems under defined hydrodynamic conditions.” Biotechnol. Bioeng. 81 (5): 607–617.
Huang, C., Y. Shen, R. L. Smith, S. Dong, et al. 2020. “Effect of disinfectant residuals on infection risks from Legionella pneumophila released by biofilms grown under simulated premise plumbing conditions.” Environ. Int. 137: 105561.
Huang, H., K.-L. Shao, S.-Y. Duan, and C.-Y. Zhong. 2019. “Effect of copper corrosion products on the formation and speciation of haloacetamides and haloacetonitriles during chlorination.” Sep. Purif. Technol. 211 (2019): 467–473.
Jacangelo, J. G., N. L. Patania, R. R. Trussel, C. N. Haas, et al. 2002. Inactivation of waterborne emerging pathogens by selected disinfectants. Denver: AWWA Research Foundation and American Water Works Association.
Jakubek, D., C. Guillaume, M. Binet, G. Leblon, et al. 2013. “Susceptibility of Legionella strains to the chlorinated biocide, monochloramine.” Microbes Environ. 28 (3): 336–345.
Jonkergouw, P. M. R., S.-T. Khu, D. A. Savic, D. Zhong, et al. 2009. “A variable rate coefficient chlorine decay model.” Environ. Sci. Technol. 2 (408–414): 43.
Julien, R., B. Saravi, A. Nejadhashemi, A. J. Whelton, et al. 2022. “Identifying water quality variables most strongly influencing Legionella concentrations in building plumbing.” AWWA Water Sci. 4 (1): e1267.
Kastl, G., I. Fisher, and A. V. Jegatheesan. 1999. “Evaluation of chlorine decay kinetics expressions for drinking water distribution systems modelling.” J. Water Supply Res. Technol. AQUA 48 (6): 219–226.
Keyes, J. J. 1955. “Diffusional film characteristics in turbulent flow: Dynamic response method.” Am. Inst. Chem. Eng. 1 (3): 305–311.
Kim, J.-H., M. S. Elovitz, U. Von Gunten, H. M. Shukairy, et al. 2007. “Modeling Cryptosporidium parvum oocyst inactivation and bromate in a flow-through ozone contactor treating natural water.” Water Res. 41 (2): 467–475.
Kim, J.-H., J. L. Rennecker, R. B. Tomiak, B. J. Mariñas, et al. 2002. “Inactivation of Cryptosporidium oocysts in a pilot-scale ozone bubble-diffuser contactor. II: Model validation and application.” J. Environ. Eng. 128 (6): 522–532.
Kim, J.-H., U. Von Gunten, and B. J. Mariñas. 2004. “Simultaneous prediction of Cryptosporidium parvum oocyst inactivation and bromate formation during ozonation of synthetic waters.” Environ. Sci. Technol. 38 (7): 2232–2241.
Kommedal, R., and R. Bakke. 2003. Modeling Pseudomonas aeruginosa biofilm detachment. HiT Working Paper. Porsgrunn, Norway: Telemark University College.
Kuchta, J. M., A. M. McNamara, R. M. Wadowsky, R. B. Yee, et al. 1983. “Susceptibility of Legionella pneumophila to chlorine in tap water.” Appl. Environ. Microbiol. 46 (5): 1134–1139.
Kuchta, J. M., J. S. Navratil, M. E. Shepherd, R. M. Wadowsky, et al. 1993. “Impact of chlorine and heat on the survival of Hartmannella vermiformis and subsequent growth of Legionella pneumophila.” Appl. Environ. Microbiol. 59 (12): 4096–4100.
Kuchta, J. M., S. J. States, J. E. McGlaughlin, J. H. Overmeyer, et al. 1985. “Enhanced chlorine resistance of tap water-adapted Legionella pneumophila as compared with agar medium-passaged strains.” Appl. Environ. Microbiol. 50 (1): 21–26.
Lee, W. H., J. G. Pressman, and D. G. Wahman. 2018. “Three-dimensional free chlorine and monochloramine biofilm penetration: Correlating penetration with biofilm activity and viability.” Environ. Sci. Technol. 52 (4): 1889–1898.
Lee, Y. 2004. “Mass dispersion in intermittent laminar flow.” Ph.D. thesis, University of Cincinnati, Dept. of Civil and Environmental Engineering of the College of Engineering.
Li, B., J. Qu, H. Liu, and C. Hu. 2007. “Effects of copper(II) and copper oxides on THMs formation in copper pipe.” Chemosphere 68 (11): 2153–2160.
Li, R. A., J. A. McDonald, A. Sathasivan, and S. J. Khan. 2019. “Disinfectant residual stability leading to disinfectant decay and by-product formation in drinking water distribution systems: A systematic review.” Water Res. 153 (2019): 335–348.
Liu, S., C. Gunawan, N. Barraud, S. A. Rice, et al. 2016. “Understanding, monitoring, and controlling biofilm growth in drinking water distribution systems.” Environ. Sci. Technol. 50 (17): 8954–8976.
Liu, S., Z. Zhu, X. Tan, X. Feng, et al. 2013. “The influence of Cu(II) on the formation and distribution of disinfection by-products during the chlorination of drinking water.” Water. Air. Soil Pollut. 224 (April): 1–12.
Loret, J. F. 2005. “Comparison of disinfectants for biofilm, protozoa and Legionella control.” J. Water Health 3 (4): 423–433.
Lytle, D. A., and J. Liggett. 2016. “Impact of water quality on chlorine demand of corroding copper.” Water Res. 92 (2016): 11–21.
Mampel, J., T. Spirig, S. S. Weber, J. A. Haagensen, et al. 2006. “Planktonic replication is essential for biofilm formation by Legionella pneumophila in a complex medium under static and dynamic flow conditions.” Appl. Environ. Microbiol. 72 (4): 2885–2895.
Manuel, C. M., O. C. Nunes, and L. F. Melo. 2007. “Dynamics of drinking water biofilm in flow/non-flow conditions.” Water Res. 41 (3): 551–562.
Manuel, C. M. D. 2007. “Biofilm dynamics and drinking water stability: Effects of hydrodynamics and surface materials.” Dept. of Chemical Engineering Faculty of Engineering, Porto University.
McClellan, J. N. 2000. “Modeling chlorine decay and chlorination by-product formation in water treatment and distribution.” Ph.D. thesis, University of Massachusetts, Dept. of Civil and Environmental Engineering.
Medema, G. 2013. “Microbial risk assessment of pathogens in water.” In Environmental toxicology, edited by E. Laws, 361–401. New York: Springer.
Nguyen, C. K., K. A. Powers, M. A. Raetz, J. L. Parks, et al. 2011. “Rapid free chlorine decay in the presence of Cu(OH)2: Chemistry and practical implications.” Water Res. 45 (16): 5302–5312.
Nikuradse, J. 1933. “Stromungsgesetze in rauhen Rohren.” Ver. Deut. lng., Forschungsheft 361.
Ohno, A., N. Kato, R. Sakamoto, S. Kimura, et al. 2008. “Temperature-dependent parasitic relationship between Legionella pneumophila and a free-living amoeba (Acanthamoeba castellanii).” Appl. Environ. Microbiol. 74 (14): 4585–4588.
Ozdemir, O. N., T. Buyruk, and E. Ucaner. 2021. “Calculation of chlorine and fluoride diffusion/dispersion coefficients in water supply pipes.” J. Water Resour. Plann. Manage. 147 (7): 04021041.
Park, J. 2019. “Effect of common oxidative water treatments on Acanthamoeba internalized Legionella.” University of Nevada, Dept. of Environmental and Occupational Health.
Peng, H., Y. Zhang, R. Wang, J. Liu, et al. 2020. “Assessing the contribution of biofilm to bacterial growth during stagnation in shower hoses.” Water Supply 20 (7): 2564–2576.
Peyton, B. M., and W. G. Characklis. 1992. “Kinetics of biofilm detachment.” Water Sci. Technol. 26 (9–11): 1995–1998.
Proctor, C. R., M. Gächter, S. Kötzsch, F. Rölli, et al. 2016. “Biofilms in shower hoses—Choice of pipe material influences bacterial growth and communities.” Environ. Sci. Water Res. Technol. 2 (4): 670–682.
Proctor, C. R., M. Reimann, B. Vriens, and F. Hammes. 2018. “Biofilms in shower hoses.” Water Res. 131 (2018): 274–286.
Pruden, A., M. A. Edwards, and J. O. Falkinham, III. 2013. State of the science research needs for opportunistic pathogens in premise plumbing. Denver: Water Research Foundation.
Ramasamy, P., and X. Zhang. 2005. “Effects of shear stress on the secretion of extracellular polymeric substances in biofilms.” Water Sci. Technol. 52 (7): 217–223.
Rhoads, W. J., and R. Hammes. 2021. “Growth of Legionella during COVID-19 lockdown stagnation.” Environ. Sci. Water Res. Technol. 7 (1): 10–15.
Rhoads, W. J., M. Sindelar, C. Margot, N. Graf, et al. 2022. “Variable Legionella response to building occupancy patters and precautionary flushing.” Microorganisms 10 (3): 555.
Richards, A. M., J. E. Von Dwingelo, C. T. Price, and Y. Abu Kwaik. 2013. “Cellular microbiology and molecular ecology of Legionella–amoeba interaction.” Virulence 4 (4): 307–314.
Rittman, B. E. 1982. “The effect of shear stress on biofilm loss rate.” Biotechnol. Bioeng. 24 (2): 501–506.
Rochex, A., J.-J. Godon, N. Bernet, and R. Escudié. 2008. “Role of shear stress on composition, diversity and dynamics of biofilm bacterial communities.” Water Res. 42 (20): 4915–4922.
Romero-Gomez, P., and C. Y. Choi. 2011. “Axial dispersion coefficients in laminar flows of water-distribution systems.” J. Hydraul. Eng. 137 (11): 1500–1508.
Ross, T., and T. A. McMeekin. 2003. “Modeling microbial growth within food safety risk assessments.” Risk Anal. 23 (1): 179–197.
Rossman, L. A. 2000. EPANET 2 user manual. Cincinnati: EPA.
Rossman, L. A., R. A. Brown, P. C. Singer, and A. J. R. Nuckols. 2001. “DBP formation kinetics in a simulated distribution system.” Water Res. 35 (14): 3483–3489.
Rossman, L. A., R. M. Clark, and A. W. M. Grayman. 1994. “Modeling chlorine residuals in drinking-water distribution systems.” J. Environ. Eng. 120 (4): 803–820.
Santoro, D., T. A. Bartrand, D. J. Greene, B. Farouk, et al. 2005. “Use of CFD for wastewater disinfection process analysis: E. coli inactivation with peroxyacetic acid (PAA).” Int. J. Chem. React. Eng. 3 (1): 177–186.
Schrottenbaum, I. 2015. “Influence of wall biofilm on pathogen transport in water distribution systems. modeling estimates derived from synthetic biofilm experiments.” Ph.D. thesis, University of Cincinnati, Dept. of Biomedical, Chemical, and Environmental Engineering.
Shaheen, M., and N. J. Ashbolt. 2021. “Differential bacterial predation by free-living amoebae may result in blooms of Legionella in drinking water systems.” Microorganisms 9 (1): 174.
Shang, F., J. Uber, and L. Rossman. 2011. EPANET multi-species extension user's manual. Cincinnati: EPA.
Shang, F., H. Woo, J. B. Burkhardt, and R. Murray. 2021. “Lagrangian method to model advection–dispersion–reaction transport in drinking water pipe networks.” J. Water Resour. Plann. Manage. 147 (9): 04021057.
Shen, Y., G. L. Monroy, N. Derlon, D. Janjaroen, et al. 2015. “Role of biofilm roughness and hydrodynamic conditions in Legionella pneumophila adhesion to and detachment from simulated drinking water biofilms.” Environ. Sci. Technol. 49 (7): 4274–4282.
Stanton, T. E., and J. R. Pannell. 1914. “Similarity of motion in relation to the surface friction of fluids.” Philos. Trans. R. Soc. London Ser. A 214 (509–522): 199–224.
Storey, M. V., J. Winiecka-Krusnell, N. J. Ashbolt, and T. Stenström. 2004. “The efficacy of heat and chlorine treatment against thermotolerant Acanthamoebae and Legionellae.” Scand. J. Infect. Dis. 36 (9): 656–662.
Swango, L. J., G. R. Wilt, A. D. Killen, D. E. Williams, et al. 1987. “Inactivation of Legionella pneumophila by hypochlorite and an organic chloramine.” Appl. Environ. Microbiol. 53 (12): 2983–2986.
Tang, G., K. Adu-Sarkodie, D. Kim, J.-H. Kim, et al. 2005. “Modeling Cryptosporidium parvum oocyst inactivation and bromate formation in a full-scale ozone contactor.” Environ. Sci. Technol. 39 (23): 9343–9350.
Taylor, G. I. 1953. “Dispersion of solute matter in solvent flowing slowly through a pipe.” Proc. R. Soc. 219 (1137): 186–203.
Taylor, G. I. 1954a. “The dispersion of matter in turbulent flow through a pipe.” Proc. R. Soc. 223 (1155): 446–468.
Taylor, G. I. 1954b. “Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion.” Proc. R. Soc. 226 (163): 473–477.
Telgmann, U., H. Horn, and E. Morgenroth. 2004. “Influence of growth history on sloughing and erosion from biofilms.” Water Res. 38 (17): 3671–3684.
Tolofari, D. L., S. V. Masters, T. Bartrand, K. A. Hamilton, et al. 2020. “Full factorial study of pipe characteristics, stagnation times, and water quality.” AWWA Water Sci. 2 (5): e1204.
Tsagkari, E., and W. T. Sloan. 2018. “Biofilm growth in drinking water systems under stagnant conditions.” In E-Proc., Protection and Restoration of the Environment XIV, 707–717. Glasgow, UK: Enlighten Publications, University of Glasgow.
Van der Leer, D., N. P. Weatherhill, R. J. Sharp, and C. R. Hayes. 2002. “Modelling the diffusion of lead into drinking water.” Appl. Math. Modell. 26 (6): 681–699.
Wahman, D. G., and J. G. Pressman. 2015. “Distribution system residuals—Is “detectable” still acceptable for chloramines?” J. Am. Water Works Assoc. 107 (8): 53–63.
Whelton, A. J., A. M. Dietrich, and D. L. Gallagher. 2010. “Contaminant diffusion, solubility, and material property differences between HDPE and PEX potable water pipes.” J. Environ. Eng. 136 (2): 227–237.
Whelton, A. J., L. McMillan, M. Connel, K. M. Kelley, et al. 2015. “Residential tap water contamination following the Freedom Industries chemical spill: Perceptions, water quality, and health impacts.” Environ. Sci. Technol. 49 (2): 813–823.
Whelton, A. J., and T. Nguyen. 2013. “Contaminant migration from polymeric pipes used in buried potable water distribution systems: A review.” Environ. Sci. Technol. 43 (7): 679–751.
Zeidan, M., and A. Ostfeld. 2022. “Using hydraulic transients for biofilm detachment in water distribution systems: Approximated model.” J. Water Resour. Plann. Manage. 148 (4): 04022008.
Zeng, T., and W. A. Mitch. 2016. “Impact of nitrification on the formation of N-nitrosamines and halogenated disinfection byproducts within distribution system storage facilities.” Environ. Sci. Technol. 50 (6): 2964–2973.
Zhang, H., and S. A. Andrews. 2012. “Catalysis of copper corrosion products on chlorine decay and HAA formation in simulated distribution systems.” Water Res. 46 (8): 2665–2673.
Zhang, Y. 2008. Nitrification in premise plumbing and its effect on corrosion and water quality degradation. Blacksburg, VA: Virginia Tech.
Zhang, Y., and M. Edwards. 2009. “Accelerated chloramine decay and microbial growth by nitrification in premise plumbing.” J. Am. Water Works Assoc. 101 (11): 51–62.
Zhang, Y., A. Griffin, and M. Edwards. 2008. “Nitrification in premise plumbing: Role of phosphate, pH and pipe corrosion.” Environ. Sci. Technol. 42 (12): 4280–4284.
Zlatanovic, L., A. Moerman, J. P. van der Hoek, J. Vreeburg, et al. 2017. “Development and validation of a drinking water temperature model in domestic drinking water supply systems.” Urban Water J. 14 (10): 1031–1037.
Zwietering, M. H., I. Jongenburger, F. M. Rombouts, and K. Van't Riet. 1990. “Modeling of the bacterial growth curve.” Appl. Environ. Microbiol. 56 (6): 1875–1881.

Information & Authors

Information

Published In

Go to Premise Plumbing Modeling
Premise Plumbing Modeling
Pages: 53 - 85
Editors: Juneseok Lee, Ph.D., P.E., D.WRE, Jonathan B. Burkhardt, Ph.D., Steven Buchberger, Ph.D., P.E., Walter Grayman, Ph.D., P.E., D.WRE, Terranna Haxton, Ph.D., Robert Janke, Regan Murray, Ph.D., and William E. Platten III, Ph.D.
ISBN (Online): 978-0-7844-8510-1

History

Published online: Oct 13, 2023

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Chapter
$35.00
Add to cart
Buy E-book
$100.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Chapter
$35.00
Add to cart
Buy E-book
$100.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share