Chapter
Jul 1, 2016
Chapter 19

Water Reclamation by Heterogeneous Photocatalysis over Titanium Dioxide

Publication: Green Technologies for Sustainable Water Management

Abstract

This chapter presents the fundamentals and basic principles of water reclamation by heterogeneous photocatalysis (HP). The effects of important operational parameters on the overall treatment efficiency of photocatalytic system are addressed in the chapter in terms of photocatalyst loading, pollutant concentration, pH and temperature of water, dissolved oxygen, and light intensity. The most popular semiconductor used in HP is Titanium dioxide (TiO2) for being relatively inexpensive, chemically stable, and nontoxic. Most water remediation technologies generate a significant amount of wastewater that requires costly retreatment or discharge to evaporation ponds, rivers, and oceans. HP processes that decompose aqueous contaminants are highly dependent on the reaction conditions and the setup of photocatalytic reactors. Visible-light responsive photocatalysts promise a more effective utilization of solar energy. Doping and co-doping of titania is a practical approach toward obtaining improved visible-light active photocatalysts.

Get full access to this article

View all available purchase options and get full access to this chapter.

References

Abramović, B. F., Despotović, V. N., Šojić, D. V., Orčić, D. Z., Csanádi, J. J., and Četojević-Simin, D. D. (2013). “Photocatalytic degradation of the herbicide clomazone in natural water using TiO2: Kinetics, mechanism, and toxicity of degradation products.” Chemosphere, 93(1), 166–171.
Arana, J., et al. (2004). “Photocatalytic degradation of formaldehyde containing wastewater from veterinarian laboratories.” Chemosphere, 55(6), 893–904.
Augugliaro, V., Litter, M., Palmisano, L., and Soria, J. (2006). “The combination of heterogeneous photocatalysis with chemical and physical operations: A tool for improving the photoprocess performance.” J. Photochem. Photobiol. C: Photochem. Rev., 7(4), 127–144.
Augugliaro, V., Loddo, V., Pagliaro, M., Palmisano, G., and Palmisano, L. (2010). “Clean by light irradiation: Practical applications of supported TiO2.” Royal Society of Chemistry, Cambridge, U.K.
Bae, S., Jung, J., and Lee, W. (2013). “The effect of pH and zwitterionic buffers on catalytic nitrate reduction by TiO2-supported bimetallic catalyst.” Chem. Eng. J., 232, 327–337.
Bagal, M. V., and Gogate, P. R. (2014). “Degradation of diclofenac sodium using combined processes based on hydrodynamic cavitation and heterogeneous photocatalysis.” Ultrason. Sonochem., 21(3), 1035–1043.
Bahnemann, D. (2004). “Photocatalytic water treatment: Solar energy applications.” Solar Energy, 77(5), 445–459.
Bai, H., Liu, L., Liu, Z., and Sun, D. D. (2013). “Hierarchical 3D dendritic TiO2 nanospheres building with ultralong 1D nanoribbon/wires for high performance concurrent photocatalytic membrane water purification.” Water Res., 47(12), 4126–4138.
Ban, J. Y., Son, Y. H., Kang, M., and Choung, S. J. (2006). “Highly concentrated toluene decomposition on the dielectric barrier discharge (DBD) plasma-Photocatalytic hybrid system with Mn-Ti-incorporated mesoporous silicate photocatalyst (Mn-Ti-MPS).” Appl. Surf. Sci., 253(2), 535–542.
Barrera-Díaz, C. E., Lugo-Lugo, V., and Bilyeu, B. (2012). “A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction.” J. Hazard. Mater., 223–224, 1–12.
Bayarri, B., Giménez, J., Maldonado, M. I., Malato, S., and Esplugas, S. (2013). “2, 4-Dichlorophenol degradation by means of heterogeneous photocatalysis. Comparison between laboratory and pilot plant performance.” Chem. Eng. J., 232, 405–417.
Bou-Orm, N., Iorgu, A., Daniele, S., and Guilhaume, N. (2013). “Modification of acid-base properties of TiO2 by Nb and Mg dopants: Influence on the activity of Pd-Cu/(Mg, Nb)–TiO2 catalysts for nitrate hydrogenation.” Appl. Catal. A: Gen., 467, 414–420.
Byrappa, K., and Adschiri, T. (2007). “Hydrothermal technology for nanotechnology.” Prog. Cryst. Growth Charact. Mater., 53(2), 117–166.
Calvert, J. G., and Pitts, J. N. (1966). Photochemistry, Wiley, New York.
Chen, D., Sivakumar, M., and Ray, A. K. (2000). Heterogeneous photocatalysis in environmental remediation, Wiley.
Chen, H. Y., Lo, S. L., and Ou, H. H. (2013). “Catalytic hydrogenation of nitrate on Cu-Pd supported on titanate nanotube and the experiment after aging, sulfide fouling and regeneration procedures.” Appl. Catal. B: Environ., 142–143, 65–71.
Chen, R., Jiang, H., Jin, W., and Xu, N. (2009). “Model study on a submerged catalysis/membrane filtration system for phenol hydroxylation catalyzed by TS-1.” Chin. J. Chem. Eng., 17(4), 648–653.
Choi, I. H., Lee, S. M., Kim, I. C., Min, B. R., and Lee, K. H. (2007). “Effect of new photocatalytic coagulant on NF membrane fouling.” Ind. Eng. Chem. Res., 46(8), 2280–2285.
Chong, M. N., Jin, B., Chow, C. W. K., and Saint, C. (2010). “Recent developments in photocatalytic water treatment technology: A review.” Water Res., 44(10), 2997–3027.
De La Fournière, E. M., Leyva, A. G., Gautier, E. A., and Litter, M. I. (2007). “Treatment of phenylmercury salts by heterogeneous photocatalysis over TiO2.” Chemosphere, 69(5), 682–688.
Doll, T. E., and Frimmel, F. H. (2005). “Cross-flow microfiltration with periodical back-washing for photocatalytic degradation of pharmaceutical and diagnostic residues evaluation of the long-term stability of the photocatalytic activity of TiO2.” Water Res., 39(5), 847–854.
El Saliby, I., Erdei, L., Shon, H. K., and Kim, J. H. (2011). “Development of visible light sensitive titaniaphotocatalysts by combined nitrogen and silver doping.” J. Ind. Eng. Chem., 17(2), 358–363.
Erdei, L., Arecrachakul, N., and Vigneswaran, S. (2008). “A combined photocatalytic slurry reactor-immersed membrane module system for advanced wastewater treatment.” Sep. Purif. Technol., 62(2), 382–388.
Fujishima, A., Rao, T. N., and Tryk, D. A. (2000). “Titanium dioxide photocatalysis.” J. Photochem. Photobiol. C: Photochem. Rev., 1(1), 1–21.
Fujishima, A., Zhang, X., and Tryk, D. A. (2007). “Heterogeneous photocatalysis: From water photolysis to applications in environmental cleanup.” Int. J. Hydrogen Energy, 32(14), 2664–2672.
Fujishima, A., Zhang, X., and Tryk, D. A. (2008). “TiO2 photocatalysis and related surface phenomena.” Surf. Sci. Rep., 63(12), 515–582.
Fu, J., Ji, M., Wang, Z., Jin, L., and An, D. (2006). “A new submerged membrane photocatalysis reactor (SMPR) for fulvic acid removal using a nano-structured photocatalyst.” J. Hazard. Mater., 131(1–3), 238–242.
Garron, A., Lázár, K., and Epron, F. (2005). “Effect of the support on tin distribution in Pd-Sn/Al2O3 and Pd-Sn/SiO2 catalysts for application in water denitration.” Appl. Catal. B: Environ., 59(1-2), 57–69.
Gaya, U. I., and Abdullah, A. H. (2008). “Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems.” J. Photochem. Photobiol. C: Photochem. Rev., 9(1), 1–12.
Gherbi, R., Trari, M., and Nasrallah, N. (2013). “Influence of light flux and hydrodynamic flow regime on the photoreduction of Cr(VI) on the CuAl2O4/TiO2 hetero-junction.” J. Environ. Chem. Eng., 1(4), 1275–1282.
Herrmann, J. M. (1999). “Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of aqueous pollutants.” Catal. Today, 53(1), 115–129.
Herrmann, J. M., Guillard, C., and Pichat, P. (1993). “Heterogeneous photocatalysis: An emerging technology for water treatment.” Catal. Today, 17(1–2), 7–20.
Horng, R. Y., Huang, C., Chang, M. C., Shao, H., Shiau, B. L., and Hu, Y. J. (2009). “Application of TiO2 photocatalytic oxidation and non-woven membrane filtration hybrid system for degradation of 4-chlorophenol.” Desalination, 245(1–3), 169–182.
Kaneco, S., Rahman, M. A., Suzuki, T., Katsumata, H., and Ohta, K. (2004). “Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide.” J. Photochem. Photobiol. A: Chem., 163(3), 419–424.
Kikuchi, Y., Sunada, K., Iyoda, T., Hashimoto, K., and Fujishima, A. (1997). “Photocatalytic bactericidal effect of TiO2 thin films: Dynamic view of the active oxygen species responsible for the effect.” J. Photochem. Photobiol. A: Chem., 106(1–3), 51–56.
Kim, M. S., et al. (2013). “Catalytic reduction of nitrate in water over PdCu/TiO2 catalyst: Effect of the strong metal-support interaction (SMSI) on the catalytic activity.” Appl. Catal. B: Environ., 142–143, 354–361.
Kisch, H. (1989). “What is photocatalysis?” Chapter 1, Photocatalysis fundamentals and applications, N. Serpone, and E. Pelizzetti, eds., Wiley, New York.
Kominami, H., Furusho, A., Murakami, S. Y., Inoue, H., Kera, Y., and Ohtani, B. (2001). “Effective photocatalytic reduction of nitrate to ammonia in an aqueous suspension of metal-loaded titanium (IV) oxide particles in the presence of oxalic acid.” Catal. Lett., 76(1–2), 31–34.
Konstantinou, I. K., and Albanis, T. A. (2004). “TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review.” Appl. Catal. B: Environ., 49(1), 1–14.
Lee, B. C., et al. (2009). “Aquatic toxicity evaluation of TiO2 nanoparticle produced from sludge of TiCl4 flocculation of wastewater and seawater.” J. Nanopart. Res., 11(8), 2087–2096.
Lee, D. K., Kim, S. C., Cho, I. C., Kim, S. J., and Kim, S. W. (2004). “Photocatalytic oxidation of microcystin-LR in a fluidized bed reactor having TiO2-coated activated carbon.” Sep. Purif. Technol., 34(1–3), 59–66.
Li, D., Xiong, K., Yang, Z., Liu, C., Feng, X., and Lu, X. (2011). “Process intensification of heterogeneous photocatalysis with static mixer: Enhanced mass transfer of reactive species.” Catal. Today, 175(1), 322–327.
Li, L., et al. (2010). “Photocatalytic nitrate reduction over PteCu/TiO2 catalysts with benzene as hole scavenger.” J. Photochem. Photobiol. A: Chem., 212(2–3), 113–121.
Linsebigler, A. L., Lu, G., and Yates, J. T. (1995). “Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results.” Chem. Rev., 95(3), 735–758.
Litter, M. I. (2009). “Treatment of chromium, mercury, lead, uranium, and arsenic in water by heterogeneous photocatalysis.” Adv. Chem. Eng., 36, 37–67.
Long, M., Wang, J., Zhuang, H., Zhang, Y., Wu, H., and Zhang, J. (2014). “Performance and mechanism of standard nano-TiO2 (P-25) in photocatalytic disinfection of foodborne microorganisms - Salmonella typhimurium and Listeria monocytogenes.” Food Control, 39, 68–74.
López-Muñoz, M. J., Aguado, J., Arencibia, A., and Pascual, R. (2011). “Mercury removal from aqueous solutions of HgCl2 by heterogeneous photocatalysis with TiO2.” Appl. Catal. B: Environ., 104(3–4), 220–228.
Malato, S., Fernandez-Ibaez, P., Maldonado, M. I., Blanco, J., and Gernjak, W. (2009). “Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends.” Catal. Today, 147(1), 1–59.
Martínez, C., Vilariño, S., Fernández, M. I., Faria, J., Canle, L. M., and Santaballa, J. A. (2013). “Mechanism of degradation of ketoprofen by heterogeneous photocatalysis in aqueous solution.” Appl. Catal. B: Environ., 142–143, 633–646.
McCullagh, C., Skillen, N., Adams, M., and Robertson, P. K. J. (2011). “Photocatalytic reactors for environmental remediation: A review.” J. Chem. Technol. Biotechnol., 86(8), 1002–1017.
Minabe, T., Tryk, D. A., Sawunyama, P., Kikuchi, Y., Hashimoto, K., and Fujishima, A. (2000). “TiO2-mediated photodegradation of liquid and solid organic compounds.” J. Photochem. Photobiol. A: Chem., 137(1), 53–62.
Molinari, R., Caruso, A., and Poerio, T. (2009). “Direct benzene conversion to phenol in a hybrid photocatalytic membrane reactor.” Catal. Today, 144(1–2), 81–86.
Molinari, R., et al. (2000). “Study on a photocatalytic membrane reactor for water purification.” Catal. Today, 55(1–2), 71–78.
Mozia, S. (2010). “Photocatalytic membrane reactors (PMRs) in water and wastewater treatment—A review.” Sep. Purif. Technol., 73(2), 71–91.
Nyman, M., and Hobbs, D. T. (2006). “A family of peroxo-titanate materials tailored for optimal strontium and actinide sorption.” Chem. Mater., 18(26), 6425–6435.
Ohko, Y., et al. (2002). “17β-estradiol degradation by TiO2 photocatalysis as a means of reducing estrogenic activity.” Environ. Sci. Technol., 36(19), 4175–4181.
Ohko, Y., Hashimoto, K., and Fujishima, A. (1997). “Kinetics of photocatalytic reactions under extremely low-intensity UV illumination on titanium dioxide thin films.” J. Phys. Chem. A, 101(43), 8057–8062.
Okour, Y., Shon, H. K., El Saliby, I., Naidu, R., Kim, J. B., and Kim, J. H. (2010). “Preparation and characterisation of titanium dioxide (TiO2) and thiourea-doped titanate nanotubes prepared from wastewater flocculated sludge.” Bioresour. Technol., 101(5), 1453–1458.
Ollis, D. F. (1985). “Contaminant degradation in water.” Environ. Sci. Technol., 19(6), 480–484.
Ollis, D. F., and Serpone, N. (1989). “Heterogeneous photocatalysis in the environment: Application to water purification.” Chapter 17, Photocatalysis fundamentals and applications, N. Serpone, and E. Pelizzetti, eds., Wiley, New York.
Ollis, D. F., Pelizzetti, E., and Serpone, N. (1991). “Photocatalyzed destruction of water contaminants.” Environ. Sci. Technol., 25(9), 1522–1529.
Ortega-Liébana, M. C., Sánchez-López, E., Hidalgo-Carrillo, J., Marinas, A., Marinas, J. M., and Urbano, F. J. (2012). “A comparative study of photocatalytic degradation of 3-chloropyridine under UV and solar light by homogeneous (photo-Fenton) and heterogeneous (TiO2) photocatalysis.” Appl. Catal. B: Environ., 127, 316–322.
Oza, G., et al. (2013). “Photocatalysis-assisted water filtration: Using TiO2-coated vertically aligned multi-walled carbon nanotube array for removal of Escherichia coli.” Mater. Sci. Eng.: C, 33(7), 4392–4400.
Pablos, C., van Grieken, R., Marugán, J., Chowdhury, I., and Walker, S. L. (2013). “Study of bacterial adhesion onto immobilized TiO2: Effect on the photocatalytic activity for disinfection applications.” Catal. Today, 209, 140–146.
Palmisano, G., et al. (2007). “Selectivity of hydroxyl radical in the partial oxidation of aromatic compounds in heterogeneous photocatalysis.” Catal. Today, 122(1-2), 118–127.
Panchangam, S. C., Lin, A. Y. C., Shaik, K. L., and Lin, C. F. (2009). “Decomposition of perfluorocarboxylic acids (PFCAs) by heterogeneous photocatalysis in acidic aqueous medium.” Chemosphere, 77(2), 242–248.
Qamar, M., Muneer, M., and Bahnemann, D. (2006). “Heterogeneous photocatalysed degradation of two selected pesticide derivatives, triclopyr and daminozid in aqueous suspensions of titanium dioxide.” J. Environ. Manage., 80(2), 99–106.
Quici, N., Morgada, M. E., Piperata, G., Babay, P., Gettar, R. T., and Litter, M. I. (2005). “Oxalic acid destruction at high concentrations by combined heterogeneous photocatalysis and photo-Fenton processes.” Catal. Today, 101(3–4), 253–260.
Reguero, V., et al. (2013). “Comparison of conventional technologies and a submerged membrane photocatalytic reactor (SMPR) for removing trihalomethanes (THM) precursors in drinking water treatment plants.” Desalination, 330, 28–34.
Ryu, J., Choi, W., and Choo, K. H. (2005). “A pilot-scale photocatalyst-membrane hybrid reactor: Performance and characterization.” Water Sci. Technol., 51(6–7), 491–497.
Sakata, T. (1989). “Heterogeneous photocatalysis at liquid-solid interfaces.” Chapter 9, Photocatalysis fundamentals and applications, N. Serpone, and E. Pelizzetti, eds., Wiley, New York.
Saquib, M., and Muneer, M. (2003). “TiO2-mediated photocatalytic degradation of a triphenylmethane dye (gentian violet), in aqueous suspensions.” Dyes Pigments, 56(1), 37–49.
Satterfield, C. N. (1970). Mass transfer in heterogeneous catalysis, MIT Press, Cambridge, MA.
Serpone, N. (1997). “Relative photonic efficiencies and quantum yields in heterogeneous photocatalysis.” J. Photochem. Photobiol. A: Chem., 104(1–3), 1–12.
Shirayama, H., Tohezo, Y., and Taguchi, S. (2001). “Photodegradation of chlorinated hydrocarbons in the presence and absence of dissolved oxygen in water.” Water Res., 35(8), 1941–1950.
Shon, H., et al. (2008). “Visible light responsive titanium dioxide (TiO2).” J. Korean Ind. Eng. Chem., 19(1), 1.
Soni, S. S., Dave, G. S., Henderson, M. J., and Gibaud, A. (2013). “Visible light induced cell damage of gram positive bacteria by N-doped TiO2 mesoporous thin films.” Thin Solid Films, 531, 559–565.
Speltini, A., Sturini, M., Maraschi, F., and Profumo, A. (2010). “Fluoroquinolone antibiotics in environmental waters: Sample preparation and determination.” J. Sep. Sci., 33, 1115–1131.
Tasseroul, L., et al. (2013). “Degradation of p-nitrophenol and bacteria with TiO2 xerogels sensitized in situ with tetra(4-carboxyphenyl)porphyrins.” J. Photochem. Photobiol. A: Chem., 272, 90–99.
Tatsuma, T., Tachibana, S. I., and Fujishima, A. (2001). “Remote oxidation of organic compounds by UV-irradiated TiO2 via the gas phase.” J. Phys. Chem. B, 105(29), 6987–6992.
Van Doorslaer, X., et al. (2013). “Heterogeneous photocatalysis of moxifloxacin: Identification of degradation products and determination of residual antibacterial activity.” Appl. Catal. B: Environ., 138–139, 333–341.
Vijay, M., et al. (2013). “Photocatalytic inactivation of gram-positive and gram-negative bacteria by reactive plasma processed nanocrystalline TiO2 powder.” Curr. Appl. Phys., 13(3), 510–516.
Vilela, W. F. D., Minillo, A., Rocha, O., Vieira, E. M., and Azevedo, E. B. (2012). “Degradation of [D-Leu]-microcystin-LR by solar heterogeneous photocatalysis (TiO2).” Solar Energy, 86(9), 2746–2752.
Vu, D., Li, X., Li, Z., and Wang, C. (2013). “Phase-structure effects of electrospun TiO2 nanofiber membranes on As(III) adsorption.” J. Chem. Eng. Data, 58(1), 71–77.
Wang, J., Li, C., Zhuang, H., and Zhang, J. (2013). “Photocatalytic degradation of methylene blue and inactivation of gram-negative bacteria by TiO2 nanoparticles in aqueous suspension.” Food Control, 34(2), 372–377.
Wang, Y., and Hong, C. S. (2000). “TiO2-mediated photomineralization of 2-chlorobiphenyl: The role of O2.” Water Res., 34(10), 2791–2797.
Wei, X. X., Cui, H., Guo, S., Zhao, L., and Li, W. (2013). “Hybrid BiOBr-TiO2 nanocomposites with high visible light photocatalytic activity for water treatment.” J. Hazard. Mater., 263, 650–658.
Xiong, P., and Hu, J. (2013). “Inactivation/reactivation of antibiotic-resistant bacteria by a novel UVA/LED/TiO2 system.” Water Res., 47(13), 4547–4555.
Yang, T., Doudrick, K., and Westerhoff, P. (2013). “Photocatalytic reduction of nitrate using titanium dioxide for regeneration of ion exchange brine.” Water Res., 47(3), 1299–1307.
Zhang, X., Pan, J. H., Du, A. J., Fu, W., Sun, D. D., and Leckie, J. O. (2009). “Combination of one-dimensional TiO2 nanowire photocatalytic oxidation with microfiltration for water treatment.” Water Res., 43(5), 1179–1186.
Zhang, Y. C., Yang, M., Zhang, G., and Dionysiou, D. D. (2013). “HNO3-involved one-step low temperature solvothermal synthesis of N-doped TiO2 nanocrystals for efficient photocatalytic reduction of Cr(VI) in water.” Appl. Catal. B: Environ., 142–143, 249–258.
Zsilák, Z., Szabó-Bárdos, E., Fónagy, O., Horváth, O., Horváth, K., and Hajós, P. (2014). “Degradation of benzenesulfonate by heterogeneous photocatalysis combined with ozonation.” Catal. Today, 230, 55–60.

Information & Authors

Information

Published In

Go to Green Technologies for Sustainable Water Management
Green Technologies for Sustainable Water Management
Pages: 679 - 704

History

Published online: Jul 1, 2016

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Ibrahim El Saliby
Univ. of Technology, Sydney, Australia
Andrew McDonagh
Univ. of Technology, Sydney, Australia
Laszlo Erdei
Univ. of Southern Queensland, Australia
Ho Kyong Shon
Univ. of Technology, Sydney, Australia

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Chapter
$35.00
Add to cart
Buy E-book
$225.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Chapter
$35.00
Add to cart
Buy E-book
$225.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share