Chapter
Jul 1, 2016
Chapter 8

Value-Added Products from Sludge

Publication: Green Technologies for Sustainable Water Management

Abstract

The composition of sewage sludge makes it a potential source for the recovery or production of value-added products. This chapter explains recent advances in the use of activated sludge for polyhydroxyalkanoates (PHA) production, Bacillus thuringiensis (Bt) based biopesticides production/formulations, vermicomposting biotechnology, and production of different enzymes. PHAs are one of the relatively newer families of biodegradable polymers that have great potential in the future due to their properties. The key success of biopesticides lies in their impact on the target pest, market size, and variability of field performance, cost effectiveness, and end-user feedback. Bt is commercially used to control forests and agriculture insects. Wastewater sludge could be used as a potential source for isolation of microorganisms and can be a very good carbon source of many microbial possesses that could add value to sludge by producing valuable metabolic products.

Get full access to this article

View all available purchase options and get full access to this chapter.

References

Abdel-Hameed, A. (2001). “Stirred tank culture of Bacillus thuringiensis H-14 for production of the mosquitocidal-endotoxin: Mathematical modelling and scaling-up studies.” World J. Microbiol. Biotechnol., 17(9), 857–861.
Ackermann, J. U., and Babel, W. (1997). “Growth associated synthesis of poly (hydroxybutyricacid) in Methylobacterium rhodesianum as an expression of an internal bottleneck.” Appl. Microbiol. Biotechnol., 47(2), 144–149.
Adams, T. T., Eiteman, M. A., and Adang, M. J. (1999). “Bacillus thuringiensis subsp. Kurstaki spore production in batch culture using broiler litter extracts as complex medium.” Bioresour. Technol., 67(1), 83–87.
Alabanell, E., Plaixats, J., and Caberero, T. (1988). “Chemical changes during vermicomposting Eisenia fetida of sheep manure mixed with cotton industrial wastes.” Biol. Fertil. Soils, 63, 266–269.
Alam, M. Z., Fakhru’l-Razi, A., and Molla, A. H. (2003). “Biosolids accumulation and biodegradation of domestic wastewater treatment plant sludge by developed liquid state bioconversion process using batch fermentation.” Water Res., 37(15), 3569–3578.
Avignone-Rossa, C., Arcas, J., and Mignone, C. (1992). “Bacillus thuringiensis, sporulation and endotoxin production in oxygen limited and nonlimited cultures.” World J. Microbiol. Biotechnol., 8(3), 301–304.
Ayol, A. E. (2005). “Enzymatic treatment effects on dewaterability of anaerobically digested biosolids I: Performance evaluations.” Process Biochem., 40(7), 2427–2434.
Bano, K., Kale, R. D., and Vijayalakshmi, D. (1987). Production and reproduction trend in a tropical earthworm Eudrilus eugeniae, Palani Paramount Publications, Palani, India.
Barnabé, S. (2004). “Hydrolyse et oxidation partielle des boues d’épuration pour la production de Bacillus thuringiensis HD-1.” Ph.D. dissertation, INRS ETE, Université de Québec, Québec, Canada, 233.
Barnabé, S. (2005a). “Hydrolyse et oxidation Partielle des Boues D’épuration Comme Substrat pour produire Bacillus thuringiensis HD-1.” Ph.D. dissertation, Institut National de la recherche Scientifique, Eau, Terre et Environnement, Université du Québec, Québec, Canada.
Barnabé, S., Verma, M., Tyagi, R. D., and Valéro, J. R. (2005). “Culture media for increasing biopesticide producing microorganism’s entomotoxicity, methods of producing same, biopesticide producing microorganisms so produced and methods using same PCT/CA2005/000235.” Goudreau Gage Dubuc, INRS, Québec, Canada.
Berlanga, M., Montero, M. T., Fernandez-Borrell, J., and Guerrero, R. (2006). “Rapid spectrofluorometric screening of poly-hydroxyalkanoate-producing bacteria from microbial mats.” Int. Microbiol., 9, 95–102.
Bhattacharya, K. K., Mukhopadhyay, N., Mukharjee, D., and Das, S. K. (2000). Comparative efficiency of improved compost techniques, Sapana Printing Works, Kolkata, India.
Bhawalkar, S. V. (1989). “A promising source of biofertilizers.” Gujarat Agricultural Univ., Navasari, India.
Bhiday, M. R. (1994). “Earthworms in agriculture.” Indian Farming.
Bhubalan, K., Lee, W. H., Loo, C. Y., Yamamoto, T., Doi, Y., and Sudesh, K. (2007). “Controlled biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) from mixtures of palm kernel oil and 3HV-precursors.” Polym. Degrad. Stab., 93(1), 17–23.
Borque, D., Pomerleau, Y., and Groleau, D. (1995). “High cell density production of polyb-hydroxybutyrate (PHB) from methanol by Methylobacterium extorquens production of high molecular mass PHB.” Appl. Microbiol. Biotechnol., 44(3-4), 367–376.
Brar, S. K., Verma, M., Barnabé, S., Tyagi, R. D., Valéro, J. R., and Surampalli, R.Y. (2005a). “Impact of Tween 80 during Bacillus thuringiensis fermentation of wastewater sludges.” Process Biochem., 40(8), 2695–2705.
Brar, S. K., Verma, M., Tyagi, R. D., Valéro, J. R., and Surampalli, R.Y. (2004). “Development of sludge based stable aqueous B. thuringiensis formulation.” Water Sci. Technol., 50(9), 229–236.
Brar, S. K., Verma, M., Tyagi, R. D., Valéro, J. R., and Surampalli, R.Y. (2005b). “Sludge based Bacillus thuringiensis biopesticides: Viscosity impacts.” Water Res., 39(13), 3001–3011.
Brar, S. K., Verma, M., Tyagi, R. D., Valéro, J. R., and Surampalli, R.Y. (2006). “Screening of different adjuvants for wastewater/wastewater sludge based Bacillus thuringiensis formulations.” J. Econ. Entomol., 99(4), 1065–1079.
Burges, H. D. (1998). Formulation of microbial biopesticides: Beneficial organisms, nematodes and seed treatments, Kluwer Academic Publishers, Dordrecht, Netherlands, 496.
Butt, K. R. (1993). “Utilization of solid paper mill sludge and spent brewery yeast feed for soil dwelling earthworms.” Bioresour. Technol., 44(2), 105–107.
Butt, K. R., Nieminen, M. V., and Siren, T. (2005). “Population and behavior level responses of arable soil earthworms to broad mill sludge application.” Biol. Fertil. Soils, 42(2), 163–167.
Canales, A., Pareilleux, A., Rol, S. J. L., Goma, G., and Huyard, A. (1994). “Decreased sludge production strategy for domestic treatment.” Water Sci. Technol., 30, 97–116.
Carlozzi, P., and Sacchi, A. (2001). “Biomass production and studies on Rhodopseudomonas palustris grown in an outdoor, temperature controlled, underwater tubular photobioreactor.” J. Biotechnol., 88(3), 239–249.
Cavka, A., Guo, X., Tang, S. J., Winestrand, S., Jönsson, L. J., and Hong, F. (2013). “Production of bacterial cellulose and enzyme from waste fiber sludge.” Biotechnol. Biofuels, 6(1), 25–25.
Chapple, A. C., Downer, R. A., and Batemen, R. P. (2000). “Theory and practice of microbial insecticides application.” Field manual of techniques in invertebrate pathology, L. A. Lacey and H. A. Kaya, eds., Kluwer, Dortrecht, 5–37.
Chenel, J. P., Tyagi, R. D., and Surampalli, R. Y. (2008). “Production of thermostable protease enzyme in wastewater sludge using thermophilic bacterial strains isolated from sludge.” Water Sci. Technol., 57(5), 639.
Cho, K. S., Ryu, H. W., Park, C. H., and Goodrich, P. R. (1997). “Poly(hydroxy-butyrate- co-hydroxyvalerate) from swine waste liquor by Azotobacter Vinelandii UWD.” Biotechnology, 19, 7–10.
Chua, H., and Yu, P. H. F. (1997). “Coupling of wastewater treatment with storage polymer production.” Appl. Biochem. Biotechnol., 63(1), 627–635.
Chung, Y. J., Cha, H. J., Yeo, J. S., and Yoo, Y. J. (1997). “Production of poly(3- hydroxybutyric-co-3-hydroxyvaleric) acid using propionic acid by pH regulation.” J. Ferment. Bioeng., 83(5), 492–495.
Daigger, G. T., and Grady, C. P. L. (1982). “An assessment of the role of physiological adaptation in the transient-response of bacterial cultures.” Biotechnol. Bioeng., 24(6), 1427–1444.
Dharmsthiti, S., and Kuhasuntisuk, B. (1998). “Lipase from Pseudomonas aeruginosa LP602: Biochemical properties and application for wastewater treatment.” Ind. Microbiol. Biotechnol., 21(1-2), 75–80.
Doi, Y., Kitamura, S., and Abe, H. (1995). “Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate).” Macromolecules, 28(14), 4822–4828.
Domingues, F. C., Queiroz, J. A., Cabral, J. M. S., and Fonseca, L. P. (2000). “The influence of culture conditions on mycelial structure and cellulase production by Trichoderma reesei Rut C-30.” Enzyme Microb. Technol., 26(5-6), 394–401.
Donovan, W. P., Donovan, J. C., and Engleman, J. T. (2001). “Gene Knockoutdemonstrates that Vip3A contributes to the pathogenenesis of Bacillus thuringiensis toward Agrotis ispsilonand spodoptera frugiperda.” J. Invertebr. Pathol., 78(1), 45–51.
Dueholm, T. E., Andreasen, K. H., and Nielsen, P. H. (2000). “Conceptual model for the transformation of long chain fatty acids and triglyceride in activated sludge.” Water Sci. Technol., 43, 165–167.
Edwards, C. A. (2004). “Vermicomposting organic wastes: Soil zoology for sustainable development in the 21st century.” Mikha Tl, Cairo, Egypt.
Edwards, C. A., and Lofty, J. R. (1977). Biology of earthworms, Chapman and Hall, London.
Eggink, G., deWaard, P., and Huijberts, G. N. (1995). “Formation of novel poly(hydroxyalkanoates) from long-chain fatty acids.” Can. J. Microbiol., 41(13), 14–21.
Elvira, C. (1998). “Vermicomposting of sludge’s from paper mill and dairy industries with Eisenia andrei a pilot scale study.” Bioresour. Technol., 63(3), 205–211.
Estrush, J. J., Warren, G. W., Mullins, M. A., Nye, G. J., Craig, J. A., and Kozeil, M. G. (1996). “Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectftrum of activities againsts lepidopetran insects.” Proc. Natl. Acad. Sci. U.S.A., 93, 5389–5394.
Evans, A. C., Guild, W. J., and Mc, L. (1948). “Studies on the relationships between earthworms and soil fertility. 4th on the life-cycles of some British Lumbricidae.” Ann. Appl. Biol., 35(4), 471–484.
Fakhru’l-Razi, A., Alam, M. Z., Idris, A., Abd-Aziz, S., and Molla, A. H. (2002). “Filamentous fungi in Indah Water Konsortium (IWK) sewage treatment plant for biological treatment of domestic wastewater sludge.” J. Environ. Sci. Health, 37(3), 309–320.
Felice, B., De Pontecorvo, G., and Carfagna, M. (1997). “Degradation of wastewaters from olive oil mills by Yarrowia lipolytica ATCC 20255 and Pseudomonas putida.” Acta Biotechnol., 17(3), 231–239.
Fernández, D., et al. (2005). “Agro-industrial oily wastes as substrates for PHA production by the new strain Pseudomonas aeruginosa NCIB 40045: Effect of culture conditions.” Biochem. Eng. J., 26(2–3), 159–167.
Flemming, H. C., and Wingender, J. (2001). “Relevance of microbial extracellular polymeric substances (EPSs)-part I: Structural and ecological aspects.” Water Sci. Technol., 43, 1–8.
Fleury, S. (2007). “Method for treatment of sewage plant sludges by a fungal process.”.
Flores, E. R., Perez, F., and De la torre, M. (1997). “Scale up of Bacillus Thuringiensis fermentation based on oxygen transfer.” J. Ferment. Bioeng., 83(6), 561–564.
Futui, T., and Doi, Y. (1998). “Efficient production of polyhydroxyalkanoates from plant oils by Alcaligenes eutrophus and its recombinant strain.” Appl. Microbiol. Biotechnol., 49(3), 333–336.
Gessesse, A., Dueholm, T., Petersen, S. B., and Nielsen, P. H. (2003). “Lipase and protease extraction from activated sludge.” Water Res., 37(15), 3652–3657.
Ghilarov, M. S. (1963). On the Interrelations between soil dwelling invertibrates and soil microorganisms, North Holland Publishing, Amsterdam.
Goel, R., Mino, T., Satoh, H., and Matsuo, T. (1998). “Enzyme activities under anaerobic and aerobic conditions in activated sludge sequencing batch reactor.” Water Res., 32(7), 2081–2088.
Gross, R. A., and Kalra, B. (2002). “Biodegradable polymers for the environment.” Science, 297(5582), 803–807.
Grothe, E., Moo-Young, M., and Chisti, Y. (1999). “Fermentation optimization for the production of poly(β hydroxybutyric acid) microbial thermoplastic.” Enzyme Microbiol. Technol., 25(1-2), 132–141.
Gunthilingaraj, K., and Ravignanam, T. (1996). “Vermicomposting of sericulture wastes.” Madras Agric. J., 83, 455–457.
Gupta, R., and Garg, V. K. (2008). “Stabilization of primary sewage sludge during vermicomposting.” J. Hazard. Mater., 153(3), 1023–1030.
Hageskal, G., Lima, N., and Skaar, I. (2009). “The study of fungi in drinking water.” Mycol. Res., 113(2), 165–172.
Hait, S., and Tare, V. (2011). “Optimizing vermistabilization of waste activated sludge using vermicompost as bulking material.” Waste Manage., 31(3), 502–511.
Halami, P. M. (2008). “Production of polyhydroxyalkanoate from starch by the native isolates Bacillus cereus CFR06.” World. J. Microbiol. Biotechnol., 24(6), 805–812.
Hand, P., Hayes, W. A., Frankland, L. C., and Satchell, J. E. (1988). “Vermicomposting of cow slurry.” Pedobiologia, 31, 199–209.
Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M., and Marais, G. V. R. (1995). “Activated sludge model.”, IAWQ Scientific, London.
Hong, L., Herbert, H., and Fang, P. (2002). “Extraction of extracellular polymericsubstances (EPS) of sludges.” J. Biotechnol., 95(3), 249–256.
Houghton, J. I., Quarmby, J., and Stephenson, T. (2001). “Municipal wastewater sludge dewaterability and the presence of microbial extracellular polymer.” Water Sci. Technol., 44, 373–379.
Iwai, C. B., Ta-oun, M., Chuasavatee, T., and Boonyotha, P. (2013). “Management of municipal sewage sludge by vermicomposting technology: Converting a waste into a bio fertilizer for agriculture.” Int. J. Environ. Rural Dev., 4–1.
Jiang, Y., Chen, Y., and Zheng, X. (2009). “Efficient polyhydroxyalkanoates production from a waste-activated sludge alkaline fermentation liquid by activated sludge submitted to the aerobic feeding and discharge process.” Environ. Sci. Technol., 43(20), 7734–7741.
Joanna, W., Ester, A. D., and Olof, N. (2003). “Alternative method for sludge reduction using commercial enzymes.” 8th CIWEM/Aqua Enviro European Biosolids and Organic Residuals Conf., Wakefield, West Yorkshire, U.K., 1–5.
Joshi, S. N. (1997). “Worm composting.” Inora News Letter.
Jyothi, B., Yan, S., Rojan, P., Tyagi, R. D., and Surampalli, R. Y. (2011). “Recovery of Bacillus licheniformis alkaline protease from supernatant of fermented wastewater sludge using ultrafiltration and its characterization.” Biotechnol. Res. Int., 20, 11.
Kale, R. D. (1994). Vermicomposting of waste materials. Earthworm Cinderella of organic farming, Prism Book, New Delhi, India.
Kale, R. D., and Sunitha, N. S. (1995). “Efficiency of earthworms (e. eugeniae) in converting the solid waste from aromatic oil extraction industry into vermicompost.” J. IAEM, 22, 267–269.
Kale, R. D., Bano, K. V., and Bhagyaraj, D. J. (1986). “Suitability of neem cake as an additive in earthworm feed and its influence in the establishment of micro flora.” J. Soil Biol. Ecol., 6, 98–103.
Kallimani, C. S. (1998). “Bioconversion of sericulture waste using Eudrilus eugeniae and Phanerochaete crysosporium.” Univ. of Agricultural Science, Dharwad.
Kars, G., Gunduz, U., Rakhely, G., Yucel, M., Eroglu, I., and Kovacs, K. L. (2008). “Improved hydrogen production by uptake hydrogenase deficientmutant strainof Rhodobacter sphaeroides O.U.001.” Int. J. Hydrogen Energy, 33(12), 3056–3060.
Kaur, A., Singh, J., Vig, A. P., Dhaliwal, S. S., and Rup, P. J. (2010). “Co-composting with and without Eisenia fetida for conversion of toxic paper mill sludge to a soil conditioner.” Bioresour. Technol., 101(21), 8192–8198.
Kaur, S., Vohra, R. M., Kapoor, M., Beg, Q. K., and Hoondal, G. S. (2001). “Enhanced production and characterization of a highly thermostable alkaline protease from Bacillus sp. P-2.” World J. Microbial Biotechnol., 17(2), 125–129.
Kavian, M. F., and Ghatnekar, S. D. (1996). “Biomanagement of dairy effluent using cultures of red earthworms (L. rubellus).” Ind. J. Environ. Prot., 11, 680–682.
Khanna, S., and Srivastava, A. K. (2005). “Recent advances in microbial polyhydroxyalkanoates.” Process. Biochem., 40(2), 607–619.
Khardenavis, A. A., Kumar, M. S., Mudliar, S. N., and Chakrabarti, T. (2007). “Biotechnological conversion of agro-industrial wastewaters into biodegradable plastic, poly b -hydroxybutyrate.” Bioresour. Technol., 98(18), 3579–3584.
Kibret, M., Somitsch, W., and Robra, K. -H. (2000). “Characterization of a phenol degrading mixed population by enzyme assay.” Water Res., 34(4), 1127–1134.
Kim, G. J., Lee, I. Y., Yoon, S. C., Shin, Y. C., and Prak, Y. H. (1997). “Enhanced yield and a high production of medium-chain-length poly(3- hydroxyalkanoates) in a two-step fed-batch cultivation of Pseudomonas putida by combined use of glucose and octanoate.” Enzyme Microbial. Technol., 20(7), 500–505.
Kim, Y. B., and Lenz, R. W. (2001). “Polyesters from microorganisms.” Adv. Biochem. Eng. Biotechnol., 71, 51–79.
Koller, M., et al. (2008). “Polyhydroxyaknaote production from whey by Pseudomonas hydrogenovora.” Bioresour. Technol., 99(11), 4854–4863.
Kumar, R., Verma, D., Singh, B. L., and Umesh, U. S. (2010). “Composting of sugar-cane waste by-products through treatment with microorganisms andsubsequent vermicomposting.” Bioresour. Technol., 101(17), 6707–6711.
Lacina, C., Germain, G., and Spiros, A. N. (2003). “Utilization of fungi for biotreatment of raw wastewaters.” J. Biotechnol., 2, 620–630.
Lakshmi, B. L., and Vizaylakshmi, G. S. (2000). “Vermicomposting of sugar factory filter pressmud using african earthworms species (eudrillus eugeniae).” Pollut. Res., 9, 481–483.
Lasat, M. M. (2000). “Phytoextraction of metals from contaminated soil: A review of plant/soil/metal interaction and assessment of pertinent agronomic issues.” J. Hazard. Substance Res., 2, 1–25.
Leal Marcia, C. M. R., Freire Denise, M. G., Cammarota Magali, C., and Sant Anna, G. L. (2006). “Effect of enzymatic hydrolysis on anaerobic treatment of dairy wastewater.” Process Biochem., 41(5), 1173–1178.
Leblanc, M. E. (2003). “Effects des différentes stratégies et prétraitements des biosolides municipaux sur la croissance, la sporulation, l’entemotoxicité de Bacillus thuringiensis.” Var.kurstaki, Master’s thesis, Institut National de la recherche scientifique-Eau, Terre, et Environnement, Université du Québec, Canada.
Lee, S. Y. (1997). “E. coli moves into the plastic age.” Biotechnology, 15, 17–18.
Lee, S. Y., Lee, K. M., Chang, H. N., and Sreinbuchel, A. (1994). “Comparison of recombinant Escherichia Coli strains for synthesis and accumulation of poly (3-hydroxybytyric acid) and morphological changes.” Biotechnol. Bioeng., 44(11), 1337–1347.
Lemos, P. C., Serafim, L. S., and Reis, M. A. M. (2006). “Synthesis of polyhydroxyalkanoates from different short-chain fatty acids by mixed cultures submitted to aerobic dynamic feeding.” J. Biotechnol., 122(2), 226–238.
Liebergesell, M., Sonomoto, K., Madkour, M., Mayer, F., and Steinbuchel, A. (1994). “Purification and characterization of the poly(hydroxyalkanoicacid) synthase from Chromatium vinosum and localization of the enzyme at the surface of poly(hydroxyalkanoic acid) granules.” Eur. J. Biochem., 226(1), 71–80.
Liu, H. Y., Hall, P. V., Darby, J. L., Coats, E. R., Green, P. G., and Thompson, D. E. (2008). “Production of polyhydroxyalkanoate during treatment of tomato cannery wastewater.” Water Environ. Res., 80(4), 367–372.
Madhukeshwar, S. S., Anil, K. N., Anandi, G., Laxminarayan, M. T., and Shreeramshetty, T. A. (1996). Organic farming and sustainable agriculture, Dharwad, India.
Madison, L. L., and Huisman, G. W. (1999). “Metabolic engineering of poly(3-hydroxyalkanoates): From DNA to plastic.” Microbiol. Mol. Biol. Rev., 63, 21–53.
Mani, P., and Karmegam, N. (2010). “Vermistabilisation of press-mud using Perionyx celanensis.” Bioresour. Technol., 101(21), 8464–8468.
Mannan, S., Fakhru’l-Razi, A., and Alam, Z. (2005). “Use of fungi to improve bioconversion of activated sludge.” Water Res., 39(13), 2935–2943.
Md Din, M. F., Ujang, Z., and Van Loosdrecht, M. C. M. (2006a). “Storage of polyhydroxyalkanoates (PHA) in fed-batch mixed cultures.” 4th Seminar on Water Management (JSPS-VCC), Johor, Malaysia.
Metcalf, A. C., Krsek, M., Gooday, G. W., Prosser, J. I., and Wellington, E. M. (2002). “Molecular analysis of a bacterial chitinolytic community in an upland pasture.” Appl. Environ. Microbiol., 68(10), 5042–5050.
Metcalf and Eddy. (2003). Wastewater engineering: treatment and reuse, G. Tchobanoglous, F. L. Burton, and H. D. Stensel, eds.,4th ed., McGraw Hill, New York.
Mirtha, E. F., Lopez, N. I., Mendez, B. S., Feurst, U. P., and Steinbuchel, A. (1995). “Isolation and partial characterization of Bacillus megaterium mutants deficient in poly(3-hydroxybutyrate) synthesis.” Can. J. Microbiol., 41(13), 77–79.
Mishra, R. K., Singh, B. K., Upadhyay, R. K., and Singh, S. (2009). “Technology for vermicompost production.” Indian Farming, 93.
Molla, A. H., Fakhru’l-Razi, A., Abd-Aziz, S., Musa Hanafi, M., and Zahangir, M. (2001). “In-vitro compatibility evaluation of fungal mixed culture for bioconversion of domestic wastewater sludge.” World J. Microbiol. Biotechnol., 17(9), 849–856.
Monson, C. C., Damodharan, G., Senthil, K., Kanakasbhai, V. (2007). “Composting of Kitchen waste using in vessel and vermibeds.” Pondichery Engineering College, Pondichery, India.
Munnoli, P. M. (1998). “A study on management of organic solid waste of agro based industries through vermiculture biotechnology.” TIET Patiala, India.
Munnoli, P. M. (2007). “Management of industrial organic solid wastes through vermiculture biotechnology with special reference to microorganisms.” Goa Univ., India.
Munnoli, P. M., and Bhosle, S. (2009). “Effect of soil cow dung proportion of vermicomposting.” J. Sci. Ind. Res., 68, 57–60.
Munnoli, P. M., Arora, J. K., and Sharma, S. K. (2000). “Organic waste management through vermiculture: A case study of Pepsi Food Channoo Punjab.” Sapana Printing Works, Kolkatta.
Narayan, J. (2000). “Vermicomposting of biodegradable wastes collected from Kuvempu University campus using local and exotic species of earthworm.” Karad, India.
Nayak, A. K., and Rath, L. K. (1996). “Vermiculture and its application.” Kishan World, 23(1), 61–62.
Neyens, E., Baeyens, J., Weemaes, M., and De Heyder, B. (2003). “Pilot scale peroxidation (H2O2) of sewage sludge.” J. Hazard. Mater., 98(1-3), 91–106.
Nikel, P. I., Pettinari, M. J., Galvagno, M. A., and Mendez, B. S. (2006). “Poly(3-hydroxybutyrate) synthesis by recombinant E coli arcA mutants in microaerobiosis.” Appl. Environ. Microbiol., 72(4), 2614–2620.
Ojumu, T. V., Yu, J., and Solomon, B. O. (2004). “Production of Polyhydroxyalkanoates, a bacterial biodegradable polymer.” Afr. J. Biotechnol., 3(1), 18–24.
Orozco, F. H., Cegarra, J., Trujillo, L. M., and Roig, A. (1996). “Vermicomposting of coffee pulp using the earthworm, Eisenia fetida effects on C and N contents and the availability of nutrients.” Biol. Fertil. Soils, 22(1-2), 162–166.
Page, W. J., and Comish, A. (1993). “Growth of Azotobacter vinelandii UWD in fish peptone medium and simplifed extraction of poly-b-hydroxybutyrate.” Appl. Environ. Microbiol., 59, 4236–4244.
Palma, M. B., Pinto, A. L., Gombert, A. K., Seitz, K. H., and Kivatinitz, S. C. (2000). “Lipase production by Penicillium restrictum using solid waste of industrial babassu oil production as substrate.” Appl. Biochem. Biotechnol., 84(1-9), 1137–1146.
Paranthaman, R., Alagusundaram, K., and Indhumathi, J. (2009). “Production of protease from rice mill wastes by Aspergillus niger in solid state fermentation.” World J. Agric. Sci., 5(3), 308–312.
Park, C. H., and Damodaran, V. K. (1994). “Biosynthesis of poly(3- hydroxybutyrate-co-3-hydroxyvalerate) from ethanol and pentanol by Alcaligenes eutrophus.” Biotechnol. Prog., 10(6), 615–620.
Parmar, N., Singh, A., and Ward, O. P. (2001). “Enzyme treatment to reduce solids and improve settling of sewage sludge.” J. Ind. Microbiol. Biotechnol., 26(6), 383–386.
Patnaik, P. R. (2005). “Perspectives in the modeling and optimization of PHB production by pure and mixed cultures.” Crit. Rev. Biotechnol., 25(3), 153–171.
Pearson, D., and Ward, O. P. (1988). “Bioinsecticide activity, bacterial cell lysis and proteolytic activity of Bacillus thuringiensis sp. israelensis.” J. Appl. Bacteriol., 65(3), 195–202.
Pei, H. Y., Hu, W. R., and Liu, Q. H. (2010). “Effect of protease and cellulase on the characteristic of activated sludge.” J. Hazard. Mater., 178(1-3), 397–403.
Pereira, H., Lemos, P. C., Reis, M. A. M., Crespo, J. P. G., Carrondo, M. J. T., and Santos, H. (1996). “Model for carbon metabolism in biological phosphorus removal processes based on in vivo13C-NMR labeling experiments.” Water Res., 30(9), 2128–2138.
Piccone, G., Biosoil, B., Deluca, G., and Minelli, L. (1986). “Vermicomposting of different organic wastes.” Udine, Italy.
Pozo, M., Martfnez-toledo, B., Rodelas, J., and Gonzalez, L. (2002). “Effects of culture conditions on the production of polyhydroxyalkanoates by Azotobacter choococcum H23 in media containing a high concentration of alpechín (wastewater from olive oil mills) as primary carbon source.” J. Biotechnol., 97(2), 125–131.
Rajesh, B. J., Yeom, I. T., Esakkira, J., Kumar, N., and Lee, Y. W. (2008). “Bio management of sago-sludge using an earthworm, Lampito mauritii.” J. Environ. Biol., 29, 753–757.
Reddy, C. S., Ghai, R., and Kalia, V. C. (2003). “Polyhydroxyalkanoates.” Bioresour. Technol., 87(2), 137–146.
Rehm, B. H. (2003). “Polyester synthases: natural catalysts for plastics.” Biochem. J., 376(1), 15–33.
Ryu, H. W., Hahn, S. K., Chang, Y. K., and Chang, H. N. (1997). “Production of poly(3- hydroxybutyrate) by high cell density fed-batch culture of Alcaligenes eutrophus with phosphate limitation.” Biotechnol. Bioeng., 55(1), 28–32.
Saharan, B. S., and Badoni, P. (2007). “Poly-ß-hydroxy production using Azotobacter species from contaminated sites.” Environ. Ecol., 25(3), 737–740.
Saharan, B. S., Anita, N., and Ranga, P. (2007). “Studies on production of PHB using soil isolates from irrigated agro-ecosystems.” Proc., 48th AMI Annual Conf. of the Association Entitled “Microbes: Biofactories of the Future”.” Dept. of Biotechnology, Indian Institute of Technology Madras, Chennai.
Salehizadeh, H., and Van Loosdrecht, M. C. M. (2004). “Production of polyhydroxyalkanoates by mixed culture: Recent trends and biotechnological importance.” Biotechnol. Adv., 22(3), 261–279.
Satoh, H., Mino, T., and Matsuo, T. (1992). “Uptake of organic substrates and accumulation of polyhydroxyalkanoates linked with glycolysis of intracellular carbohydrates under anaerobic conditions in the biological excess phosphate removal processes.” Water Sci. Technol., 26, 933–942.
Saxena, M., Chauhan, A., and Asokan, P. (1998). “Flyash vemicompost from non- friendly organic wastes.” Pollut. Res., 17, 5–11.
Scheu, S. (1987). “Microbial activity and nutrient dynamics in earthworm casts (Lumbricidae).” Biol. Fertil. Soils, 5(3), 230–234.
Seenappa, S. N., Rao, J., and Kale, R. (1995). “Conversion of distillery wastes into organic manure by earthworm eudrillus euginae.” J. IAEM, 22, 244–246.
Singh, J. (1997). “Habitat preferences of selected Indian earthworm species and their efficiency in reduction of organic material.” Soil Biol. Biochem., 29(3-4), 585–588.
Singh, N. B. (1997). “Development of process package for organic solid waste management through vermiculture biotechnology, in organic waste generating industries in Punjab.” TIET Patiala, Punjab, India.
Singh, N. B., Khare, A. K., Bhargava, D. S., and Bhattacharya, S. (2005). “Effect of initial substrate pH on Vermicomposting using Perionyx excavatus (Perrier 1872).” Appl. Ecol. Environ. Res., 4(1), 85–97.
Sinha, R. K., Herat, S., Bharambe, G., and Brahambhatt, A. (2010). “Vermistabilization of sewage sludge (biosolids) by earthworms: Converting a potential biohazard destined for land disposal into a pathogenfree, nutritive and safe biofertilizer for farms.” Waste Manage. Res., 28(10), 872–881.
Solaiman, D., Ashby, R., Hotchkiss, A., and Foglia, T. (2006). “Biosynthesis of medium-chain-length poly(hydroxyalkanoates) from soy molasses.” Biotechnol. Lett., 28(3), 157–162.
Stanbury, P. F., Whitaker, A., and Hall, S. J. (1995). Principles of fermentation technology, 2nd Ed., Elsevier Science, New York.
Steinbuchel, A., and Fuchtenbusch, B. (1998). “Bacterial and other biological systems for polyester production.” Trends Biotechnol., 16(10), 419–427.
Subramanian, S., Sivarajan, M., and Saravanapriya, S. (2010). “Chemical changes during vermicomposting of sago industry solid wastes.” J. Hazard. Mater., 179(1-3), 318–322.
Sunil, S. A., Lee, D. J., and Lai, J. Y. (2009). “Proteolytic activity in stored aerobic granular sludge and structural integrity.” Bioresour. Technol., 100(1), 68–73.
Suthar, S. (2006). “Potential utilization of guar gum industrial waste in vermicomposting production.” Bioresour. Technol., 97(18), 2474–2477.
Svetlana, V., Marten, M. R., and Ollis, D. F. (1997). “Kinetic model for batch cellulose production by Trichoderma reesei RUT C30.” J. Biotechnol., 54(2), 83–94.
Takabatake, H., Satoh, H., Mino, T., and Matsuo, T. (2002). “PHA production potential of activated sludge treating wastewater.” Water Sci. Technol., 45, 119–126.
Takeda, M., Matsuoka, H., Hamana, H., and Hikuma, M. (1995). “Biosynthesis of poly-3-hydroxybutyrate by Sphaerotilus natans.” Appl. Microbiol. Biotechnol., 43(1), 31–34.
Taniguchi, I., Kagotani, K., and Kimura, Y. (2003). “Microbial production of poly(hydroxyalkanoate)s from waste edible oils.” Green Chem., 5(5), 545–548.
Tan, L. K. P., Kumar, K. S., Theanmalar, M., Gan, S. N., and Gordon III, B. (1997). “Saponified palm kernel oil and its major free fatty acids as carbon substrates for the production of polyhydroxyalkanoates in Pseudomonas putida PGA1.” Appl. Microbiol. Biotechnol., 47(3), 207–211.
Thomas, S., and Trivedy, R. K. (2002). Earthworm biotechnology for waste management and crop improvement a review of research, Allied Publication, Bangalore, India.
Tirado-Montiel, M. L., Tyagi, R. D., and Valero, J. R. (2001). “Wastewater treatment sludge as a raw material for the production of Bacillus thuringiensis based biopesticides.” Water Res., 35(16), 3807–3816.
Tohyama, M., Patarinska, T., Qiang, Z., and Shimizu, K. (2002). “Modeling of the mixed culture and periodic control for PHB production.” J. Biochem. Eng., 10(3), 157–173.
Tohyama, M., Takagi, S., and Shimizu, K. (2000). “Effect of controlling lactate concentration and periodic change in DO concentration on fermentation characteristics of a mixed culture of Lactobacillus delbrueckii and Ralstonia eutropha for PHB production.” J. Biosci. Bioeng., 89(4), 323–328.
Tsuge, T. (2002). “Metabolic improvements and use of inexpensive carbon sources in microbial production of polyhydroxyalkanoates.” J. Biosci. Bioeng., 94(6), 579–584.
Vaneechoutte, M., Kampfer, P., De Baere, T., Falsen, E., Verschraegen, and Wautersia Gennov, G. (2004). “A novel genus accommodating the phylogenetic lineage including Ralstonia eutropha and related species, and proposal of Ralstonia [Pseudomonas] syzygii comb. nov.” Int. J. Syst. Evol. Microbiol., 54(2), 317–327.
Van Hee, P., Elumbaring, A. C. M. R., Van der Lans, R. G. J. M., and Van der Wielen, L. A. M. (2006). “Selective recovery of polyhydroxyalkanoate inclusion bodies from fermentation broth by dissolved-air flotation.” J. Colloidal Interface Sci., 297(2), 595–606.
Van-Thuoc, D., Quillaguaman, J., Mamo, G., and Mattiasson, B. (2008). “Utilization of agricultural residues for poly(3-hydroxybutyrate) production by Halomonas boliviensis LC1.” J. Appl. Microbiol., 104, 420–428.
Vidyarthi, A. S., Desrosiers, M., Tyagi, R. D., and Valéro, J. R. (2000). “Foam control in biopesticide production from sewage sludge.” J. Ind. Microbial. Biotechnol., 25(2), 86–92.
Vidyarthi, A. S., Tyagi, R. D., Valéro, J. R., and Surampalli, R. Y. (2002). “Studies on the production of B-thuringiensis based biopesticides using wastewater sludge as a raw material.” Water Res., 36(19), 4850–4860.
Wang, F., and Lee, S. Y. (1997). “Poly(3-hydroxybutyrate) production with high polymer content by fed-batch culture of Alcaligenes latus under nitrogen limitation.” Appl. Environ. Microbiol., 63, 3703–3706.
Wang, Y. P., et al. (2008). “Assessment of microbial activity and bacterial community composition in the rhizosphere of a copper accumulator and a non-accumulator.” Soil Biol. Biochem., 40(5), 1167–1177.
Warren, R. A. J. (1996). “Microbial hydrolysis of polysaccharides.” Ann. Rev. Microbiol., 50(1), 183–212.
Watson, S. D., Akhurst, T., Whiteley, C. G., Rose, P. D., and Pletschke, B. I. (2004). “Primary sludge floc degradation is accelerated under biosulphidogenic conditions: Enzymological aspects.” Enzyme Microb. Technol., 34(6), 595–602.
Wawrzynczyk, J., Dey, E. S., and Norrlow, O. (2003). “Alternative method for sludge reduction using commercial enzymes.” Aqua Enviro Technology Transfer: 8th CLWEM/Aqua Enviro European Biosolids and Organic Residuals Conf., Wakefield, West Yorkshire, U.K., 1–5.
Weemaes, M. P. J., and Verstraete, W. H. (1998). “Evaluation of current wet sludge disintegration techniques.” J. Chem. Technol. Biotechnol., 73(2), 83–92.
White, S. (1996). “Vermiculture bioconversion in India.” Worm Digest.
Witholt, B., and Kessler, B. (2002). “Perspectives of medium-chain-length poly (hydroxyalkanotes), a versatile set of bacterial bioplastics.” Curr. Opin. Biotechnol., 10(3), 279–285.
Xu, Q. (2003). New equipment, techniques and technology of sludge treatment, Chemical Industry Press, Beijing.
Yan, S., Subramanian, S. B., Tyagi, R. D., and Surampalli, R. Y. (2008). “Polymer production by bacterial strains isolated from activated sludge treating municipal wastewater.” Water Sci. Technol., 57(4), 533–539.
Yezza, A., Tyagi, R. D., Valéro, J. R., and Surampalli, R. Y. (2004). “Scale-up of biopesticide production process using wastewater sludge as a raw material.” J. Ind. Microbiol. Biotechnol., 31(12), 545–552.
Yezza, A., Tyagi, R. D., Valéro, J. R., and Surampalli, R. Y. (2005a). “Production of Bacillus thuringiensis based biopesticides in batch and fed-batch cultures using wastewater sludge as a raw material.” J. Chem. Technol. Biotechnol., 80(5), 502–510.
Yezza, A., Tyagi, R. D., Valero, J. R., and Surampalli, R. Y. (2006). “Bioconversion of industrial wastewater and wastewater sludge into Bacillus thuringiensis based biopesticides in pilot fermentor.” Bioressour. Technol., 97(15), 1850–1857.
Yu, J. (2001). “Production of PHA from starch wastewater via organic acids.” J. Biotechnol., 86(2), 105–112.
Zhang, K. (1995). Ethanol and distillation liquor technology, China Light Industry Press, Beijing, 294–295.
Zinn, M., and Hany, R. (2005). “Tailored material properties of polyhydroxyalkanoates through biosynthesis and chemical modification.” Adv. Eng. Mater., 7(5), 408–411.
Zularisam, A. W., Siti Zahirah, Z., Zakaria, I., Syukri, M. M., Anwar, A., and Sakinah, M. (2010). “Production of biofertilizer from vermicomposting process of municipal sewage sludge.” J. Appl. Sci., 10(7), 580–584.

Information & Authors

Information

Published In

Go to Green Technologies for Sustainable Water Management
Green Technologies for Sustainable Water Management
Pages: 255 - 296

History

Published online: Jul 1, 2016

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Nouha Klai
INRS-ETE, Université du Québec, Quebec, Canada
Rajeshwar D. Tyagi
INRS-ETE, Université du Québec, Quebec, Canada
Rao Y. Surampalli
Global Institute for Energy, Environment and Sustainability, Kansas
Tian C. Zhang
Univ. of Nebraska-Lincoln, Lincoln, NE

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Chapter
$35.00
Add to cart
Buy E-book
$225.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Chapter
$35.00
Add to cart
Buy E-book
$225.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share