Chapter
Jul 8, 2013

A Mechanistic Detachment Rate Model to Predict Soil Erodibility due to Fluvial and Seepage Forces

Publication: World Environmental and Water Resources Congress 2013: Showcasing the Future

Abstract

The erosion rate of cohesive soils is typically computed using an excess shear stress model based on the applied fluvial shear stress. However, no mechanistic approaches are available for incorporating additional forces such as localized groundwater seepage forces into the excess shear stress model parameters. Seepage forces are known to be significant contributors to streambank erosion and failure. The objective of this research was to incorporate seepage forces into a mechanistic fundamental detachment rate model to improve predictions of the erosion rate of cohesive soils. The new detachment model, which is referred to as the "Modified Wilson Model," was based on two modified dimensional soil parameters (b0 and b1) that included seepage forces due to localized groundwater flow gradients. The proposed model provided a general framework for studying the impact of soil properties, fluid characteristics, and seepage forces on cohesive soil erodibility. The proposed model will be described and methods of analysis will be presented for deriving the material parameters from flume tests and jet erosion tests (JETs). To investigate the influence of seepage on erodibility, innovative submerged JETs and larger-scale flume experiments were conducted including cases with and without seepage. Seepage forces influenced the erodibility parameters (b0 and b1) and the corresponding predicted erosion rates. As expected, increased seepage gradients or forces decreased b1 and increased b0 for both flume tests and JETs. The influence of seepage on erosion can be predicted using the "Modified Wilson Model" parameters with a priori flume and/or JET experiments without seepage. Erodibility parameters with or without seepage from flume experiments were statistically equivalent to those derived using JETs. The "Modified Wilson Model" is advantageous in being a more mechanistic, fundamentally based erosion equation that can replace the more commonly used empirical detachment models such as the excess shear stress model.

Get full access to this article

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to World Environmental and Water Resources Congress 2013
World Environmental and Water Resources Congress 2013: Showcasing the Future
Pages: 1608 - 1618

History

Published online: Jul 8, 2013

Permissions

Request permissions for this article.

Authors

Affiliations

A. T. Al-Madhhachi [email protected]
School of Civil and Environmental Engineering, Oklahoma State University, Stillwater, OK 74078. E-mail: [email protected]
Associate Professor, Orville L. and Helen L. Buchanan Chair, Department of Biosystems and Agricultural Engineering, Oklahoma State University, 120 Agricultural Hall, Stillwater, OK 74078. E-mail: [email protected]
G. J. Hanson [email protected]
Location Coordinator and Research Leader, USDA-ARS Hydraulic Laboratory, 1301 N. Western, Stillwater, OK 74075. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share