Chapter
Apr 26, 2012

Enhancement of Cross-Shore Profile Evolution Models for Sustainable Coastal Design

Publication: Coastal Engineering Practice (2011)

Abstract

Results obtained from the validation of a cross-shore profile evolution model, Uniform Beach Sediment Transport-Time-Averaged Cross-Shore (UNIBEST-TC), were examined and further analyzed to reveal the reasons for the discrepancy between the model predictions of the field data at the surf zone of the Duck Beach in North Carolina, USA. The UNIBEST model was developed to predict the main cross shore parameters of wave height, direction, cross shore and long shore currents. However, the results of the model predictions are generally satisfactory for wave height and direction but not satisfactory for the remaining parameters. This research is focused on exploring the discrepancy between the model predictions and the field data of the Duck site, and conducting further analyses to recommend model refinements. The discrepancy is partially attributed due to the fact that the measured values, were taken close to the seabed, while the predicted values are the depth-averaged velocity. Further examination indicated that UNIBEST-TC model runs consider the RMS of the wave height spectrum with a constant gamma-value from the offshore wave spectrum at 8.0m depth. To confirm this argument, a Wavelet Analysis was applied to the time series of wave height and longshore current velocity parameters at the Duck site. The significant wave height ranged between 0.6m and 4.0m while the frequencies ranged between 0.08 to 0.2Hz at 8.0m water depth. Four cases corresponding to events of both high water level and low water level at Duck site were considered in this study. The results show that linear and non-linear interaction between wave height and longshore current occur over the range of frequencies embracing; the low frequency band of infragravity (0.001 – 0.02Hz) waves band and short incident wave band (0.05–0.10Hz). The current results highlight the necessity of incorporating interaction terms between wave - wave and wave- current in the development of cross shore and longshore model formulations.

Get full access to this article

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to Coastal Engineering Practice (2011)
Coastal Engineering Practice (2011)
Pages: 548 - 560

History

Published online: Apr 26, 2012

Permissions

Request permissions for this article.

Authors

Affiliations

Mohamed A. K. Elsayed [email protected]
Assoc. Prof. of Hydraulic Engineering, Mechanical Engineering Department, Maritime Academy (AASTMT), Cairo; Virginia Tech, Blacksburg, Virginia, USA.E-mail: [email protected]
Nabil M. Ismail [email protected]
M.ASCE
Prof. of Coastal Engineering, Department of Construction Engineering, Maritime Academy (AASTMT), Alexandria, Egypt; Director of Engineering and Technology, Wellstream Int'l Ltd., Panama City, Florida, USA.E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share