Abstract

In this study, we investigated the composition and mechanical properties of metallurgical phases present in the ASTM A36 steels subjected to postfire temperatures using nanoindentation testing in conjunction with the K++ clustering method. The specimens are exposed to target temperatures from 500°C to 1,000°C, with increments of 100°C. We extracted two nanomechanical properties, namely, hardness and Young’s modulus, from the nanoindentation tests and used them as descriptive features for the clustering analysis. Results obtained from this analysis show that average volume fractions of ferrite and pearlite were 84% and 16%, respectively. The results also revealed that the mean hardness values were in the range of 2.46 to 3.01 GPa for ferrite and 3.11 to 4.27 GPa for pearlite for the different temperature exposures. The Young’s moduli of ferrite ranged from 171.7 to 203.3 GPa, whereas the pearlite phase ranged from 181.1 to 206.8 GPa for the different temperature exposures. The obtained results also indicated the existence of a quadratic relation between the pearlite’s mean nanoindentation hardness and the yield and tensile strengths of different postfire ASTM A36 steels.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

Research presented in this paper was supported by the National Science Foundation under NSF CAREER award #2045538. Any opinions, findings, and conclusions, or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

References

Arthur, D., and S. Vassilvitskii. 2006. K-means++: The advantages of careful seeding. Stanford, CA: Stanford InfoLab Publication Server.
ASTM. 2013. Standard test methods for determining average grain size. ASTM E112. West Conshohocken, PA: ASTM.
Azhari, F., A. Heidarpour, X.-L. Zhao, and C. R. Hutchinson. 2015. “Mechanical properties of ultra-high strength (grade 1200) steel tubes under cooling phase of a fire: An experimental investigation.” Constr. Build. Mater. 93 (Sep): 841–850. https://doi.org/10.1016/j.conbuildmat.2015.05.082.
Aziz, E. M., and V. K. Kodur. 2016. “Effect of temperature and cooling regime on mechanical properties of high-strength low-alloy steel.” Fire Mater. 40 (7): 926–939. https://doi.org/10.1002/fam.2352.
Bahr, D. F., D. E. Kramer, and W. W. Gerberich. 1998. “Non-linear deformation mechanisms during nanoindentation.” Acta Mater. 46 (10): 3605–3617. https://doi.org/10.1016/S1359-6454(98)00024-X.
Baltazar Hernandez, V. H., S. K. Panda, M. L. Kuntz, and Y. Zhou. 2010. “Nanoindentation and microstructure analysis of resistance spot welded dual phase steel.” Mater. Lett. 64 (2): 207–210. https://doi.org/10.1016/j.matlet.2009.10.040.
Ban, H., R. Bai, K.-F. Chung, and Y. Bai. 2020. “Post-fire material properties of stainless-clad bimetallic steel.” Fire Saf. J. 112 (Mar): 102964. https://doi.org/10.1016/j.firesaf.2020.102964.
Bezdek, J. C., R. Ehrlich, and W. Full. 1984. “FCM: The fuzzy c-means clustering algorithm.” Comput. Geosci. 10 (2): 191–203. https://doi.org/10.1016/0098-3004(84)90020-7.
Campbell, L. 1967. The influence of metallurgical structure on the mechanisms of fatigue crack propagation. West Conshohocken, PA: ASTM.
Chen, J., K. Sand, M. S. Xia, C. Ophus, R. Mohammadi, M. Kuntz, Y. Zhou, and D. Mitlin. 2008. “Transmission electron microscopy and nanoindentation study of the weld zone microstructure of diode-laser-joined automotive transformation-induced plasticity steel.” Metall. Mater. Trans. A 39 (3): 593–603. https://doi.org/10.1007/s11661-007-9389-x.
Chen, Z., J. Lu, H. Liu, and X. Liao. 2016. “Experimental study on the post-fire mechanical properties of high-strength steel tie rods.” J. Constr. Steel Res. 121 (Jun): 311–329. https://doi.org/10.1016/j.jcsr.2016.03.004.
Chiew, S., M. Zhao, and C. Lee. 2014. “Mechanical properties of heat-treated high strength steel under fire/post-fire conditions.” J. Constr. Steel Res. 98 (Jul): 12–19. https://doi.org/10.1016/j.jcsr.2014.02.003.
Choi, K. S., W. N. Liu, X. Sun, and M. A. Khaleel. 2009. “Microstructure-based constitutive modeling of TRIP steel: Prediction of ductility and failure modes under different loading conditions.” Acta Mater. 57 (8): 2592–2604. https://doi.org/10.1016/j.actamat.2009.02.020.
Colwell, J. D., and D. Babic. 2012. “A review of oxidation on steel surfaces in the context of fire investigations.” SAE Int. J. Passenger Cars Mech. Syst. 5 (2): 1002–1015. https://doi.org/10.4271/2012-01-0990.
de Araújo Freitas, V. L. D. A., A. A. Silva, E. D. M. Silva, V. H. C. De Albuquerque, and J. M. R. Tavares. 2009. “Microstructural characterization of carbon steels using ultrasonic velocity measurements.” In Proc., COBEM 2009-Int. Congress of Mechanical Engineering. Porto Alegre, Brazil: Federal Univ. of Rio Grande do Sul.
Debehets, J., J. Tacq, A. Favache, P. Jacques, J. W. Seo, B. Verlinden, and M. Seefeldt. 2014. “Analysis of the variation in nanohardness of pearlitic steel: Influence of the interplay between ferrite crystal orientation and cementite morphology.” Mater. Sci. Eng., A 616 (Oct): 99–106. https://doi.org/10.1016/j.msea.2014.08.019.
De Bono, D. M., T. London, M. Baker, and M. J. Whiting. 2017. “A robust inverse analysis method to estimate the local tensile properties of heterogeneous materials from nano-indentation data.” Int. J. Mech. Sci. 123 (Apr): 162–176. https://doi.org/10.1016/j.ijmecsci.2017.02.006.
Defays, D. 1977. “An efficient algorithm for a complete link method.” Comput. J. 20 (4): 364–366. https://doi.org/10.1093/comjnl/20.4.364.
Ding, F., C. Zhang, Y. Yu, L. Lan, and M. Man. 2020. “Hysteretic behavior of post fire structural steels under cyclic loading.” J. Constr. Steel Res. 167 (Apr): 105847. https://doi.org/10.1016/j.jcsr.2019.105847.
Elwazri, A. M., P. Wanjara, and S. Yue. 2005. “The effect of microstructural characteristics of pearlite on the mechanical properties of hypereutectoid steel.” Mater. Sci. Eng., A 404 (1): 91–98. https://doi.org/10.1016/j.msea.2005.05.051.
Ester, M., H. P. Kriegel, J. Sander, and X. Xiaowei. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. Menlo Park, CA: Association for the Advancement of Artificial Intelligence Press.
Everitt, B., S. Landau, and M. Leese. 2001. Cluster analysis. London: Arnold Press.
Gadelrab, K. R., G. Li, M. Chiesa, and T. Souier. 2012. “Local characterization of austenite and ferrite phases in duplex stainless steel using MFM and nanoindentation.” J. Mater. Res. 27 (12): 1573–1579. https://doi.org/10.1557/jmr.2012.99.
Gain, A. K., and L. Zhang. 2020. “Nanoindentation creep, elastic properties, and shear strength correlated with the structure of Sn-9Zn-0.5nano-Ag alloy for advanced green electronics.” Metals 10 (9): 1137. https://doi.org/10.3390/met10091137.
Griffiths, A., L. A. Robinson, and P. Willett. 1984. “Hierarchic agglomerative clustering methods for automatic document classification.” J. Doc. 40 (3): 175–205. https://doi.org/10.1108/eb026764.
Gunalan, S., and M. Mahendran. 2014. “Experimental investigation of post-fire mechanical properties of cold-formed steels.” Thin-Walled Struct. 84 (Nov): 241–254. https://doi.org/10.1016/j.tws.2014.06.010.
Hutasoit, N., W. Yan, R. Cottam, M. Brandt, and A. Blicblau. 2013. “Evaluation of microstructure and mechanical properties at the interface region of laser-clad Stellite 6 on steel using nanoindentation.” Metall. Microstruct. Anal. 2 (5): 328–336. https://doi.org/10.1007/s13632-013-0093-5.
Igwemezie, V. C., C. C. Ugwuegbu, and U. Mark. 2016. “Physical metallurgy of modern creep-resistant steel for steam power plants: Microstructure and phase transformations.” J. Metall. 2016 (Nov): 1–19. https://doi.org/10.1155/2016/5468292.
Jiang, Z., Z. Guan, and J. Lian. 1995. “Effects of microstructural variables on the deformation behaviour of dual-phase steel.” Mater. Sci. Eng., A 190 (1): 55–64. https://doi.org/10.1016/0921-5093(94)09594-M.
Kamaya, M. 2009. “Characterization of microstructural damage due to low-cycle fatigue by EBSD observation.” Mater. Charact. 60 (12): 1454–1462. https://doi.org/10.1016/j.matchar.2009.07.003.
Kang, L., M. Suzuki, H. Ge, and B. Wu. 2018. “Experiment of ductile fracture performances of HSSS Q690 after a fire.” J. Constr. Steel Res. 146 (Jul): 109–121. https://doi.org/10.1016/j.jcsr.2018.03.010.
Kiran, R., and K. Khandelwal. 2013. “A micromechanical model for ductile fracture prediction in ASTM A992 steels.” Eng. Fract. Mech. 101 (Apr): 102–117. https://doi.org/10.1016/j.engfracmech.2013.02.021.
Kiran, R., and K. Khandelwal. 2014. “A triaxiality and lode parameter dependent ductile fracture criterion.” Eng. Fract. Mech. 128 (Sep): 121–138. https://doi.org/10.1016/j.engfracmech.2014.07.010.
Krauss, G. 2015. Steels: Processing, structure, and performance. Materials Park, OH: American Society for Metals International.
Kriegel, H.-P., P. Kröger, J. Sander, and A. Zimek. 2011. “Density-based clustering.” WIREs Data Min. Knowl. Discovery 1 (3): 231–240. https://doi.org/10.1002/widm.30.
Kumar, A., S. B. Singh, and K. K. Ray. 2008. “Influence of bainite/martensite-content on the tensile properties of low carbon dual-phase steels.” Mater. Sci. Eng., A 474 (1): 270–282. https://doi.org/10.1016/j.msea.2007.05.007.
Lee, J., M. D. Engelhardt, and E. M. Taleff. 2012. “Mechanical properties of ASTM A992 steel after fire.” Eng. J. 49 (1): 33–44.
Leng, Y. 2009. Materials characterization: Introduction to microscopic and spectroscopic methods. New York: Wiley.
Li, C., H. Zhao, L. Sun, and X. Yu. 2019. “In situ nanoindentation method for characterizing tensile properties of AISI 1045 steel based on mesomechanical analysis.” Adv. Mech. Eng. 11 (7): 1687814019862919. https://doi.org/10.1177/1687814019862919.
Li, G.-Q., H. Lyu, and C. Zhang. 2017. “Post-fire mechanical properties of high strength Q690 structural steel.” J. Constr. Steel Res. 132 (May): 108–116. https://doi.org/10.1016/j.jcsr.2016.12.027.
Li, Y., and H. Wu. 2012. “A clustering method based on K-means algorithm.” Phys. Procedia 25 (Jan): 1104–1109. https://doi.org/10.1016/j.phpro.2012.03.206.
Li, Z., R. Kiran, J. Hu, L. G. Hector, and A. F. Bower. 2020. “Analysis and design of a three-phase TRIP steel microstructure for enhanced fracture resistance.” Int. J. Fract. 221 (1): 53–85. https://doi.org/10.1007/s10704-019-00405-6.
Liu, M., C. Lu, K. Tieu, and H. Yu. 2014. “Numerical comparison between Berkovich and conical nano-indentations: Mechanical behaviour and micro-texture evolution.” Mater. Sci. Eng., A 619 (Dec): 57–65. https://doi.org/10.1016/j.msea.2014.09.034.
Lloyd, S. 1982. “Least squares quantization in PCM.” IEEE Trans. Inf. Theory 28 (2): 129–137. https://doi.org/10.1109/TIT.1982.1056489.
Lu, J., H. Liu, Z. Chen, and L. Bisby. 2017. “Experimental investigation of the residual mechanical properties of cast steels after exposure to elevated temperature.” Constr. Build. Mater. 143 (Jul): 259–271. https://doi.org/10.1016/j.conbuildmat.2017.03.118.
Lu, J., H. Liu, Z. Chen, and X. Liao. 2016. “Experimental investigation into the post-fire mechanical properties of hot-rolled and cold-formed steels.” J. Constr. Steel Res. 121 (Jun): 291–310. https://doi.org/10.1016/j.jcsr.2016.03.005.
MacQueen, J. 1967. “Some methods for classification and analysis of multivariate observations.” Proc., 5th Berkeley Symp. on Mathematical Statistics and Probability, 281–297. Berkeley, CA: University of California Press.
Mann, A. B. 2005. “9—Nanoindentation.” In Surfaces and interfaces for biomaterials, edited by P. Vadgama, 225–247. Sawston, UK: Woodhead Publishing.
Mazaheri, Y., A. Kermanpur, and A. Najafizadeh. 2015. “Nanoindentation study of ferrite–martensite dual phase steels developed by a new thermomechanical processing.” Mater. Sci. Eng., A 639 (Jul): 8–14. https://doi.org/10.1016/j.msea.2015.04.098.
Menčík, J., D. Munz, E. Quandt, E. R. Weppelmann, and M. V. Swain. 1997. “Determination of elastic modulus of thin layers using nanoindentation.” J. Mater. Res. 12 (9): 2475–2484. https://doi.org/10.1557/JMR.1997.0327.
Naik, D. L., H. U. Sajid, and R. Kiran. 2019. “Texture-based metallurgical phase identification in structural steels: A supervised machine learning approach.” Metals 9 (5): 546. https://doi.org/10.3390/met9050546.
Nguyen, N.-V., T.-H. Pham, and S.-E. Kim. 2018. “Characterization of strain rate effects on the plastic properties of structural steel using nanoindentation.” Constr. Build. Mater. 163 (Feb): 305–314. https://doi.org/10.1016/j.conbuildmat.2017.12.122.
Oliver, W. C., and G. M. Pharr. 1992. “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments.” J. Mater. Res. 7 (6): 1564–1583. https://doi.org/10.1557/JMR.1992.1564.
Ostrovsky, R., Y. Rabani, L. J. Schulman, and C. Swamy. 2006. “The effectiveness of Lloyd-type methods for the k-means problem.” In Proc., 2006 47th Annual IEEE Symp. on Foundations of Computer Science (FOCS’06), 165–176. New York: IEEE.
Outinen, J., and P. Mäkeläinen. 2004. “Mechanical properties of structural steel at elevated temperatures and after cooling down.” Fire Mater. 28 (2–4): 237–251. https://doi.org/10.1002/fam.849.
Pham, T.-H., J. J. Kim, and S.-E. Kim. 2014. “Estimation of microstructural compositions in the weld zone of structural steel using nanoindentation.” J. Constr. Steel Res. 99 (Aug): 121–128. https://doi.org/10.1016/j.jcsr.2014.04.011.
Pham, T.-H., and S.-E. Kim. 2015. “Nanoindentation for investigation of microstructural compositions in SM490 steel weld zone.” J. Constr. Steel Res. 110 (Jul): 40–47. https://doi.org/10.1016/j.jcsr.2015.02.020.
Pham, T.-H., and S.-E. Kim. 2017. “Characteristics of microstructural phases relevant to the mechanical properties in structural steel weld zone studied by using indentation.” Constr. Build. Mater. 155 (Nov): 176–186. https://doi.org/10.1016/j.conbuildmat.2017.08.033.
Pham, T.-H., and N.-V. Nguyen. 2021. “Mechanical properties of constituent phases in structural steels and heat-affected zones investigated by statistical nanoindentation analysis.” Constr. Build. Mater. 268 (Jan): 121211. https://doi.org/10.1016/j.conbuildmat.2020.121211.
Qiang, X., F. S. Bijlaard, and H. Kolstein. 2012. “Post-fire mechanical properties of high strength structural steels S460 and S690.” Eng. Struct. 35 (Feb): 1–10. https://doi.org/10.1016/j.engstruct.2011.11.005.
Qiang, X., F. S. Bijlaard, and H. Kolstein. 2013. “Post-fire performance of very high strength steel S960.” J. Constr. Steel Res. 80 (Jan): 235–242. https://doi.org/10.1016/j.jcsr.2012.09.002.
Ren, C., L. Dai, Y. Huang, and W. He. 2020. “Experimental investigation of post-fire mechanical properties of Q235 cold-formed steel.” Thin-Walled Struct. 150 (May): 106651. https://doi.org/10.1016/j.tws.2020.106651.
Ridler, T. W., and S. Calvard. 1978. “Picture thresholding using an iterative selection method.” IEEE Trans. Syst. Man Cybern. 8 (8): 630–632. https://doi.org/10.1109/TSMC.1978.4310039.
Rui, X., and D. Wunsch. 2005. “Survey of clustering algorithms.” IEEE Trans. Neural Networks 16 (3): 645–678. https://doi.org/10.1109/TNN.2005.845141.
Sagadevan, S., and P. Murugasen. 2014. “Novel analysis on the influence of tip radius and shape of the nanoindenter on the hardness of materials.” Procedia Mater. Sci. 6 (Jan): 1871–1878. https://doi.org/10.1016/j.mspro.2014.07.218.
Sajid, H. U., and R. Kiran. 2018a. “Influence of high stress triaxiality on mechanical strength of ASTM A36, ASTM A572 and ASTM A992 steels.” Constr. Build. Mater. 176 (Jul): 129–134. https://doi.org/10.1016/j.conbuildmat.2018.05.018.
Sajid, H. U., and R. Kiran. 2018b. “Influence of stress concentration and cooling methods on post-fire mechanical behavior of ASTM A36 steels.” Constr. Build. Mater. 186 (Oct): 920–945. https://doi.org/10.1016/j.conbuildmat.2018.08.006.
Sajid, H. U., and R. Kiran. 2019. “Post-fire mechanical behavior of ASTM A572 steels subjected to high stress triaxialities.” Eng. Struct. 191 (Jul): 323–342. https://doi.org/10.1016/j.engstruct.2019.04.055.
Sajid, H. U., D. L. Naik, and R. Kiran. 2020. “Microstructure–mechanical property relationships for post-fire structural steels.” J. Mater. Civ. Eng. 32 (6): 04020133. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003190.
Sander, J., M. Ester, H.-P. Kriegel, and X. Xu. 1998. “Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications.” Data Min. Knowl. Discovery 2 (2): 169–194. https://doi.org/10.1023/A:1009745219419.
Schuh, C. A. 2006. “Nanoindentation studies of materials.” Mater. Today 9 (5): 32–40. https://doi.org/10.1016/S1369-7021(06)71495-X.
Schwarm, S. C., R. P. Kolli, E. Aydogan, S. Mburu, and S. Ankem. 2017. “Characterization of phase properties and deformation in ferritic-austenitic duplex stainless steels by nanoindentation and finite element method.” Mater. Sci. Eng., A 680 (Jan): 359–367. https://doi.org/10.1016/j.msea.2016.10.116.
Schwartz, A. J., M. Kumar, B. L. Adams, and D. P. Field. 2009. Electron backscatter diffraction in materials science. New York: Springer.
Shen, Y.-L. 2019. “Nanoindentation for testing material properties.” In Handbook of mechanics of materials, edited by S. Schmauder, C.-S. Chen, K. K. Chawla, N. Chawla, W. Chen, and Y. Kagawa, 1981–2012. Singapore: Springer.
Sibson, R. 1973. “SLINK: An optimally efficient algorithm for the single-link cluster method.” Comput. J. 16 (1): 30–34.
Siwei, C., J. Shaokun, G. Houzuo, C. Huixuan, L. Yifeng, and L. Kang. 2017. “Mechanical and ductile fracture performances of high strength structural steel Q690 after a fire: Experimental investigation.” Procedia Eng. 210 (Jan): 496–503. https://doi.org/10.1016/j.proeng.2017.11.106.
Smith, C. I., B. R. Kirby, D. G. Lapwood, K. J. Cole, A. P. Cunningham, and R. R. Preston. 1981. “The reinstatement of fire damaged steel framed structures.” Fire Saf. J. 4 (1): 21–62. https://doi.org/10.1016/0379-7112(81)90004-7.
Srivastava, A., H. Ghassemi-Armaki, H. Sung, P. Chen, S. Kumar, and A. F. Bower. 2015. “Micromechanics of plastic deformation and phase transformation in a three-phase TRIP-assisted advanced high strength steel: Experiments and modeling.” J. Mech. Phys. Solids 78 (May): 46–69. https://doi.org/10.1016/j.jmps.2015.01.014.
Tao, Z., X.-Q. Wang, M. K. Hassan, T.-Y. Song, and L.-A. Xie. 2019. “Behaviour of three types of stainless steel after exposure to elevated temperatures.” J. Constr. Steel Res. 152 (Jan): 296–311. https://doi.org/10.1016/j.jcsr.2018.02.020.
Tatar, J. 2021. “Nanomechanical properties of cement paste-epoxy interphase following hygrothermal conditioning by water immersion.” Constr. Build. Mater. 282 (May): 122695. https://doi.org/10.1016/j.conbuildmat.2021.122695.
Tatar, J., C. R. Taylor, and H. R. Hamilton. 2019. “A multiscale micromechanical model of adhesive interphase between cement paste and epoxy supported by nanomechanical evidence.” Composites, Part B 172 (Sep): 679–689. https://doi.org/10.1016/j.compositesb.2019.05.038.
Taylor, M. D., K. S. Choi, X. Sun, D. K. Matlock, C. E. Packard, L. Xu, and F. Barlat. 2014. “Correlations between nanoindentation hardness and macroscopic mechanical properties in DP980 steels.” Mater. Sci. Eng., A 597 (Mar): 431–439. https://doi.org/10.1016/j.msea.2013.12.084.
Tsui, T. Y., W. C. Oliver, and G. M. Pharr. 1996. “Influences of stress on the measurement of mechanical properties using nanoindentation: Part I. Experimental studies in an aluminum alloy.” J. Mater. Res. 11 (3): 752–759. https://doi.org/10.1557/JMR.1996.0091.
Tuninetti, V., A. F. Jaramillo, G. Riu, C. Rojas-Ulloa, A. Znaidi, C. Medina, A. M. Mateo, and J. J. Roa. 2021. “Experimental correlation of mechanical properties of the Ti-6Al-4V alloy at different length scales.” Metals 11 (1): 104. https://doi.org/10.3390/met11010104.
Wang, C., H. Ding, M. Cai, and B. Rolfe. 2014. “Multi-phase microstructure design of a novel high strength TRIP steel through experimental methodology.” Mater. Sci. Eng., A 610 (Jul): 436–444. https://doi.org/10.1016/j.msea.2014.05.063.
Wang, F., and E. M. Lui. 2020. “Experimental study of the post-fire mechanical properties of Q690 high strength steel.” J. Constr. Steel Res. 167 (Apr): 105966. https://doi.org/10.1016/j.jcsr.2020.105966.
Wang, W., T. Liu, and J. Liu. 2015. “Experimental study on post-fire mechanical properties of high strength Q460 steel.” J. Constr. Steel Res. 114 (Nov): 100–109. https://doi.org/10.1016/j.jcsr.2015.07.019.
Watanabe, I., D. Setoyama, and N. Iwata. 2011. “Multi-scale modelling for ferrite-pearlite composite steel.” In Proc., COMPLAS 11: 11th Int. Conf. on Computational Plasticity: Fundamentals and Applications, 630–641. Barcelona, Spain: International Centre for Numerical Methods in Engineering.
Yan, X., Y. Xia, H. B. Blum, and T. Gernay. 2021. “Post-fire mechanical properties of advanced high-strength cold-formed steel alloys.” Thin-Walled Struct. 159 (Feb): 107293. https://doi.org/10.1016/j.tws.2020.107293.
Zhang, C., R. Wang, and G. Song. 2020. “Post-fire mechanical properties of Q460 and Q690 high strength steels after fire-fighting foam cooling.” Thin-Walled Struct. 156 (Nov): 106983. https://doi.org/10.1016/j.tws.2020.106983.
Zhu, M.-L., and F.-Z. Xuan. 2010. “Correlation between microstructure, hardness and strength in HAZ of dissimilar welds of rotor steels.” Mater. Sci. Eng., A 527 (16–17): 4035–4042. https://doi.org/10.1016/j.msea.2010.03.066.
Zhu, Y., S. Huang, and H. U. Sajid. 2021. “Micro-mechanisms and modeling of ductile fracture initiation in structural steel after exposure to elevated temperatures.” Metals 11 (5): 767. https://doi.org/10.3390/met11050767.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 34Issue 6June 2022

History

Received: Jul 23, 2021
Accepted: Sep 23, 2021
Published online: Mar 22, 2022
Published in print: Jun 1, 2022
Discussion open until: Aug 22, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Graduate Research Assistant, Dept. of Civil and Environmental Engineering, North Dakota State Univ., Fargo, ND 58105. ORCID: https://orcid.org/0000-0003-1441-1225. Email: [email protected]
Dayakar L. Naik, A.M.ASCE [email protected]
Research Associate, Dept. of Civil and Environmental Engineering, North Dakota State Univ., Fargo, ND 58105. Email: [email protected]
Ph.D. Candidate, Dept. of Civil and Environmental Engineering, North Dakota State Univ., Fargo, ND 58105. ORCID: https://orcid.org/0000-0002-2370-8592. Email: [email protected]
Assistant Professor, Dept. of Civil and Environmental Engineering, North Dakota State Univ., Fargo, ND 58105 (corresponding author). ORCID: https://orcid.org/0000-0001-8300-0767. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Compact representation and identification of important regions of metal microstructures using complex-step convolutional autoencoders, Materials & Design, 10.1016/j.matdes.2022.111236, 223, (111236), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share