Technical Papers
Jan 19, 2022

Impact of Cation Type of Chloride Salts on Diffusion Behavior and Binding Capacity of Chloride Ions in Concrete Containing Sodium Nitrite and Disodium Hydrogen Phosphate

Publication: Journal of Materials in Civil Engineering
Volume 34, Issue 4

Abstract

Chloride diffusion in concrete induces depassivation of steel reinforcement, which can jeopardize the service life of concrete structures subjected to aggressive environments. This paper investigates the effect of a cation type of chloride salts, sodium nitrite (SN) (NaNO2) and disodium hydrogen phosphate (DHP), on the diffusion behavior and binding capacity of chloride ions in concrete prepared from ordinary portland cement (OPC) and portland pozzolana cement (PPC) and exposed to different chloride salt solutions for an exposure period of 756 days. The results showed that the cation type of chloride salts and admixed NaNO2 and DHP have a significant effect on the chloride diffusion coefficient and chloride binding capacity of concrete. The apparent chloride diffusion coefficient (Dapp) of concrete decreased in the order Dapp: NaCl>CaCl2>MgCl2, whereas chloride binding capacity (R) decreased in the order R: CaCl2>MgCl2>NaCl. The microstructure of concrete examined through X-ray diffraction, Fourier transform infrared spectroscopy, and field emission scanning electron microscope analyses indicated the formation of nitrite- and phosphate-based compounds in concrete containing NaNO2 and DHP, respectively. The addition of NaNO2 or DHP decreased Dapp and increased chloride binding capacity of concrete. NaNO2 showed a lower chloride diffusion coefficient than Na2HPO4 (DHP). However, DHP exhibited a higher chloride binding capacity than NaNO2. This was due to the dominant effect of the formation of chlorapatite and a higher amount of Friedel’s salt in concrete containing DHP over the effect of a lower extent of physical binding of chloride ions due to the partial replacement of adsorbed nitrite ions from C─ S─ H by chloride ions. It was also due to the formation of a lower amount of Friedel’s salt due to the partial replacement of nitrite ions in nitrite–aluminate-ferrite-monosubstituent (AFm) by chloride ions in concrete containing NaNO2.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors wish to express their gratitude to Central Instrument Facility (CIF), IIT Guwahati, for providing the instrumental facility.

References

Andrade, C., M. A. Sanjuan, A. Recuero, and O. Rio. 1994. “Calculation of chloride diffusivity in concrete from migration experiments, in non-steady-state conditions.” Cem. Concr. Res. 24 (7): 1214–1228. https://doi.org/10.1016/0008-8846(94)90106-6.
Arya, C., N. R. Buenfeld, and J. B. Newman. 1987. “Assessment of simple methods of determining the free chloride ion content of cement paste.” Cem. Concr. Res. 17 (6): 907–918. https://doi.org/10.1016/0008-8846(87)90079-2.
Arya, C., N. R. Buenfeld, and J. B. Newman. 1990. “Factors influencing chloride-binding in concrete.” Cem. Concr. Res. 20 (2): 291–300. https://doi.org/10.1016/0008-8846(90)90083-A.
Arya, C., and J. B. Newman. 1990. “An assessment of four methods of determining the free chloride content of concrete.” Mater. Struct. 23 (5): 319–330. https://doi.org/10.1007/BF02472710.
ASTM. 2016. Standard test method for determining the apparent chloride diffusion coefficient of cementitious mixtures by bulk diffusion. ASTM C1556-11a. West Conshohocken, PA: ASTM.
ASTM. 2020a. Standard specification for blended hydraulic cements. ASTM C595/C595M-20. West Conshohocken, PA: ASTM.
ASTM. 2020b. Standard specification for portland cement. ASTM C150/C150M-20. West Conshohocken, PA: ASTM.
Balonis, M., and F. P. Glasser. 2011. “Calcium nitrite corrosion inhibitor in portland cement: Influence of nitrite on chloride binding and mineralogy.” J. Am. Ceram. Soc. 94 (7): 2230–2241. https://doi.org/10.1111/j.1551-2916.2010.04362.x.
Bastidas, D. M., M. Criado, S. Fajardo, A. L. Iglesia, and J. M. Bastidas. 2015. “Corrosion inhibition mechanism of phosphates for early-age reinforced mortar in the presence of chlorides.” Cem. Concr. Compos. 61 (Aug): 1–6. https://doi.org/10.1016/j.cemconcomp.2015.04.009.
Bastidas, D. M., M. Criado, V. M. L. Iglesia, S. Fajardo, A. L. Iglesia, and J. M. Bastidas. 2013. “Comparative study of three sodium phosphates as corrosion inhibitors for steel reinforcements.” Cem. Concr. Compos. 43 (Oct): 31–38. https://doi.org/10.1016/j.cemconcomp.2013.06.005.
Bastidas, D. M., V. M. L. Iglesia, M. Criado, S. Fajardo, A. L. Iglesia, and J. M. Bastidas. 2010. “A prediction study of hydroxyapatite entrapment ability in concrete.” Constr. Build. Mater. 24 (12): 2646–2649. https://doi.org/10.1016/j.conbuildmat.2010.04.060.
Bertolini, L., B. Elsener, P. Pedeferri, and R. Polder. 2004. Corrosion of steel in concrete prevention, diagnosis, repair. Weinheim, Germany: Wiley-VCH.
BIS (Bureau of Indian standard). 2013. Ordinary portland cement, 43 grade specification. IS 8112: 2013. New Delhi, India: BIS.
BIS (Bureau of Indian standard). 2015. Specification for portland pozzolana cement part 1—Fly ash based. IS 1489-1991 (part-1). New Delhi, India: BIS.
BIS (Bureau of Indian standard). 2016. Coarse and fine aggregate for concrete—Specification. IS: 383-2016. New Delhi, India: BIS.
BIS (Bureau of Indian standards). 1990. Handbook on concrete mixes (based on Indian standard). SP23: 1982. New Delhi, India: BIS.
Brown, A. M. 2001. “A step-by-step guide to non-linear regression analysis of experimental data using a Microsoft Excel spreadsheet.” Comput. Methods Progams Biomed. 65 (3): 191–200. https://doi.org/10.1016/S0169-2607(00)00124-3.
Cheewaket, T., C. Jaturapitakkul, and W. Chalee. 2010. “Long term performance of chloride binding capacity in fly ash concrete in a marine environment.” Constr. Build. Mater. 24 (8): 1352–1357. https://doi.org/10.1016/j.conbuildmat.2009.12.039.
Chen, Y., L. Jiang, X. Yan, Z. Song, M. Guo, S. Zhao, and W. Gong. 2020. “Impact of phosphate corrosion inhibitors on chloride binding and release in cement pastes.” Constr. Build. Mater. 236 (10): 117469. https://doi.org/10.1016/j.conbuildmat.2019.117469.
Da, B., H. Yu, H. Ma, Y. Tan, R. Mi, and X. Dou. 2016. “Chloride diffusion study of coral concrete in a marine environment.” Constr. Build. Mater. 123 (Oct): 47–58. https://doi.org/10.1016/j.conbuildmat.2016.06.135.
Das, J. K., and B. Pradhan. 2019. “Effect of cation type of chloride salts on corrosion behaviour of steel in concrete powder electrolyte solution in the presence of corrosion inhibitors.” Constr. Build. Mater. 208 (30): 175–191. https://doi.org/10.1016/j.conbuildmat.2019.02.153.
Das, J. K., and B. Pradhan. 2020. “Long term effect of corrosion inhibitor and associated cation type of chloride ions on chloride profile of concrete exposed to composite chloride-sulfate environment.” Mater. Today: Proc. 32 (Jan): 803–809. https://doi.org/10.1016/j.matpr.2020.04.014.
Dehwah, H. A. F., M. Maslehuddin, and S. A. Austin. 2002. “Long-term effect of sulfate ions and associated cation type on chloride-induced reinforcement corrosion in portland cement concretes.” Cem. Concr. Compos. 24 (1): 17–25. https://doi.org/10.1016/S0958-9465(01)00023-3.
Dhouibi, L., E. Triki, M. Salta, P. Rodrigues, and A. Raharinaivo. 2003. “Studies on corrosion inhibition of steel reinforcement by phosphate and nitrite.” Mater. Struct. 36 (8): 530–540. https://doi.org/10.1007/BF02480830.
Djerbi, A., S. Bonnet, A. Khelidj, and V. Baroghel-Bouny. 2008. “Influence of traversing crack on chloride diffusion into concrete.” Cem. Concr. Res. 38 (6): 877–883. https://doi.org/10.1016/j.cemconres.2007.10.007.
Dousti, A., M. Shekarchi, R. Alizadeh, and A. Taheri-Motlagh. 2011. “Binding of externally supplied chlorides in micro silica concrete under field exposure conditions.” Cem. Concr. Compos. 33 (10): 1071–1079. https://doi.org/10.1016/j.cemconcomp.2011.08.002.
Etteyeb, N., M. Sanchez, L. Dhouibi, M. C. Alonso, H. Takenouti, and E. Triki. 2010. “Effectiveness of pretreatment method to hinder rebar corrosion in concrete.” Corros. Eng. Sci. Technol. 45 (6): 435–441. https://doi.org/10.1179/147842208X386313.
Farnam, Y., S. Dick, A. Wiese, J. Davis, D. Bentz, and J. Weiss. 2015. “The influence of calcium chloride deicing salt on phase changes and damage development in cementitious materials.” Cem. Concr. Compos. 64 (Nov): 1–15. https://doi.org/10.1016/j.cemconcomp.2015.09.006.
Faustino, P., A. Brás, and T. Ripper. 2014. “Corrosion inhibitors’ effect on design service life of RC structures.” Constr. Build. Mater. 53 (Feb): 360–369. https://doi.org/10.1016/j.conbuildmat.2013.11.098.
Gao, Y., J. Zhang, S. Zhang, and Y. Zhang. 2017. “Probability distribution of convection zone depth of chloride in concrete in a marine tidal environment.” Constr. Build. Mater. 140 (June): 485–495. https://doi.org/10.1016/j.conbuildmat.2017.02.134.
Ghazy, A., and M. T. Bassuoni. 2017. “Resistance of concrete to different exposures with chloride-based salts.” Cem. Concr. Res. 101 (Nov): 144–158. https://doi.org/10.1016/j.cemconres.2017.09.001.
Hansson, C. M., T. Frolund, and J. B. Markussen. 1985. “The effect of chloride cation type on the corrosion of steel in concrete by chloride salts.” Cem. Concr. Res. 15 (1): 65–73. https://doi.org/10.1016/0008-8846(85)90009-2.
Hughes, T. L., C. M. Methven, T. G. J. Jones, S. E. Pelham, P. Fletcher, and C. Hall. 1995. “Determining cement composition by Fourier transform infrared spectroscopy.” Adv. Cem. Based Mater. 2 (3): 91–104. https://doi.org/10.1016/1065-7355(94)00031-X.
Ipavec, A., T. Vuk, R. Gabrovsek, and V. Kaucic. 2013. “Chloride binding into hydrated blended cements: The influence of limestone and alkalinity.” Cem. Concr. Res. 48 (Jun): 74–85. https://doi.org/10.1016/j.cemconres.2013.02.010.
Jee, A. A., and B. Pradhan. 2019. “Study on development of empirical relationships between durability parameters of concrete made with different types of binder and exposed to chloride environment.” Constr. Build. Mater. 212 (Jul): 799–817. https://doi.org/10.1016/j.conbuildmat.2019.04.048.
Jiang, L., C. Li, C. Zhu, Z. Song, and H. Chu. 2017. “The effect of tensile fatigue on chloride ion diffusion in concrete.” Constr. Build. Mater. 151 (Oct): 119–126. https://doi.org/10.1016/j.conbuildmat.2017.06.090.
Kwon, S., H. Lee, S. Karthick, V. Saraswathy, and H. Yang. 2017. “Long-term corrosion performance of blended cement concrete in the marine environment—A real-time study.” Constr. Build. Mater. 154 (Nov): 349–360. https://doi.org/10.1016/j.conbuildmat.2017.07.237.
Lee, Y., M. Kim, Z. Chen, H. Lee, and S. Lim. 2018. “Chloride-binding capacity of portland cement paste blended with synthesized CA2 (CaO·2Al2O3).” Adv. Mater. Sci. Eng. 2018 (Mar): 1–11. https://doi.org/10.1155/2018/5418930.
Liu, J., G. Ou, Q. Qiu, X. Chen, J. Hong, and F. Xing. 2017. “Chloride transport and microstructure of concrete with/without fly ash under atmospheric chloride condition.” Constr. Build. Mater. 146 (Aug): 493–501. https://doi.org/10.1016/j.conbuildmat.2017.04.018.
Liu, P., Z. Yu, Z. Lu, Y. Chen, and X. Liu. 2016. “Predictive convection zone depth of chloride in concrete under chloride environment.” Cem. Concr. Compos. 72 (Sep): 257–267. https://doi.org/10.1016/j.cemconcomp.2016.06.011.
Lodeiro, I. G., D. E. Macphee, A. Palomo, and A. F. Jiménez. 2009. “Effect of alkalis on fresh C─ S─ H gels. FTIR analysis.” Cem. Concr. Res. 39 (3): 147–153. https://doi.org/10.1016/j.cemconres.2009.01.003.
Lu, C., Y. Gao, Z. Cui, and R. Liu. 2015. “Experimental analysis of chloride penetration into concrete subjected to drying-wetting cycles.” J. Mater. Civ. Eng. 27 (12): 04015036. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001304.
Luping, T., and L. Nilsson. 1993. “Chloride binding capacity and binding isotherms of OPC pastes and mortars.” Cem. Concr. Res. 23 (2): 247–253. https://doi.org/10.1016/0008-8846(93)90089-R.
Mohammed, T. U., and H. Hamada. 2003. “Relationship between free chloride and total chloride contents in concrete.” Cem. Concr. Res. 33 (9): 1487–1490. https://doi.org/10.1016/S0008-8846(03)00065-6.
Muralidharan, S., R. Vedalakshmi, V. Saraswathi, J. Joseph, and N. Palaniswamy. 2005. “Studies on the aspects of chloride ion determination in different types of concrete under macro-cell corrosion conditions.” Build. Environ. 40 (9): 1275–1281. https://doi.org/10.1016/j.buildenv.2004.10.005.
Nahali, H., L. Dhouibi, and H. Idrissi. 2015. “Effect of Na3PO4 addition in mortar on steel reinforcement corrosion behavior in 3% NaCl solution.” Constr. Build. Mater. 78 (Mar): 92–101. https://doi.org/10.1016/j.conbuildmat.2014.12.099.
Nahali, H., H. B. Mansour, L. Dhouibi, and H. Idrissi. 2017. “Effect of Na3PO4 inhibitor on chloride diffusion in mortar.” Constr. Build. Mater. 141 (Jun): 589–597. https://doi.org/10.1016/j.conbuildmat.2017.02.147.
Parande, A. K., B. R. Babu, K. Pandi, M. S. Karthikeyan, and N. Palaniswamy. 2011. “Environmental effects on concrete using Ordinary and Pozzolana portland cement.” Constr. Build. Mater. 25 (1): 288–297. https://doi.org/10.1016/j.conbuildmat.2010.06.027.
Pruckner, F., and O. E. Gjorv. 2004. “Effect of CaCl2 and NaCl additions on concrete corrosivity.” Cem. Concr. Res. 34 (7): 1209–1217. https://doi.org/10.1016/j.cemconres.2003.12.015.
Qi, B., J. Gao, F. Chen, and D. Shen. 2018. “Chloride penetration into recycled aggregate concrete subjected to wetting–drying cycles and flexural loading.” Constr. Build. Mater. 174 (June): 130–137. https://doi.org/10.1016/j.conbuildmat.2018.04.122.
Qiao, C., W. Ni, Q. Wang, and J. Weiss. 2018. “Chloride diffusion and wicking in concrete exposed to NaCl and MgCl2 solutions.” J. Mater. Civ. Eng. 30 (3): 04018015. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002192.
Ragab, A. M., M. A. Elgammal, O. A. Hodhoh, and T. E. Ahmed. 2016. “Evaluation of field concrete deterioration under real conditions of seawater attack.” Constr. Build. Mater. 119 (Aug): 130–144. https://doi.org/10.1016/j.conbuildmat.2016.05.014.
Rahman, M. K., W. A. Al-Kutti, M. A. Shazali, and M. H. Baluch. 2012. “Simulation of chloride migration in compression-induced damage in concrete.” J. Mater. Civ. Eng. 24 (7): 789–796. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000458.
Ramachandran, V. S., and J. J. Beaudoin. 2001. Handbook of analytical techniques in concrete science and technology. New York: William Andrew/Noyes publications.
Ramírez-Ortíz, A. E., F. Castellanos, and P. F. D. J. Cano-Barrita. 2018. “Ultrasonic detection of chloirde ions and chloride binding in ortland cement paste.” Int. J. Concr. Struct. Mater. 12 (20): 1–12. https://doi.org/10.1186/s40069-018-0254-7.
Ramli, M., and A. A. Tabassi. 2012. “Influences of polymer modification and exposure conditions on chloride permeability of cement mortars and composites.” J. Mater. Civ. Eng. 24 (2): 216–222. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000379.
Sandberg, P. 1999. “Studies of chloride binding in concrete exposed in a marine environment.” Cem. Concr. Res. 29 (4): 473–477. https://doi.org/10.1016/S0008-8846(98)00191-4.
Savija, B., J. Pacheco, and E. Schlangen. 2013. “Lattice modeling of chloride diffusion in sound and cracked concrete.” Cem. Concr. Compos. 42 (September): 30–40. https://doi.org/10.1016/j.cemconcomp.2013.05.003.
Sergi, G., S. W. Yu, and C. L. Page. 1992. “Diffusion of chloride and hydroxyl ions in cementitious materials exposed to a saline environment.” Mag. Concr. Res. 44 (158): 63–69. https://doi.org/10.1680/macr.1992.44.158.63.
Shaheen, F., and B. Pradhan. 2017. “Influence of sulfate ion and associated cation type on steel reinforcement corrosion in concrete powder aqueous solution in the presence of chloride Ions.” Cem. Concr. Res. 91 (Jan): 73–86. https://doi.org/10.1016/j.cemconres.2016.10.008.
Sharma, K. K., R. N. Deo, A. Kumar, and K. Mamun. 2018. “Rebar corrosion due to chlorides in synergy with sodium, potassium, and magnesium.” Constr. Build. Mater. 165 (Mar): 533–540. https://doi.org/10.1016/j.conbuildmat.2017.12.201.
Shi, J. J., and W. Sun. 2014. “Effects of phosphate on the chloride-induced corrosion behavior of reinforcing steel in mortars.” Cem. Concr. Compos. 45 (Jan): 166–175. https://doi.org/10.1016/j.cemconcomp.2013.10.002.
Shi, M., Z. Chen, and J. Sun. 1999. “Determination of chloride diffusivity in concrete by AC impedance spectroscopy.” Cem. Concr. Res. 29 (7): 1111–1115. https://doi.org/10.1016/S0008-8846(99)00079-4.
Shi, X., Z. Yang, Y. Liu, and D. Cross. 2011. “Strength and corrosion properties of portland cement mortar and concrete with mineral admixtures.” Constr. Build. Mater. 25 (8): 3245–3256. https://doi.org/10.1016/j.conbuildmat.2011.03.011.
Silva, D. A., H. R. Roman, and P. J. P. Gleize. 2002. “Evidences of chemical interaction between EVA and hydrating portland cement.” Cem. Concr. Res. 32 (9): 1383–1390. https://doi.org/10.1016/S0008-8846(02)00805-0.
Song, Z., L. Jiang, H. Chu, C. Xiong, R. Liu, and L. You. 2014. “Modeling of chloride diffusion in concrete immersed in CaCl2 and NaCl solutions with account of multi-phase reactions and ionic interactions.” Constr. Build. Mater. 66 (Sep): 1–9. https://doi.org/10.1016/j.conbuildmat.2014.05.026.
Song, Z., L. Jiang, J. Liu, and J. Liu. 2015. “Influence of cation type on diffusion behavior of chloride ions in concrete.” Constr. Build. Mater. 99 (Nov): 150–158. https://doi.org/10.1016/j.conbuildmat.2015.09.033.
Soylev, T. A., C. McNally, and M. Richardson. 2007. “Effectiveness of amino alcohol-based surface-applied corrosion inhibitors in chloride-contaminated concrete.” Cem. Concr. Res. 37 (6): 972–977. https://doi.org/10.1016/j.cemconres.2007.03.010.
Soylev, T. A., and M. Richardson. 2008. “Corrosion inhibitors for steel in concrete: State-of-the-art report.” Constr. Build. Mater. 22 (4): 609–622. https://doi.org/10.1016/j.conbuildmat.2006.10.013.
Tang, L. 1999. “Concentration dependence of diffusion and migration of chloride ions Part 1. Theoretical considerations.” Cem. Concr. Res. 29 (9): 1463–1468. https://doi.org/10.1016/S0008-8846(99)00121-0.
Thomas, M. D. A., R. D. Hooton, A. Scott, and H. Zibara. 2012. “The effect of supplementary cementitious materials on chloride binding in hardened cement paste.” Cem. Concr. Res. 42 (1): 1–7. https://doi.org/10.1016/j.cemconres.2011.01.001.
Tritthart, J., and P. F. G. Banfill. 2001. “Nitrite binding in cement.” Cem. Concr. Res. 31 (7): 1093–1100. https://doi.org/10.1016/S0008-8846(01)00532-4.
Wang, Y., C. Lin, and Y. Cui. 2014. “Experiments of chloride ingression in loaded concrete members under the marine environment.” J. Mater. Civ. Eng. 26 (6): 04014012. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000960.
Wang, Y., C. Liu, Y. Tan, Y. Wang, and Q. Li. 2020. “Chloride binding capacity of green concrete mixed with fly ash or coal gangue in the marine environment.” Constr. Build. Mater. 242 (May): 118006. https://doi.org/10.1016/j.conbuildmat.2020.118006.
Weerdt, K. D., A. Colombo, L. Coppola, H. Justnes, and M. R. Geiker. 2015. “Impact of the associated cation on chloride binding of portland cement paste.” Cem. Concr. Res. 68 (Feb): 196–202. https://doi.org/10.1016/j.cemconres.2014.01.027.
Xing, X., J. Liu, Y. Dai, M. Yang, and Y. Li. 2018. “Effect of chloride ion on free nitrite ion in cement.” Int. J. Corros. 2018 (Jan): 1–6. https://doi.org/10.1155/2018/2940953.
Xu, F., Z. Yang, W. Liu, S. Wang, and H. Zhang. 2020. “Experimental investigation on the effect of sulfate attack on chloride diffusivity of cracked concrete subjected to composite solution.” Constr. Build. Mater. 237 (Mar): 117643. https://doi.org/10.1016/j.conbuildmat.2019.117643.
Ye, H., N. Jin, X. Jin, C. Fu, and W. Chen. 2016a. “Chloride ingress profiles and binding capacity of mortar in cyclic drying-wetting salt fog environments.” Constr. Build. Mater. 127 (Nov): 733–742. https://doi.org/10.1016/j.conbuildmat.2016.10.059.
Ye, H., X. Jin, C. Fu, N. Jin, Y. Xu, and T. Huang. 2016b. “Chloride penetration in concrete exposed to cyclic drying-wetting and carbonation.” Constr. Build. Mater. 112 (Jun): 457–463. https://doi.org/10.1016/j.conbuildmat.2016.02.194.
Ylmén, R., U. Jäglid, B. Steenari, and I. Panas. 2009. “Early hydration and setting of Portland cement monitored by IR, SEM and Vicat techniques.” Cem. Concr. Res. 39 (5): 433–439. https://doi.org/10.1016/j.cemconres.2009.01.017.
Yohai, L., M. B. Valcarce, and M. Vazquez. 2016. “Testing phosphate ions as corrosion inhibitors for construction steel in mortars.” Electrochim. Acta 202 (Jun): 316–324. https://doi.org/10.1016/j.electacta.2015.12.124.
Yohai, L., M. Vazquez, and M. B. Valcarce. 2013. “Phosphate ions as corrosion inhibitors for reinforcement steel in chloride-rich environments.” Electrochim. Acta 102 (Jul): 88–96. https://doi.org/10.1016/j.electacta.2013.03.180.
Yu, P., R. J. Kirkpatrick, B. Poe, P. F. McMillan, and X. Cong. 1999. “Structure of calcium silicate hydrate (C-S-H): Near-, Mid-, and Far-Infrared spectroscopy.” J. Am. Ceram. Soc. 82 (3): 742–748. https://doi.org/10.1111/j.1151-2916.1999.tb01826.x.
Yu, Z., Y. Chen, P. Liu, and W. Wang. 2015. “Accelerated simulation of chloride ingress into concrete under drying–wetting alternation condition chloride environment.” Constr. Build. Mater. 93 (Sep): 205–213. https://doi.org/10.1016/j.conbuildmat.2015.05.090.
Yuan, Q., C. Shi, G. D. Schutter, K. Audenaert, and D. Deng. 2009. “Chloride binding of cement-based materials subjected to external chloride environment—A review.” Constr. Build. Mater. 23 (1): 1–13. https://doi.org/10.1016/j.conbuildmat.2008.02.004.
Zhang, J., X. Zhou, Y. Zhang, M. Wang, and Y. Zhang. 2020. “Stable process of concrete chloride diffusivity and corresponding influencing factors analysis.” Constr. Build. Mater. 261 (Nov): 119994. https://doi.org/10.1016/j.conbuildmat.2020.119994.
Zhang, T., and O. E. Gjorv. 1994. “An electrochemical method for accelerated testing of chloride diffusivity in concrete.” Cem. Concr. Res. 24 (8): 1534–1548. https://doi.org/10.1016/0008-8846(94)90168-6.
Zhang, T., and O. E. Gjorv. 1996. “Diffusion behavior of chloride ions in concrete.” Cem. Concr. Res. 26 (6): 907–917. https://doi.org/10.1016/0008-8846(96)00069-5.
Zhang, Y., W. Sun, S. Chen, and F. Guo. 2011. “Two- and three-dimensional chloride ingress into fly ash concrete.” J. Wuhan Univ. Technol. Mater. Sci. Educ. 26 (5): 978–982. https://doi.org/10.1007/s11595-011-0348-4.
Zhu, Q., L. Jiang, Y. Chen, J. Xu, and L. Mo. 2012. “Effect of chloride salt type on chloride binding behavior of concrete.” Constr. Build. Mater. 37 (Dec): 512–517. https://doi.org/10.1016/j.conbuildmat.2012.07.079.
Zuquan, J., Z. Xia, Z. Tiejun, and L. Jianqing. 2018. “Chloride ions transportation behavior and binding capacity of concrete exposed to different marine corrosion zones.” Constr. Build. Mater. 177 (Jul): 170–183. https://doi.org/10.1016/j.conbuildmat.2018.05.120.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 34Issue 4April 2022

History

Received: Oct 28, 2020
Accepted: Aug 13, 2021
Published online: Jan 19, 2022
Published in print: Apr 1, 2022
Discussion open until: Jun 19, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Jyotish Kumar Das
Research Scholar, Dept. of Civil Engineering, Indian Institute of Technology Guwahati, Assam 781039, India.
Bulu Pradhan [email protected]
Professor, Dept. of Civil Engineering, Indian Institute of Technology Guwahati, Assam 781039, India (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Understanding the impact of main seawater ions and leaching on the chloride transport in alkali-activated slag and Portland cement, Cement and Concrete Research, 10.1016/j.cemconres.2022.107063, 164, (107063), (2023).
  • Study on influence of nitrite and phosphate based inhibiting admixtures on chloride interaction, rebar corrosion, and microstructure of concrete subjected to different chloride exposures, Journal of Building Engineering, 10.1016/j.jobe.2022.104192, 50, (104192), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share