Technical Notes
Dec 24, 2021

Porosity/Cement Index over a Wide Range of Porosities and Cement Contents

Publication: Journal of Materials in Civil Engineering
Volume 34, Issue 3

Abstract

The adjusted porosity/cement index η/(Civ)a showed to be an interesting empirical rational dosage methodology for soil-cement purposes as it inputs into a single parameter the role of the compactness and the amount of cement on the strength of such materials. Ergo, by establishing a specific η/(Civ)a, the same unconfined compressive strength result could be obtained through several combinations of cement contents and porosity values. Still, such an assertion has not yet been verified for a broad range of distinct dosages within specific η/(Civ)a values. The present research intends to address this gap by conducting unconfined compressive strength tests on distinct mix designs established within seven specifics η/(Civ)0.28 values (i.e., 45, 40, 30, 35, 25, 22.5, and 20). At least three distinct dosages were assembled within each adopted porosity/cement index value for compacted clayey sand-cement mixtures. The results within each η/(Civ)0.28 were evaluated by means of Tukey´s multiple comparison test in order to assess the statistical equivalence of the attained strength results for each mixture design setting (dosage). In general, statistical differences were encountered among some dosages within each η/(Civ)0.28 index. Nonetheless, all of the strength results could be successfully correlated to this index with a great coefficient of determination (R2=0.97).

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data or models used during the study are available from the corresponding author by request.

Acknowledgments

The authors wish to express their appreciation to Fundação de Amparo à pesquisa do Estado do Rio Grande do Sul (FAPERGS)/Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) 12/2014–Programa de Apoio aos Núcleos de Excelência (PRONEX) (Project No. 16/2551-0000469-2), Ministério da Ciência e Tecnologia (MCT) CNPq [Editais Instituto Nacional de Ciência e Tecnologia (INCT)-Reabilitação do Sistema Encosta-Planície e Desastres Naturais (REAGEO), Universal & Produtividade em Pesquisa], and Ministério da Educação-Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (MEC-CAPES) (PROEX) for support to the research group.

References

ABNT (Associação Brasileira de Normas Técnicas). 2018. Portland cement—Requirements. [In Portuguese.]. Rio de Janeiro, RJ: ABNT.
Antunes, V., N. Simão, and A. C. Freire. 2017. “A soil-cement formulation for road pavement base and subbase layers: A case study.” Transp. Infrastruct. Geotechnol. 4 (4): 126–141. https://doi.org/10.1007/s40515-017-0043-9.
Arya, I. W., I. W. Wiraga, and I. G. Suryanegara. 2018. “Effect of cement injection on sandy soil slope stability, case study: Slope in Petang district, Badung regency.” J. Phys. Conf. Ser. 953 (1): 012103. https://doi.org/10.1088/1742-6596/953/1/012103.
ASTM. 2012a. Standard test method for laboratory compaction characteristics of soil using modified effort (56,400  ft-lbf/ft3 (2,700  kN/m3)). ASTM D1557. West Conshohocken, PA: ASTM.
ASTM. 2012b. Standard test method for laboratory compaction characteristics of soil using standard effort (12,400  ft-lbf/ft3 (600  kN/m3)). ASTM D698. West Conshohocken, PA: ASTM.
ASTM. 2014. Standard test methods for specific gravity of soil solids by water pycnometer. ASTM D854. West Conshohocken, PA: ASTM.
ASTM. 2016. Standard test method for measurement of soil potential (suction) using filter paper. ASTM D5298. West Conshohocken, PA: ASTM.
ASTM. 2017a. Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). ASTM D2487. West Conshohocken, PA: ASTM.
ASTM. 2017b. Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM D4318. West Conshohocken, PA: ASTM.
ASTM. 2017c. Standard test method for particle-size distribution (gradation) of fine-grained soils using the sedimentation (hydrometer) analysis. ASTM D7928. West Conshohocken, PA: ASTM.
ASTM. 2019. Standard specification for mixing rooms, moist cabinets, moist rooms, and water storage tanks used in the testing of hydraulic cements and concretes. ASTM C511. West Conshohocken, PA: ASTM.
ASTM. 2020. Standard specification for Portland cement type. ASTM C150. West Conshohocken, PA: ASTM.
Baldovino, J., R. L. dos Santos Izzo, and J. L. Rose. 2021. “Effects of freeze–thaw cycles and porosity/cement index on durability, strength, and capillary rise of a stabilized silty soil under optimal compaction conditions.” Geotech. Geol. Eng. 39 (1): 481–498. https://doi.org/10.1007/s10706-020-01507-y.
Behnood, A. 2018. “Soil and clay stabilization with calcium- and non-calcium-based additives: A state-of-the-art review of challenges, approaches and techniques.” Transp. Geotech. 17 (Part A): 14–32. https://doi.org/10.1016/j.trgeo.2018.08.002.
Boulanger, R. W., M. Khosravi, A. Khosravi, and D. W. Wilson. 2018. “Remediation of liquefaction effects for an embankment using soil-cement walls: Centrifuge and numerical modeling.” Soil Dyn. Earthquake Eng. 114 (Nov): 38–50. https://doi.org/10.1016/j.soildyn.2018.07.001.
Box, G., and W. Hunter. 2005. Statistics for experimenters: Design, innovation, and discovery. Hoboken, NJ: Wiley.
Chandler, R., M. Crilly, and M. Smith. 1992. “A low-cost method of assessing clay desiccation for low-rise buildings.” Proc. Inst. Civ. Eng. Civ. Eng. 92 (2): 82–89. https://doi.org/10.1680/icien.1992.18771.
Consoli, N. C., B. S. Consoli, and L. Festugato. 2013. “A practical methodology for the determination of failure envelopes of fiber-reinforced cemented sands.” Geotext. Geomembr. 41: 50–54. https://doi.org/10.1016/j.geotexmem.2013.07.010.
Consoli, N. C., R. C. Cruz, and M. F. Floss. 2011. “Variables controlling strength of artificially cemented sand: Influence of curing time.” J. Mater. Civ. Eng. 23 (5): 692–696. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000205.
Consoli, N. C., A. V. da Fonseca, S. R. Silva, R. C. Cruz, and A. Fonini. 2012. “Parameters controlling stiffness and strength of artificially cemented soils.” Géotechnique 62 (2): 177–183. https://doi.org/10.1680/geot.8.P.084.
Consoli, N. C., C. G. da Rocha, and S. Maghous. 2016a. “Strategies for developing more sustainable dosages for soil–coal fly ash–lime blends.” J. Mater. Civ. Eng. 28 (11): 04016130. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001648.
Consoli, N. C., A. da Silva, A. M. Barcelos, L. Festugato, and F. Favretto. 2019a. “Porosity/cement index controlling flexural tensile strength of artificially cemented soils in Brazil.” Geotech. Geol. Eng. 38 (1): 713–722. https://doi.org/10.1007/s10706-019-01059-w.
Consoli, N. C., L. da Silva Lopes Jr., D. Foppa, and K. S. Heineck. 2009a. “Key parameters dictating strength of lime/cement-treated soils.” Proc. Inst. Civ. Eng. Geotech. Eng. 162 (2): 111–118. https://doi.org/10.1680/geng.2009.162.2.111.
Consoli, N. C., L. da Silva Lopes Jr., and K. S. Heineck. 2009b. “Key parameters for the strength control of lime stabilized soils.” J. Mater. Civ. Eng. 21 (5): 210–216. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:5(210).
Consoli, N. C., D. Foppa, L. Festugato, and K. S. Heineck. 2007. “Key parameters for strength control of artificially cemented soils.” J. Geotech. Geoenviron. Eng. 133 (2): 197–205. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(197).
Consoli, N. C., S. F. V. Marques, M. F. Floss, and L. Festugato. 2017. “Broad-spectrum empirical correlation determining tensile and compressive strength of cement-bonded clean granular soils.” J. Mater. Civ. Eng. 29 (6): 06017004. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001858.
Consoli, N. C., J. G. Rossi, L. Festugato, C. A. Ruver, H. C. Scheuermann Filho, D. Foppa, M. S. Carretta, and H. B. Leon. 2019b. “Circular-plate load tests on bounded cemented layers above weak cohesive-frictional soil.” J. Geotech. Geoenviron. Eng. 145 (10): 06019011. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002144.
Consoli, N. C., R. A. Q. Samaniego, S. F. V. Marques, G. I. Venson, E. Pasche, and L. E. G. Velásquez. 2016b. “Single model establishing strength of dispersive clay treated with distinct binders.” Can. Geotech. J. 53 (12): 2072–2079. https://doi.org/10.1139/cgj-2015-0606.
Consoli, N. C., and L. F. Tomasi. 2018. “The impact of dry unit weight and cement content on the durability of sand–cement blends.” Proc. Inst. Civ. Eng. Ground Improv. 171 (2): 96–102. https://doi.org/10.1680/jgrim.17.00034.
Consoli, N. C., P. M. Vaz Ferreira, C.-S. Tang, S. F. Veloso Marques, L. Festugato, and M. B. Corte. 2016c. “A unique relationship determining strength of silty/clayey soils Portland cement mixes.” Soils Found. 56 (6): 1082–1088. https://doi.org/10.1016/j.sandf.2016.11.011.
Consoli, N. C., M. A. Vendruscolo, and P. D. M. Prietto. 2003. “Behavior of plate load tests on soil layers improved with cement and fiber.” J. Geotech. Geoenviron. Eng. 129 (1): 96–101. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:1(96).
Consoli, N. C., A. Viana da Fonseca, R. C. Cruz, and K. S. Heineck. 2009c. “Fundamental parameters for the stiffness and strength control of artificially cemented sand.” J. Geotech. Geoenviron. Eng. 135 (9): 1347–1353. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000008.
Coop, M. R., and J. H. Atkinson. 1993. “The mechanics of cemented carbonate sands.” Géotechnique 43 (1): 53–67. https://doi.org/10.1680/geot.1993.43.1.53.
Cuccovillo, T., and M. R. Coop. 1999. “On the mechanics of structured sands.” Géotechnique 49 (6): 741–760. https://doi.org/10.1680/geot.1999.49.6.741.
De Paula, T. M., N. C. Consoli, L. Festugato, F. Favretto, and J. V. L. Daronco. 2019. “Behaviour of fibre-reinforced cemented sand under flexural tensile stress.” In Vol. 92 of Proc., E3S Web of Conf., 12005. Les Ulis Cedex, France: EDP Sciences. https://doi.org/10.1051/e3sconf/20199212005.
Diambra, A., E. Ibraim, A. Peccin, N. C. Consoli, and L. Festugato. 2017. “Theoretical derivation of artificially cemented granular soil strength.” J. Geotech. Geoenviron. Eng. 143 (5): 04017003. https://doi.org/10.1061/(asce)gt.1943-5606.0001646.
Dupas, J. M., and A. Pecker. 1979. “Static and dynamic properties of sand-cement.” J. Geotech. Eng. Div. 105 (3): 419–436. https://doi.org/10.1061/AJGEB6.0000778.
Festugato, L., E. Menger, F. Benezra, E. A. Kipper, and N. C. Consoli. 2017. “Fibre-reinforced cemented soils compressive and tensile strength assessment as a function of filament length.” Geotext. Geomembr. 45 (1): 77–82. https://doi.org/10.1016/j.geotexmem.2016.09.001.
Henzinger, C., and P. Schömig. 2020. “Prognose der Festigkeitsentwicklung zementbehandelter Böden mit dem porosity/binder-index.” [In German.] Geotechnik 43 (1): 14–25. https://doi.org/10.1002/gete.201900017.
Ingles, O. G., and J. B. Metcalf. 1972. Soil stabilization: Principles and practice. Sidney: Butterworths.
Ladd, R. S. 1978. “Preparing test specimens using under-compaction.” Geotech. Test. J. 1 (1): 16–23. https://doi.org/10.1520/GTJ10364J.
Lade, P. V., and D. D. Overton. 1989. “Cementation effects in frictional materials.” J. Geotech. Eng. 115 (10): 1373–1387. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:10(1373).
Lade, P. V., and N. Trads. 2014. “The role of cementation in the behaviour of cemented soils.” Geotech. Res. 1 (4): 111–132. https://doi.org/10.1680/gr.14.00011.
Lee, S., and D. K. Lee. 2018. “What is the proper way to apply the multiple comparison test?” Korean J. Anesthesiol. 71 (5): 353–360. https://doi.org/10.4097/kja.d.18.00242.
Leroueil, S., and P. R. Vaughan. 1990. “The general and congruent effects of structure in natural soils and weak rocks.” Géotechnique 40 (3): 467–488. https://doi.org/10.1680/geot.1990.40.3.467.
Maghous, S., N. C. Consoli, A. Fonini, and V. F. Pasa Dutra. 2014. “A theoretical–experimental approach to elastic and strength properties of artificially cemented sand.” Comput. Geotech. 62 (Oct): 40–50. https://doi.org/10.1016/j.compgeo.2014.06.011.
McHugh, M. L. 2011. “Multiple comparison analysis testing in ANOVA.” Biochem. Med. 21 (3): 203–209. https://doi.org/10.11613/BM.2011.029.
Mitchell, J. K. 1981. “Soil improvement: State-of-the-art report.” In Proc., 10th Int. Conf. on Soil Mechanics and Foundation Engineering, 509–565. Stockholm, Sweden: International Society of Soil Mechanics and Foundation Engineering, A.A. Balkema.
Mitrani, H., and S. P. G. Madabhushi. 2010. “Cementation liquefaction remediation for existing buildings.” Proc. Inst. Civ. Eng. Ground Improv. 163 (2): 81–94. https://doi.org/10.1680/grim.2010.163.2.81.
Mola-Abasi, H., A. Khajeh, and S. Naderi Semsani. 2017. “Variables controlling tensile strength of stabilized sand with cement and zeolite.” J. Adhes. Sci. Technol. 32 (9): 947–962. https://doi.org/10.1080/01694243.2017.1388052.
Montgomery, D. 2013. Design and analysis of experiments. Hoboken, NJ: Wiley.
Namikawa, T., J. Koseki, and Y. Suzuki. 2007. “Finite element analysis of lattice-shaped ground improvement by cement-mixing for liquefaction mitigation.” Soils Found. 47 (3): 559–576. https://doi.org/10.3208/sandf.47.559.
Nussbaum, P. J., and B. E. Colley. 1971. Dam construction and facing with soil-cement. Skokie, IL: Portland Cement Association.
PCA (Portland Cement Association). 1995. Soil-cement construction handbook. Skokie, IL: PCA.
Pongsivasathit, S., S. Horpibulsuk, and S. Piyaphipat. 2019. “Assessment of mechanical properties of cement stabilized soils.” Case Stud. Constr. Mater. 11 (Dec): e00301. https://doi.org/10.1016/j.cscm.2019.e00301.
Rios, S., A. Viana da Fonseca, and B. A. Baudet. 2012. “Effect of the porosity/cement ratio on the compression of cemented soil.” J. Geotech. Geoenviron. Eng. 138 (11): 1422–1426. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000698.
Rios, S., A. Viana da Fonseca, N. C. Consoli, M. Floss, and N. Cristelo. 2013. “Influence of grain size and mineralogy on the porosity/cement ratio.” Géotech. Lett. 3 (3): 130–136. https://doi.org/10.1680/geolett.13.00003.
Saxena, S. K., K. R. Reddy, and A. S. Avramidis. 1988. “Liquefaction resistance of artificially cemented sand.” J. Geotech. Eng. 114 (12): 1395–1413. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:12(1395).
Schnaid, F., P. D. M. Prietto, and N. C. Consoli. 2001. “Characterization of cemented sand in triaxial compression.” J. Geotech. Geoenviron. Eng. 127 (10): 857–868. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(857).
Suddeepong, A., A. Intra, S. Horpibulsuk, C. Suksiripattanapong, A. Arulrajah, and J. S. Shen. 2018. “Durability against wetting-drying cycles for cement-stabilized reclaimed asphalt pavement blended with crushed rock.” Soils Found. 58 (2): 333–343. https://doi.org/10.1016/j.sandf.2018.02.017.
Thomé, A., M. Donato, N. C. Consoli, and J. Graham. 2005. “Circular footings on a cemented layer above weak foundation soil.” Can. Geotech. J. 42 (6): 1569–1584. https://doi.org/10.1139/t05-069.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 34Issue 3March 2022

History

Received: Apr 25, 2021
Accepted: Jul 19, 2021
Published online: Dec 24, 2021
Published in print: Mar 1, 2022
Discussion open until: May 24, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Hugo Carlos Scheuermann Filho [email protected]
Ph.D. Candidate, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil. Email: [email protected]
Gustavo Dias Miguel [email protected]
Ph.D. Candidate, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil. Email: [email protected]
Professor of Civil Engineering, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil (corresponding author). ORCID: https://orcid.org/0000-0002-6408-451X. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Effect of Cement Type on Compacted Iron Ore Tailings-Binder Response Blends: Comparative Study, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-17486, 36, 8, (2024).
  • Microwave-Mediated Polymer Bonding of Sands: Experimental Study, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-16849, 36, 9, (2024).
  • Discussion of “Probing the Stochastic Unconfined Compressive Strength of Lime–RHA Mix Treated Clayey Soil”, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-16251, 36, 4, (2024).
  • Discussion of “Estimating the Optimum Addition of Carbide Sludge for Enhancing Strength Development of Ground-Granulated Blast Furnace Slag-Treated Slurry Based on Initial pH”, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-16036, 36, 3, (2024).
  • Discussion of “Comprehensive Study on Mechanical and Environmental Characteristics of Cement-Treated Granular Steel Slag as Subballast Layer”, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-15908, 35, 11, (2023).
  • Evaluation of Strength Parameters for Application in Cemented Iron Ore Tailings Stacks, Indian Geotechnical Journal, 10.1007/s40098-023-00712-9, (2023).
  • Response of Artificially Cemented Iron Ore Tailings for Dry Stacking Disposal over a Wide Range of Stresses, Indian Geotechnical Journal, 10.1007/s40098-023-00711-w, (2023).
  • Mechanical response of a cemented soil over a wide range of porosities and cement contents, Proceedings of the Institution of Civil Engineers - Ground Improvement, 10.1680/jgrim.22.00028, (1-11), (2022).
  • Strength and durability assessment of shredded tire rubber stabilized artificially cemented alluvial clay, Construction and Building Materials, 10.1016/j.conbuildmat.2022.128312, 345, (128312), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share