Technical Papers
Jul 26, 2019

Valorization of Boron Mine Tailings in Alkali-Activated Mortars

Publication: Journal of Materials in Civil Engineering
Volume 31, Issue 10

Abstract

Mine tailings cause significant storage and environmental problems because a large amount of tailings containing potentially numerous hazardous contaminants is generated during mining operations. Therefore, the utilization of mine tailings in different sectors should be taken into consideration to minimize the storage efforts and environmental pollution problems. In this two-stage study, the alkali activation opportunity of waste clay containing boron (WCB) discarded from boron mine production was investigated. In the first stage of this study, alkali activation of WCB calcined at different temperatures between 500°C and 800°C was investigated under steam-curing conditions. It was found that a calcination temperature of at least 700°C is necessary to initiate the alkali activation of WCB, whereas the maximum compressive strength value was obtained at 800°C. Subsequently, the effects of alkaline activator solution type (sodium hydroxide and sodium silicate) and quantity on the development of engineering properties of alkali-activated WCB mortars, such as compressive and flexural strength, water sorptivity, and drying shrinkage, were investigated by using WCB calcined at 800°C. Furthermore, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA/DTA), and scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS) analyses were carried out on the hardened paste mixtures. The minimum activator concentration for alkali activation of calcined WCB was 6% Na2O by weight of WCB with a minimum silicate modulus (Ms=SiO2/Na2O) of 1.2. A compressive strength value up to 38 MPa along with acceptable water absorption characteristics and drying shrinkage values can be obtained from alkali activation of calcined WCB at 800°C. NaOH activator was not as effective as sodium silicate activator in activating WCB, even in high dosages.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors thank Emet Boron Works for supplying materials and Erkan Güler for his contributions.

References

Abalı, Y., M. A. Yurdusev, M. S. Zeybek, and A. A. Kumanlıoğlu. 2007. “Using phosphogypsume and boron concentrator wastes in light brick production.” Constr. Build. Mater. 21 (1): 52–56. https://doi.org/10.1016/j.conbuildmat.2005.07.009.
ACI (American Concrete Institute). 1992. Accelerated curing of concrete at atmospheric pressure. ACI Committee 517. Detroit: ACI.
Ahmari, S., K. Parameswaran, and L. Zhang. 2015. “Alkali activation of copper mine tailings and low-calcium flash-furnace copper smelter slag.” J. Mater. Civ. Eng. 27 (6): 04014193. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001159.
Akpınar, S., A. Evcin, and Y. Özdemir. 2017. “Effect of calcined colemanite additions on properties of hard porcelain body.” Ceram. Int. 43 (11): 8364–8371. https://doi.org/10.1016/j.ceramint.2017.03.178.
Al Saadi, T. H. A., A. I. Badanoiu, A. I. Nicoara, S. Stoleriu, and G. Voicu. 2017. “Synthesis and properties of alkali activated borosilicate inorganic polymers based on waste glass.” Constr. Build. Mater. 136 (Apr): 298–306. https://doi.org/10.1016/j.conbuildmat.2017.01.026.
Alujas, A., R. Fernández, R. Quintana, K. L. Scrivener, and F. Martirena. 2015. “Pozzolanic reactivity of low grade kaolinitic clays: Influence of calcination temperature and impact of calcination products on OPC hydration.” Appl. Clay Sci. 108 (May): 94–101. https://doi.org/10.1016/j.clay.2015.01.028.
Alver, B. E., G. Dikmen, and Ö. Alver. 2016. “Investigation of the influence of heat treatment on the structural properties of illite-rich clay mineral using FT-IR, 29Si MAS NMR, TG and DTA methods.” Anadolu Univ. J. Sci. Technol. A - Appl. Sci. Eng. 17 (5): 823–829. https://doi.org/10.18038/aubtda.279851.
ASTM. 2009. Standard test method for drying shrinkage of mortar containing hydraulic cement. ASTM C596. West Conshohocken, PA: ASTM.
ASTM. 2013. Standard test method for density, absorption, and voids in hardened concrete. ASTM C642. West Conshohocken, PA: ASTM.
ASTM. 2014a. Standard specification for flow table for use in tests of hydraulic cement. ASTM C230/C230M. West Conshohocken, PA: ASTM.
ASTM. 2014b. Standard test method for compressive strength of hydraulic-cement mortars (using portions of prisms broken in flexure). ASTM C349. West Conshohocken, PA: ASTM.
ASTM. 2014c. Standard test method for flexural strength of hydraulic-cement mortars. ASTM C348. West Conshohocken, PA: ASTM.
ASTM. 2015. Standard test method for rate of water absorption of masonry mortars. ASTM C1403. West Conshohocken, PA: ASTM.
ASTM. 2016. Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens). ASTM C109/C109M. West Conshohocken, PA: ASTM.
Aydın, S., and B. Baradan. 2014. “Effect of activator type and content on properties of alkali-activated slag mortars.” Compos. Part B: Eng. 57 (Feb): 166–172. https://doi.org/10.1016/j.compositesb.2013.10.001.
Bagheri, A., A. Nazari, J. G. Sanjayan, and P. Rajeev. 2017. “Alkali activated materials vs geopolymers: Role of boron as an eco-friendly replacement.” Constr. Build. Mater. 146 (Aug): 297–302. https://doi.org/10.1016/j.conbuildmat.2017.04.137.
Bernal, S. A., R. M. De Gutiérrez, A. L. Pedraza, J. L. Provis, E. D. Rodriguez, and S. Delvasto 2011. “Effect of binder content on the performance of alkali-activated slag concretes.” Cem. Concr. Res. 41 (1): 1–8. https://doi.org/10.1016/j.cemconres.2010.08.017.
Boron Sector Report. 2011. Eti mine works general management. Turkey: Boron Sector Report.
Can, M. F., A. Helvacı, Z. O. Yazıcı, S. Akpınar, and Y. Özdemir. 2016. “Microwave assisted calcination of colemanite powders.” Int. J. Metall. Mater. Eng. 2: 1–5. https://doi.org/10.15344/2455-2372/2016/129.
Chatterjee, A. K. 2015. “Pozzolanicity of calcined clay.” In Vol. 10 of Calcined Clays for Sustainable Concrete, edited by K. Scrivener and A. Favier, 83–89. Dordrecht, Netherlands: Springer.
Cheng, H., K. L. Lin, R. Cui, C. L. Hwang, Y. M. Chang, and T. W. Cheng. 2015. “The effects of SiO2/Na2O molar ratio on the characteristics of alkali-activated waste catalyst–metakaolin based geopolymers.” Constr. Build. Mater. 95 (Oct): 710–720. https://doi.org/10.1016/j.conbuildmat.2015.07.028.
Cheng, Y., M. Hongqiang, C. Hongyu, W. Jiaxin, S. Jing, L. Zonghui, and Y. Mingkai. 2018. “Preparation and characterization of coal gangue geopolymers.” Constr. Build. Mater. 187 (Oct): 318–326. https://doi.org/10.1016/j.conbuildmat.2018.07.220.
Davidovits, J. 1979. “Synthesis of new high temperature geo-polymers reinforced plastics/composites.” In SPE PACTEC 79 Society of Plastic Engineers, Brookfield Center, 151–154. Bethel, CT: Society of Plastic Engineers.
Demircioğlu, A. 1973. “Türkiye’deki bor minerallerinden hidroborasit.” Maden Tetkik ve Arama Dergisi 80 (80): 100–124.
Duan, P., C. Yan, W. Zhou, W. Luo, and C. Shen. 2015. “An investigation of the microstructure and durability of a fluidized bed fly ash–metakaolin geopolymer after heat and acid exposure.” Mater. Des. 74 (Jun): 125–137. https://doi.org/10.1016/j.matdes.2015.03.009.
Duxson, P., and J. L. Provis. 2008. “Designing precursors for geopolymer cements.” J. Am. Ceram. Soc. 91 (12): 3864–3869. https://doi.org/10.1111/j.1551-2916.2008.02787.x.
Džunuzović, N., M. Komljenović, V. Nikolić, and T. Ivanović. 2017. “External sulfate attack on alkali-activated fly ash-blast furnace slag composite.” Constr. Build. Mater. 157 (Dec): 737–747. https://doi.org/10.1016/j.conbuildmat.2017.09.159.
Elimbi, A., H. K. Tchakoute, and D. Njopwouo. 2011. “Effects of calcination temperature of kaolinite clays on the properties of geopolymer cements.” Constr. Build. Mater. 25 (6): 2805–2812. https://doi.org/10.1016/j.conbuildmat.2010.12.055.
Espuelas, S., A. M. Echeverria, S. Marcelino, E. Prieto, and A. Seco. 2018. “Technical and environmental characterization of hydraulic and alkaline binders.” J. Clean. Prod. 196 (Sep): 1306–1313. https://doi.org/10.1016/j.jclepro.2018.06.090.
Essaidi, N., B. Samet, S. Baklouti, and S. Rossignol. 2014. “Feasibility of producing geopolymers from two different Tunisian clays before and after calcination at various temperatures.” Appl. Clay Sci. 88 (Feb): 221–227. https://doi.org/10.1016/j.clay.2013.12.006.
Fernandez, R., F. Martirena, and K. L. Scrivener. 2011. “The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite.” Cem. Concr. Res. 41 (1): 113–122. https://doi.org/10.1016/j.cemconres.2010.09.013.
Frost, R. L., R. Scholz, X. Ruan, and R. M. F. Lima. 2016. “Thermal analysis and infrared emission spectroscopy of the borate mineral colemanite (CaB3O4(OH)3·H2O).” J. Therm. Anal. Calorim. 124 (1): 131–135. https://doi.org/10.1007/s10973-015-5128-5.
Garrett, D. E. 1998. Borates: Handbook of deposits, processing, properties, and use. San Diego: Academic Press.
Gebregziabiher, B. S., R. Thomas, and S. Peethamparan. 2015. “Very early-age reaction kinetics and microstructural development in alkali-activated slag.” Cem. Concr. Compos. 55 (Jan): 91–102. https://doi.org/10.1016/j.cemconcomp.2014.09.001.
Habert, G., J. B. d’Espinose de Lacaillerie, and N. Roussel. 2011. “An environmental evaluation of geopolymer based concrete production: Reviewing current research trends.” J. Clean. Prod. 19 (11): 1229–1238. https://doi.org/10.1016/j.jclepro.2011.03.012.
Habert, G., and C. Ouellet-Plamondon. 2016. “Recent update on the environmental impact of geopolymers.” RILEM Tech. Lett. 1: 17–23. https://doi.org/10.21809/rilemtechlett.2016.6.
Hajimohammadi, A., J. L. Provis, and J. S. Van Deventer. 2008. “One-part geopolymer mixes from geothermal silica and sodium aluminate.” Ind. Eng. Chem. Res. 47 (23): 9396–9405. https://doi.org/10.1021/ie8006825.
He, C., E. Makovicky, and B. Osbaeck. 1996. “Thermal treatment and pozzolanic activity of Na-and Ca-montmorillonite.” Appl. Clay Sci. 10 (5): 351–368. https://doi.org/10.1016/0169-1317(95)00037-2.
He, C., E. Makovicky, and B. Øsbæck. 1995. “Thermal stability and pozzolanic activity of calcined illite.” Appl. Clay Sci. 9 (5): 337–354. https://doi.org/10.1016/0169-1317(94)00033-M.
Heikal, M., M. Y. Nassar, G. El-Sayed, and S. M. Ibrahim. 2014. “Physico-chemical, mechanical, microstructure and durability characteristics of alkali activated Egyptian slag.” Constr. Build. Mater. 69 (Oct): 60–72. https://doi.org/10.1016/j.conbuildmat.2014.07.026.
Helvacı, C., and M. R. Palmer. 2017. “Origin and distribution of evaporite borates: the primary economic sources of boron.” Elements: Int. Mag. Mineral. Geochem. Petrol. 13 (4): 249–254. https://doi.org/10.2138/gselements.13.4.249.
Hu, N., D. Bernsmeier, G. H. Grathoff, and L. N. Warr. 2017. “The influence of alkali activator type, curing temperature and gibbsite on the geopolymerization of an interstratified illite-smectite rich clay from Friedland.” Appl. Clay Sci. 135 (Jan): 386–393. https://doi.org/10.1016/j.clay.2016.10.021.
Jiang, T., G. Li, G. Qiu, X. Fan, and Z. Huang. 2008. “Thermal activation and alkali dissolution of silicon from illite.” Appl. Clay Sci. 40 (1–4): 81–89. https://doi.org/10.1016/j.clay.2007.08.002.
Kaman, D. Ö., L. Köroğlu, E. Ayas, and Y. Güney. 2017. “The effect of heat-treated boron derivative waste at 600°C on the mechanical and microstructural properties of cement mortar.” Constr. Build. Mater. 154 (Nov): 743–751. https://doi.org/10.1016/j.conbuildmat.2017.07.209.
Kavas, T. 2006. “Use of boron waste as a fluxing agent in production of red mud brick.” Build. Environ. 41 (12): 1779–1783. https://doi.org/10.1016/j.buildenv.2005.07.019.
Keshavarz, M., T. Ebadzadeh, and S. Banijamali. 2017. “Preparation of forsterite/MBS (MgO-B2O3-SiO2) glass-ceramic composites via conventional and microwave assisted sintering routes for LTCC application.” Ceram. Int. 43 (12): 9259–9266. https://doi.org/10.1016/j.ceramint.2017.04.082.
Kiventerä, J., I. Lancellotti, M. Catauro, F. D. Poggetto, C. Leonelli, and M. Illikainen. 2018. “Alkali activation as new option for gold mine tailings inertization.” J. Clean. Prod. 187 (Jun): 76–84. https://doi.org/10.1016/j.jclepro.2018.03.182.
Kıpçak, İ., and M. Özdemir. 2012. “Recovery of boron from the clay waste of boron industry by leaching.” Int. J. Chem. React. Eng. 10 (1): 1–13. https://doi.org/10.1515/1542-6580.2468.
Koleżyński, A., M. Król, and M. Żychowicz. 2018. “The structure of geopolymers—Theoretical studies.” J. Mol. Struct. 1163 (Jul): 465–471. https://doi.org/10.1016/j.molstruc.2018.03.033.
Koumpouri, D., and G. N. Angelopoulos. 2016. “Effect of boron waste and boric acid addition on the production of low energy belite cement.” Cem. Concr. Compos. 68 (Apr): 1–8. https://doi.org/10.1016/j.cemconcomp.2015.12.009.
Lee, N. K., and H. K. Lee. 2015. “Reactivity and reaction products of alkali-activated, fly ash/slag paste.” Constr. Build. Mater. 81 (Apr): 303–312. https://doi.org/10.1016/j.conbuildmat.2015.02.022.
Lemougna, P. N., K. T. Wang, Q. Tang, and X. M. Cui. 2017a. “Study on the development of inorganic polymers from red mud and slag system: Application in mortar and leightweight materials.” Constr. Build. Mater. 156 (Dec): 486–495. https://doi.org/10.1016/j.conbuildmat.2017.09.015.
Lemougna, P. N., K. T. Wang, Q. Tang, and X. M. Cui. 2017b. “Synthesis and characterization of low temperature (<800°C) ceramics from red mud geopolymer precursor.” Constr. Build. Mater. 131 (Jan): 564–573. https://doi.org/10.1016/j.conbuildmat.2016.11.108.
Lemougna, P. N., K. T. Wang, Q. Tang, U. C. Melo, and X. M. Cui. 2016. “Recent developments on inorganic polymers synthesis and applications.” Ceram. Int. 42 (14): 15142–15159. https://doi.org/10.1016/j.ceramint.2016.07.027.
Lin, F. H., Y. H. Lee, C. H. Jian, J. M. Wong, M. J. Shieh, and C. Y. Wang. 2002. “A study of purified montmorillonite intercalated with 5-fluorouracil as drug carrier.” Biomaterials 23 (9): 1981–1987. https://doi.org/10.1016/S0142-9612(01)00325-8.
Luukkonen, T., Z. Abdollahnejad, J. Yliniemi, P. Kinnunen, and M. Illikainen. 2018. “One-part alkali-activated materials: A review.” Cem. Concr. Res. 103 (Jan): 21–34. https://doi.org/10.1016/j.cemconres.2017.10.001.
Maghsoodloorad, H., H. Khalili, and A. Allahverdi. 2017. “Alkali-activated phosphorous slag performance under different curing conditions: Compressive strength, hydration products, and microstructure.” J. Mater. Civ. Eng. 30 (1): 1–12. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002101.
Mindess, S., J. F. Young, and D. Darwin. 2002. Concrete. Upper Saddle River, NJ: Pearson Education.
Mutuk, T., and B. Mesci. 2014. “Analysis of mechanical properties of cement containing boron waste and rice husk ash using full factorial design.” J. Clean. Prod. 69 (Apr): 128–132. https://doi.org/10.1016/j.jclepro.2014.01.051.
Nazari, A., A. Maghsoudpour, and J. G. Sanjayan. 2014. “Characteristics of boroaluminosilicate geopolymers.” Constr. Build. Mater. 70 (Nov): 262–268. https://doi.org/10.1016/j.conbuildmat.2014.07.087.
Neville, A. M. 1995. Properties of concrete. New York: Longman.
Ouellet-Plamondon, C., and G. Habert. 2014. “Life cycle analysis (LCA) of alkali-activated cements and concretes.” In Handbook of alkali-activated cements, mortars and concretes, 663–686. Cambridge: WoodHead.
Özdemir, M., and N. U. Öztürk. 2003. “Utilization of clay wastes containing boron as cement additives.” Cem. Concr. Res. 33 (10): 1659–1661. https://doi.org/10.1016/S0008-8846(03)00138-8.
Pacheco-Torgal, F., L. F. Cabeza, J. Labrincha, and A. G. De Magalhaes. 2014. Eco-efficient construction and building materials: Life cycle assessment (LCA), Eco-labelling and case studies. Oxford: Woodhead.
Pacheco-Torgal, F., J. Castro-Gomes, and S. Jalali. 2008. “Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products.” Constr. Build. Mater. 22 (7): 1305–1314. https://doi.org/10.1016/j.conbuildmat.2007.10.015.
Pacheco-Torgal, F., J. Castro-Gomes, and S. Jalali. 2010. “Durability and environmental performance of alkali-activated tungsten mine waste mud mortars.” J. Mater. Civ. Eng. 22 (9): 897–904. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000092.
Panias, D., I. P. Giannopoulou, and T. Perraki. 2007. “Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers.” Colloids Surf. A 301 (1–3): 246–254. https://doi.org/10.1016/j.colsurfa.2006.12.064.
Passuello, A., E. D. Rodriguez, E. Hirt, M. Longhi, S. A. Bernal, J. L. Provis, and A. P. Kirchheim 2017. “Evaluation of the potential improvement in the environmental footprint of geopolymers using waste-derived activators.” J. Clean. Prod. 166 (Nov): 680–689. https://doi.org/10.1016/j.jclepro.2017.08.007.
Phair, J. W., J. S. J. Van Deventer, and J. D. Smith. 2000. “Mechanism of polysialation in the incorporation of zirconia into fly ash-based geopolymers.” Ind. Eng. Chem. Res. 39 (8): 2925–2934. https://doi.org/10.1021/ie990929w.
Pia, G., C. Siligardi, L. Casnedi, and U. Sanna. 2016. “Pore size distribution and porosity influence on sorptivity of ceramic tiles: From experimental data to fractal modelling.” Ceram. Int. 42 (8): 9583–9590. https://doi.org/10.1016/j.ceramint.2016.03.041.
Provis, J. L., and S. A. Bernal. 2014. “Binder chemistry—Blended systems and intermediate Ca content.” In Vol. 13 of Alkali activated materials: State-of-the-art report, RILEM TC 224-AAM, 125–144. Dordrecht, Netherlands: Springer.
Provis, J. L., P. Duxson, and J. S. van Deventer. 2010. “The role of particle technology in developing sustainable construction materials.” Adv. Powder Technol. 21 (1): 2–7. https://doi.org/10.1016/j.apt.2009.10.006.
Ramachandran, V. S., R. M. Paroli, J. J. Beaudoin, and A. H. Delgado. 2002. Handbook of thermal analysis of construction materials. New York: Noyes/William Andrew.
Rashad, A. M. 2015. “Influence of different additives on the properties of sodium sulfate activated slag.” Constr. Build. Mater. 79 (Mar): 379–389. https://doi.org/10.1016/j.conbuildmat.2015.01.022.
Samet, B., A. Chakchouk, T. Mnif, and A. Tagnit-Hamou. 2007. “Influence of mineralogy of Tunisian clays on pozzolanic activity—Assessment by different methods.” Adv. Cem. Res. 19 (2): 57–65. https://doi.org/10.1680/adcr.2007.19.2.57.
Sedmale, G., M. Randers, M. Rundans, and V. Seglins. 2017. “Application of differently treated illite and illite clay samples for the development of ceramics.” Appl. Clay Sci. 146 (Sep): 397–403. https://doi.org/10.1016/j.clay.2017.06.016.
Seiler, H. G., H. Sigel, and A. Sigel. 1988. Handbook on toxicity of inorganic compounds. New York: Marcel Dekker.
Şener, S., and G. Özbayoǧlu. 1995. “Separation of ulexite from colemanite by calcination.” Miner. Eng. 8 (6): 697–704. https://doi.org/10.1016/0892-6875(95)00030-T.
Sevim, U. K. 2011. “Colemanite ore waste concrete with low shrinkage and high split tensile strength.” Mater. Struct. 44 (1): 187–193. https://doi.org/10.1617/s11527-010-9618-4.
Teh, S. H., T. Wiedmann, A. Castel, and J. de Burgh. 2017. “Hybrid life cycle assessment of greenhouse gas emissions from cement, concrete and geopolymer concrete in Australia.” J. Clean. Prod. 152 (May): 312–320. https://doi.org/10.1016/j.jclepro.2017.03.122.
Turner, L. K., and F. G. Collins. 2013. “Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete.” Constr. Build. Mater. 43 (Jun): 125–130. https://doi.org/10.1016/j.conbuildmat.2013.01.023.
Uslu, T., and A. I. Arol. 2004. “Use of boron waste as an additive in red bricks.” Waste Manage. 24 (2): 217–220. https://doi.org/10.1016/S0956-053X(03)00031-X.
Wan, Q., F. Rao, S. Song, R. E. García, R. M. Estrella, C. L. Patino, and Y. Zhang. 2017. “Geopolymerization reaction, microstructure and simulation of metakaolin-based geopolymers at extended Si/Al ratios.” Cem. Concr. Compos. 79 (May): 45–52. https://doi.org/10.1016/j.cemconcomp.2017.01.014.
Ye, H., N. Jin, and X. Jin. 2017. “An experimental study on relationship among water sorptivity, pore characteristics, and salt concentration in concrete.” Period. Polytech-Civ. 61 (3): 530–540. https://doi.org/10.3311/PPci.9621.
Yip, C. K., G. C. Lukey, and J. S. J. Van Deventer. 2005. “The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation.” Cem. Concr. Res. 35 (9): 1688–1697. https://doi.org/10.1016/j.cemconres.2004.10.042.
Yıldız, Ö. 2004. “The effect of heat treatment on colemanite processing: A ceramics application.” Powder Technol. 142 (1): 7–12. https://doi.org/10.1016/j.powtec.2004.03.006.
Zhang, H., J. Yu, and S. Wu. 2012. “Effect of montmorillonite organic modification on ultraviolet aging properties of SBS modified bitumen.” Constr. Build. Mater. 27 (1): 553–559. https://doi.org/10.1016/j.conbuildmat.2011.07.008.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 31Issue 10October 2019

History

Received: Jun 23, 2018
Accepted: Apr 17, 2019
Published online: Jul 26, 2019
Published in print: Oct 1, 2019
Discussion open until: Dec 26, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Serdar Aydın [email protected]
Associate Professor, Dept. of Civil Engineering, Dokuz Eylül Univ., Buca, Izmir 35160, Turkey (corresponding author). Email: [email protected]
Cavit Çağatay Kızıltepe [email protected]
Research Assistant, Dept. of Civil Engineering, Bursa Technical Univ., Bursa 16320, Turkey. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share