Technical Papers
Jul 26, 2019

Performance Evaluation and Microstructure Characterization of Steel Fiber–Reinforced Alkali-Activated Slag Concrete Incorporating Fly Ash

Publication: Journal of Materials in Civil Engineering
Volume 31, Issue 10

Abstract

This paper investigates the performance of steel fiber–reinforced alkali-activated slag concrete incorporating different fly ash replacement percentages. Three different molarities of sodium hydroxide (SH) were combined with sodium silicate to activate the binding phase. Double hooked-end steel fibers were incorporated into the alkali-activated mix in varying volumetric proportions up to 3% to enhance its ductility. Blended binder, alkali-activator solution, dune sand, and coarse aggregate contents were proportioned and samples were cured at ambient conditions. Results showed that higher slag content, molarity of SH, and fiber addition led to less-workable concretes but with improved mechanical properties, especially at early ages. Fly ash replacement of 25% could enhance mechanical performance after 28 days. Analytical models correlating mechanical properties were developed for alkali-activated slag concretes with fly ash. Scanning electron microscopy, differential scanning calorimetry, and Fourier transform infrared spectroscopy highlighted the coexistence of calcium aluminosilicate hydrate and sodium aluminosilicate hydrate gels.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors are grateful to the United Arab Emirates University (UAEU), Al Ain, UAE, for the financial support through Grants 31N282 and 31N305. The assistance of students and laboratory staff at UAEU is gratefully acknowledged.

References

ACI (American Concrete Institute). 1992. State of the art report on high-strength concrete. ACI Committee 363. Farmington Hills, MI: ACI.
ACI (American Concrete Institute). 2014. Building code requirements for structural concrete and commentary. ACI Committee 318. Farmington Hills, MI: ACI.
Afroughsabet, V., and T. Ozbakkaloglu. 2015. “Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers.” Constr. Build. Mater. 94: 73–82. https://doi.org/10.1016/j.conbuildmat.2015.06.051.
Ahmed, S. H., and S. P. Shah. 1985. “Structural properties of high strength concrete and its implications for precast prestressed concrete.” PCI J. 30 (6): 92–119.
Al Bakri, A. M. M., H. Kamarudin, M. Binhussain, K. Nizar, R. Rafiza, and Y. Zarina. 2012. “The processing, characterization, and properties of fly ash based geopolymer concrete” Rev. Adv. Mater. Sci. 30 (1): 90–97.
Al-Majidi, M. H., A. Lampropoulos, A. Cundy, and S. Meikle. 2016. “Development of geopolymer mortar under ambient temperature for in situ applications.” Constr. Build. Mater. 120: 198–211. https://doi.org/10.1016/j.conbuildmat.2016.05.085.
Al-Majidi, M. H., A. Lampropoulos, and A. B. Cundy. 2017. “Steel fibre reinforced geopolymer concrete (SFRGC) with improved microstructure and enhanced fibre-matrix interfacial properties.” Constr. Build. Mater. 139: 286–307. https://doi.org/10.1016/j.conbuildmat.2017.02.045.
Alonso, S., and A. Palomo. 2001. “Alkaline activation of metakaolin and calcium hydroxide mixtures: Influence of temperature, activator concentration and solids ratio.” Mater. Lett. 47 (1): 55–62. https://doi.org/10.1016/S0167-577X(00)00212-3.
ASTM. 2011. Standard test method for splitting tensile strength of cylindrical concrete specimens. ASTM C496. West Conshohocken, PA: ASTM.
ASTM. 2014. Standard test method for static modulus of elasticity and Poisson’s ratio of concrete in compression. ASTM C469. West Conshohocken, PA: ASTM.
ASTM. 2015a. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM C618. West Conshohocken, PA: ASTM.
ASTM. 2015b. Standard test method for compressive strength of cylindrical concrete specimens. ASTM C39. West Conshohocken, PA: ASTM.
ASTM. 2015c. Standard test method for slump of hydraulic-cement concrete. ASTM C143. West Conshohocken, PA: ASTM.
ASTM. 2016. Standard test method for flexural strength of concrete (using simple beam with third-point loading). ASTM C78. West Conshohocken, PA: ASTM.
Aydın, S., and B. Baradan. 2013. “The effect of fiber properties on high performance alkali-activated slag/silica fume mortars.” Compos. Part B: Eng. 45 (1): 63–69. https://doi.org/10.1016/j.compositesb.2012.09.080.
Aydın, S., and B. Baradan. 2014. “Effect of activator type and content on properties of alkali-activated slag mortars.” Compos. Part B: Eng. 57: 166–172. https://doi.org/10.1016/j.compositesb.2013.10.001.
Ballekere Kumarappa, D., S. Peethamparan, and M. Ngami. 2018. “Autogenous shrinkage of alkali activated slag mortars: Basic mechanisms and mitigation methods.” Cem. Concr. Res. 109: 1–9. https://doi.org/10.1016/j.cemconres.2018.04.004.
Beglarigale, A., S. Aydın, and C. Kızılırmak. 2016. “Fiber-matrix bond characteristics of alkali-activated slag cement-based composites.” J. Mater. Civ. Eng. 28 (11): 04016133. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001642.
Beglarigale, A., and H. Yazici. 2014. “Mitigation of detrimental effects of alkali-silica reaction in cement-based composites by combination of steel microfibers and ground-granulated blast-furnace slag.” J. Mater. Civ. Eng. 26 (12): 04014091. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001005.
Ben Haha, M., G. Le Saout, F. Winnefeld, and B. Lothenbach. 2011a. “Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags.” Cem. Concr. Res. 41 (3): 301–310. https://doi.org/10.1016/j.cemconres.2010.11.016.
Ben Haha, M., B. Lothenbach, G. Le Saout, and F. Winnefeld. 2011b. “Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag. Part I: Effect of MgO.” Cem. Concr. Res. 41 (9): 955–963. https://doi.org/10.1016/j.cemconres.2011.05.002.
Bernal, S., R. De Gutierrez, S. Delvasto, and E. Rodriguez. 2010. “Performance of an alkali-activated slag concrete reinforced with steel fibers.” Constr. Build. Mater. 24 (2): 208–214. https://doi.org/10.1016/j.conbuildmat.2007.10.027.
Bernal, S. A., E. D. Rodríguez, R. Mejía de Gutiérrez, and J. L. Provis. 2012. “Performance of alkali-activated slag mortars exposed to acids.” J. Sustainable Cem. Mater. 1 (3): 138–151. https://doi.org/10.1080/21650373.2012.747235.
Brough, A. R., and A. Atkinson. 2002. “Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure.” Cem. Concr. Res. 32 (6): 865–879. https://doi.org/10.1016/S0008-8846(02)00717-2.
CEB-FIP (Comité euro-international du béton-Fédération Internationale de la Précontrainte). 1990. Evaluation of the time dependent behavior of concrete. Lausanne, Switzerland: fib.
Chen, B., and J. Liu. 2005. “Contribution of hybrid fibers on the properties of the high-strength lightweight concrete having good workability.” Cem. Concr. Res. 35 (5): 913–917. https://doi.org/10.1016/j.cemconres.2004.07.035.
Chi, M. 2012. “Effects of dosage of alkali-activated solution and curing conditions on the properties and durability of alkali-activated slag concrete.” Supplement, Constr. Build. Mater. 35 (SC): 240–245. https://doi.org/10.1016/j.conbuildmat.2012.04.005.
Choi, Y., and R. L. Yuan. 2005. “Experimental relationship between splitting tensile strength and compressive strength of GFRC and PFRC.” Cem. Concr. Res. 35 (8): 1587–1591. https://doi.org/10.1016/j.cemconres.2004.09.010.
Colella, C. 1999. “Use of thermal analysis in zeolite research and application.” In Characterization techniques of glasses and ceramics. Edited by J. M. Rincon and M. Romero, 112–137. Berlin: Springer.
Collins, F., and J. G. Sanjayan. 2001. “Microcracking and strength development of alkali activated slag concrete.” Cem. Concr. Compos. 23 (4): 345–352. https://doi.org/10.1016/S0958-9465(01)00003-8.
Davidovits, J. 2008. Geopolymer chemistry and applications. France: Institut Géopolymère.
Dilli, M. E., H. N. Atahan, and C. Şengül. 2015. “A comparison of strength and elastic properties between conventional and lightweight structural concretes designed with expanded clay aggregates.” Constr. Build. Mater. 101: 260–267. https://doi.org/10.1016/j.conbuildmat.2015.10.080.
El-Hassan, H., and N. Ismail. 2018. “Effect of process parameters on the performance of fly ash/GGBS blended geopolymer composites.” J. Sustainable Cem. Mater. 7 (2): 122–140. https://doi.org/10.1080/21650373.2017.1411296.
El-Hassan, H., E. Shehab, and A. Alsallamin. 2018. “Influence of different curing regimes on the performance and microstructure of alkali-activated slag concrete.” J. Mater. Civ. Eng. 30 (9): 04018230. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002436.
Ganesan, N., R. Abraham, and S. Deepa Raj. 2015. “Durability characteristics of steel fibre reinforced geopolymer concrete.” Constr. Build. Mater. 93: 471–476. https://doi.org/10.1016/j.conbuildmat.2015.06.014.
Gencel, O., W. Brostow, T. Datashvili, and M. Thedford. 2011. “Workability and mechanical performance of steel fiber-reinforced self-compacting concrete with fly ash.” Compos. Interfaces 18 (2): 169–184. https://doi.org/10.1163/092764411X567567.
Guo, X., and X. Pan. 2018. “Mechanical properties and mechanisms of fiber reinforced fly ash–steel slag based geopolymer mortar.” Constr. Build. Mater. 179: 633–641. https://doi.org/10.1016/j.conbuildmat.2018.05.198.
Islam, A., U. J. Alengaram, M. Z. Jumaat, N. B. Ghazali, S. Yusoff, and I. I. Bashar. 2017. “Influence of steel fibers on the mechanical properties and impact resistance of lightweight geopolymer concrete.” Supplement, Constr. Build. Mater. 152 (SC): 964–977. https://doi.org/10.1016/j.conbuildmat.2017.06.092.
Ismail, I., S. A. Bernal, J. L. Provis, R. San Nicolas, S. Hamdan, and J. S. J. van Deventer. 2014. “Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash.” Cem. Concr. Compos. 45: 125–135. https://doi.org/10.1016/j.cemconcomp.2013.09.006.
Ismail, N., and H. El-Hassan. 2018. “Development and characterization of fly ash-slag blended geopolymer mortar and lightweight concrete.” J. Mater. Civ. Eng. 30 (4): 04018029. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002209.
Jiao, Z., Y. Wang, W. Zheng, and W. Huang. 2018. “Effect of dosage of sodium carbonate on the strength and drying shrinkage of sodium hydroxide based alkali-activated slag paste.” Constr. Build. Mater. 179: 11–24. https://doi.org/10.1016/j.conbuildmat.2018.05.194.
Kanesan, D., S. Ridha, R. Suppiah, and T. Ravichandran. 2017. “Mechanical properties of different alkali activated slag content for oilwell cement under elevated conditions.” Contemp. Eng. Sci. 10 (4): 165–177. https://doi.org/10.12988/ces.2017.610166.
Karahan, O., and A. Yakupoğlu. 2011. “Resistance of alkali-activated slag mortar to abrasion and fire.” Adv. Cem. Res. 23 (6): 289–297. https://doi.org/10.1680/adcr.2011.23.6.289.
Mendis, P. 2003. “Design of high-strength concrete members: State-of-the-art.” Prog. Struct. Mater. Eng. 5 (1): 1–15. https://doi.org/10.1002/pse.138.
Montes, C., D. Zang, and E. N. Allouche. 2012. “Rheological behavior of fly ash-based geopolymers with the addition of superplasticizers.” J. Sustainable Cem. Mater. 1 (4): 179–185. https://doi.org/10.1080/21650373.2012.754568.
Nath, P., and P. K. Sarker. 2014. “Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition.” Constr. Build. Mater. 66: 163–171. https://doi.org/10.1016/j.conbuildmat.2014.05.080.
Nath, S. K. 2018. “Geopolymerization behavior of ferrochrome slag and fly ash blends.” Constr. Build. Mater. 181: 487–494. https://doi.org/10.1016/j.conbuildmat.2018.06.070.
Nath, S. K., and S. Kumar. 2013. “Influence of iron making slags on strength and microstructure of fly ash geopolymer.” Constr. Build. Mater. 38: 924–930. https://doi.org/10.1016/j.conbuildmat.2012.09.070.
Nath, S. K., S. Maitra, S. Mukherjee, and S. Kumar. 2016. “Microstructural and morphological evolution of fly ash based geopolymers.” Constr. Build. Mater. 111: 758–765. https://doi.org/10.1016/j.conbuildmat.2016.02.106.
Palacios, M., and F. Puertas. 2005. “Effect of superplasticizer and shrinkage-reducing admixtures on alkali-activated slag pastes and mortars.” Cem. Concr. Res. 35 (7): 1358–1367. https://doi.org/10.1016/j.cemconres.2004.10.014.
Palomo, A., M. W. Grutzeck, and M. T. Blanco. 1999. “Alkali-activated fly ashes: A cement for the future.” Cem. Concr. Res. 29 (8): 1323–1329. https://doi.org/10.1016/S0008-8846(98)00243-9.
Pan, Z., J. G. Sanjayan, and B. V. Rangan. 2011. “Fracture properties of geopolymer paste and concrete.” Mag. Concr. Res. 63 (10): 763–771. https://doi.org/10.1680/macr.2011.63.10.763.
Patankar, S. V., Y. M. Ghugal, and S. S. Jamkar. 2014. “Effect of concentration of sodium hydroxide and degree of heat curing on fly ash-based geopolymer mortar.” Indian J. Mater. Sci. 2014: 1–6. https://doi.org/10.1155/2014/938789.
Perera, D. S., E. R. Vance, K. S. Finnie, M. G. Blackford, J. V. Hanna, and D. J. Cassidy. 2006. “Disposition of water in metakaolinite based geopolymers.” In Advances in ceramic matrix composites XI, 225–236. New York: Wiley.
Perumal, R. 2015. “Correlation of compressive strength and other engineering properties of high-performance steel fiber–Reinforced concrete.” J. Mater. Civ. Eng. 27 (1): 04014114. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001050.
Puertas, F., and M. Torres-Carrasco. 2014. “Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterisation.” Cem. Concr. Res. 57: 95–104. https://doi.org/10.1016/j.cemconres.2013.12.005.
Rodrigue, A., J. Duchesne, B. Fournier, and B. Bissonnette. 2018. “Influence of added water and fly ash content on the characteristics, properties and early-age cracking sensitivity of alkali-activated slag/fly ash concrete cured at ambient temperature.” Constr. Build. Mater. 171: 929–941. https://doi.org/10.1016/j.conbuildmat.2018.03.176.
Rosas, C., S. Arredondo-Rea, J. Gómez-Soberón, J. Almaral, R. Corral Higuera, M. J. Chinchillas-Chinchillas, and O. H. Acuña-Agüero. 2014. “Experimental study of XRD, FTIR and TGA techniques in geopolymeric materials.” In Proc., Int. Conf. on Advances in Civil and Structural Engineering, 25–30. New York: SEEK Digital Library.
Saha, S., and C. Rajasekaran. 2017. “Enhancement of the properties of fly ash based geopolymer paste by incorporating ground granulated blast furnace slag.” Supplement, Constr. Build. Mater. 146 (SC): 615–620. https://doi.org/10.1016/j.conbuildmat.2017.04.139.
Samantasinghar, S., and S. P. Singh. 2018. “Effect of synthesis parameters on compressive strength of fly ash-slag blended geopolymer.” Constr. Build. Mater. 170: 225–234. https://doi.org/10.1016/j.conbuildmat.2018.03.026.
Sani, N. A. M., Z. Man, R. M. Shamsuddin, K. A. Azizli, and K. Z. K. Shaari. 2016. “Determination of excess sodium hydroxide in geopolymer by volumetric analysis.” Procedia Eng. 148: 298–301. https://doi.org/10.1016/j.proeng.2016.06.621.
Sathonsaowaphak, A., P. Chindaprasirt, and K. Pimraksa. 2009. “Workability and strength of lignite bottom ash geopolymer mortar.” J. Hazard. Mater. 168 (1): 44–50. https://doi.org/10.1016/j.jhazmat.2009.01.120.
Shi, C. 2003. “Corrosion resistance of alkali-activated slag cement.” Adv. Cem. Res. 15 (2): 77–81. https://doi.org/10.1680/adcr.2003.15.2.77.
Škvára, F., L. Kopecký, V. Šmilauer, and Z. Bittnar. 2009. “Material and structural characterization of alkali activated low-calcium brown coal fly ash.” J. Hazard. Mater. 168 (2–3): 711–720.
Standards Australia. 2009. Concrete structures. AS3600. Sydney, Australia: Standards Australia.
Sun, W., H. Yan, and B. Zhan. 2003. “Analysis of mechanism on water-reducing effect of fine ground slag, high-calcium fly ash, and low-calcium fly ash.” Cem. Concr. Res. 33 (8): 1119–1125. https://doi.org/10.1016/S0008-8846(03)00022-X.
Sun, Z., X. Lin, P. Liu, D. Wang, A. Vollpracht, and M. Oeser. 2018. “Study of alkali activated slag as alternative pavement binder.” Constr. Build. Mater. 186: 626–634. https://doi.org/10.1016/j.conbuildmat.2018.07.154.
Temuujin, J., R. P. Williams, and A. van Riessen. 2009. “Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature.” J. Mater. Process. Technol. 209 (12): 5276–5280. https://doi.org/10.1016/j.jmatprotec.2009.03.016.
van Deventer, J. S. J., R. San Nicolas, I. Ismail, S. A. Bernal, D. G. Brice, and J. L. Provis. 2015. “Microstructure and durability of alkali-activated materials as key parameters for standardization.” J. Sustainable Cem. Mater. 4 (2): 116–128. https://doi.org/10.1080/21650373.2014.979265.
Wardhono, A., D. W. Law, and A. Strano. 2015. “The strength of alkali-activated slag/fly ash mortar blends at ambient temperature.” Procedia Eng. 125: 650–656. https://doi.org/10.1016/j.proeng.2015.11.095.
Winnefeld, F., M. Ben Haha, G. Le Saout, M. Costoya, S.-C. Ko, and B. Lothenbach. 2015. “Influence of slag composition on the hydration of alkali-activated slags.” J. Sustainable Cem. Mater. 4 (2): 85–100. https://doi.org/10.1080/21650373.2014.955550.
Xu, B. W., and H. S. Shi. 2009. “Correlations among mechanical properties of steel fiber reinforced concrete.” Constr. Build. Mater. 23 (12): 3468–3474. https://doi.org/10.1016/j.conbuildmat.2009.08.017.
Yang, T., X. Yao, Z. Zhang, and H. Wang. 2012. “Mechanical property and structure of alkali-activated fly ash and slag blends.” J. Sustainable Cem. Mater. 1 (4): 167–178. https://doi.org/10.1080/21650373.2012.752621.
Yazıcı, H. 2012. “The effect of steel micro-fibers on ASR expansion and mechanical properties of mortars.” Constr. Build. Mater. 30: 607–615. https://doi.org/10.1016/j.conbuildmat.2011.12.051.
Zhang, M., C. Yang, M. Zhao, K. Yang, R. Shen, and Y. Zheng. 2017. “Immobilization potential of Cr(VI) in sodium hydroxide activated slag pastes.” J. Hazard. Mater. 321: 281–289. https://doi.org/10.1016/j.jhazmat.2016.09.019.
Zhang, W., X. Yao, T. Yang, and Z. Zhang. 2018. “The degradation mechanisms of alkali-activated fly ash/slag blend cements exposed to sulphuric acid.” Constr. Build. Mater. 186: 1177–1187. https://doi.org/10.1016/j.conbuildmat.2018.08.050.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 31Issue 10October 2019

History

Received: Jun 11, 2018
Accepted: Apr 17, 2019
Published online: Jul 26, 2019
Published in print: Oct 1, 2019
Discussion open until: Dec 26, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Assistant Professor, Dept. of Civil and Environmental Engineering, United Arab Emirates Univ., P.O. Box 15551, Al Ain, United Arab Emirates (corresponding author). ORCID: https://orcid.org/0000-0001-9349-350X. Email: [email protected]
Said Elkholy, Ph.D.
Assistant Professor, Dept. of Civil and Environmental Engineering, United Arab Emirates Univ., P.O. Box 15551, Al Ain, United Arab Emirates; Associate Professor, Fayoum Univ., Fayoum 63514, Egypt.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share