Technical Papers
Jul 14, 2018

Hydraulic Properties of Polymerized Bentonites

Publication: Journal of Materials in Civil Engineering
Volume 30, Issue 10

Abstract

With the goal of increasing the swelling pressure and lowering the permeability of ordinary sodium bentonite with high concentration cation solutions, the optimum conditions for producing polymerized bentonite (PB) were examined through a series of laboratory tests. Based on the test results, the proposed optimum conditions for using the free radical polymerization are using sodium acrylate as the monomer and potassium persulfate (KPS) as the initiator, pH of 7, the initiator (I) to monomer (M) ratio, I/M, of 0.2 and the monomer content of 10%. Then, the PB produced using the proposed conditions was further investigated on the microstructure and the hydraulic properties. The results of X-ray diffraction (XRD) patterns indicate that the sodium polyacrylate did not modify the interlayer spacing of the bentonite particles, but the scanning electron microscopy (SEM) image shows that the PB particles have rounder edge compared with that of the untreated bentonite (UB) particles because the bentonite particles were coated by the polymer. For the hydraulic properties, the results of a swelling pressure test show that with comparable initial dry density, PB had higher swelling pressure than that of the UB. Under the identical void ratio, the PB had much lower permeability (k) than that of the UB with aggressive 0.6 M NaCl and 0.6  MCaCl2 solutions. Based on the test results, the PB produced using the proposed conditions can be used as a barrier material against high concentration cation solutions. The proposed optimum condition can be a useful guideline for further investigations on the other properties of the PB.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This work has been supported by Grants-in-Aid for Scientific Research (KAKENHI) of the Japan Society for the Promotion of Science (JSPS) with a Grant No. 17K06558, and the National Natural Science Foundation of China (NSFC) with a Grant No. 51578333.

References

Ahmed, J., B. K. Tiwari, S. H. Imam, and M. A. Rao. eds. 2012. Starch-based polymeric materials and nanocomposites: Chemistry, processing, and applications. Boca Raton, FL: CRC Press.
Alther, G. R. 1982. “The role of bentonite in soil sealing applications.” Bull. Assoc. Eng. Geol. 19 (4): 401–409.
Arulrajah, A., M. M. Disfani, S. Horpibulsuk, C. Suksiripattanapong, and N. Prongmanee. 2014. “Physical properties and shear strength responses of recycled construction and demolition materials in unbound pavement base/subbase applications.” Constr. Build. Mater. 58: 245–257. https://doi.org/10.1016/j.conbuildmat.2014.02.025.
Ashmawy, A. K., D. El-Hajji, N. Sotelo, and N. Muhammad. 2002. “Hydraulic performance of untreated and polymer-treated bentonite in inorganic landfill leachates.” Clays Clay Miner. 50 (5): 546–552. https://doi.org/10.1346/000986002320679288.
ASTM. 2006 Standard test method for swell index of clay mineral component of geosynthetic clay liners. ASTM D5890. West Conshohocken, PA: ASTM.
ASTM. 2018 Standard test methods for one dimensional consolidation properties of soils using incremental loading. ASTM D2. West Conshohocken, PA: ASTM.
ASTM. 2003 Standard test methods for one-dimensional swell or settlement potential of cohesive soils. ASTM D4546. West Conshohocken, PA: ASTM.
Bathurst, R. J., K. R. Rowe, B. Zeeb, and K. Reimer. 2007. “A geocomposite barrier for hydrocarbon containment in the Arctic.” ISSMGE Int. J. Geoeng. Case Histories 1 (1): 18–34.
Bogdal, D., S. Bednarz, and K. Matras-Postolek. 2014. “Microwave-assisted synthesis of hybrid polymer materials and composites.” In Microwave-assisted polymer synthesis, 241–294. Cham, Switzerland: Springer.
Bohnhoff, G. L., and C. D. Shackelford. 2013. “Improving membrane performance via bentonite polymer nanocomposite.” Appl. Clay Sci. 86: 83–98. https://doi.org/10.1016/j.clay.2013.09.017.
Bohnhoff, G. L., and C. D. Shackelford. 2014. “Consolidation behavior of polymerized bentonite-amended backfills.” J. Geotech. Geoenviron. Eng. 140 (5): 04013055. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001079.
Bolt, G. H. 1956. “Physico-chemical analysis of the compressibility of pure clays.” Geotechnique 6 (2): 86–93. https://doi.org/10.1680/geot.1956.6.2.86.
Chai, J. C., and S. L. Shen. 2018. “Predicting swelling behavior of a Na+-bentonite used in GCLs.” Int. J. Geosynthetics Ground Eng. 4 (1): 9. https://doi.org/10.1007/s40891-018-0126-x.
Choi, Y. S., H. T. Ham, and I. J. Chung. 2003. “Polymer/silicate nanocomposites synthesized with potassium persulfate at room temperature: Polymerization mechanism, characterization, and mechanical properties of the nanocomposites.” Polymer 44 (26): 8147–8154. https://doi.org/10.1016/j.polymer.2003.10.041.
Cowie, J. M. G., and V. Arrighi. 2007. Polymers: Chemistry and physics of modern materials. Valeria, Scotland: CRC Press.
Davis, F. J. 2004. Polymer chemistry. The school of chemistry. Reading, UK: Univ. of Reading.
Deng, Y., J. B. Dixon, G. N. White, R. H. Loeppert, and A. S. Juo. 2006. “Bonding between polyacrylamide and smectite.” Colloids Surf. A: Physicochem. Eng. Aspects 281 (1): 82–91. https://doi.org/10.1016/j.colsurfa.2006.02.030.
Destarac, M., A. Guinaudeau, R. Geagea, S. Mazieres, E. Van Gramberen, C. Boutin, and J. Wilson. 2010. “Aqueous MADIX/RAFT polymerization of diallyldimethylammonium chloride: Extension to the synthesis of poly (DADMAC)-based double hydrophilic block copolymers.” J. Polym. Sci. Part A: Polym. Chem. 48 (22): 5163–5171. https://doi.org/10.1002/pola.24314.
Di Emidio, G., F. Mazzieri, R. D. Verastegui-Flores, W. Van Impe, and A. Bezuijen. 2015. “Polymer-treated bentonite clay for chemical-resistant geosynthetic clay liners.” Geosyn. Int. 22 (1): 125–137. https://doi.org/10.1680/gein.14.00036.
Elhajji, D., A. K. Ashmawy, J. Darlington, and N. Sotelo. 2001. “Effect of inorganic leachate on polymer treated GCL material.” In Proc., the Geosynthetics 2001 Conf., 663–670. MN: Industrial Fabrics Association International.
Gao, F. 2004. “Clay/polymer composites: The story.” Mater. Today 7 (11): 50–55. https://doi.org/10.1016/S1369-7021(04)00509-7.
Geckeler, K. E., and H. Nishide, eds. 2009. Advanced nanomaterials. Weinheim, Germany: Wiley.
Gooch, J. W. 2011. “Superabsorbent polymers.” In Encyclopedic dictionary of polymers, 714–715. New York: Springer.
Haraguchi, K., J. Ning, and G. Li. 2015. “Swelling/deswelling behavior of zwitterionic nanocomposite gels consisting of sulfobetaine polymer-clay networks.” Eur. Polym. J. 68: 630–640. https://doi.org/10.1016/j.eurpolymj.2015.03.061.
Hojun Co. Ltd. n.d. “Bentonite manufacturer.” Accessed April 27, 2017. http://www.hojun.co.jp/catalogue.
Hu, B., Y. Kong, R. Zheng, J. Dong, K. L. Choy, and H. Zhao. 2016. “Effect of C86 on miniemulsion polymerization for application in new latex coating products.” Faraday Discuss. 190: 487–508. https://doi.org/10.1039/C6FD00009F.
Jo, H. Y., T. Katsumi, C. H. Benson, and T. B. Edil. 2001. “Hydraulic conductivity and swelling of nonprehydrated GCLs permeated with single-species salt solutions.” J. Geotech. Geoenviron. Eng. 127 (7): 557–567. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:7(557).
Katsumi, T., H. Ishimori, A. Ogawa, K. Yoshikawa, K. Hanamoto, and R. Fukagawa. 2007. “Hydraulic conductivity of nonprehydrated geosynthetic clay liners permeated with inorganic solutions and waste leachates.” Soils Found. 47 (1): 79–96. https://doi.org/10.3208/sandf.47.79.
Khulbe, K. C., R. S. Mann, and C. P. Khulbe. 1982. “Polymerization of pyrrole by potassium persulfate.” J. Polym. Sci. Part A: Polym. Chem. 20 (4): 1089–1095.
Komine, H., and N. Ogata. 2004. “Predicting swelling characteristics of bentonites.” J. Geotech. Geoenviron. Eng. 130 (8): 818–829. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:8(818).
Kong, D. J., H. N. Wu, J. C. Chai, and A. Arulrajah. 2017. “State-of-the-art review of geosynthetic clay liners.” Sustainability 9 (11): 2110. https://doi.org/10.3390/su9112110.
Liu, M. Z., R. S. Cheng, and J. J. Wu. 1996. “Preparation and swelling properties of super-absorbent polymer.” Chin. J. Polym. Sci. 14 (1): 48–56.
McRory, J. A., and A. K. Ashmawy. 2005. “Polymer treatment of bentonite clay for contaminant resistant barriers.” In Proc., Geo-Frontiers 2005: Waste Containment and Remediation, 1–11. Reston, VA: ASCE.
Mitchell, J. K., and K. Soga. 2005. Fundamentals of soil behavior. Hoboken, NJ: Wiley.
Miyahara, M., A. Kouzuma, and K. Watanabe. 2015. “Effects of NaCl concentration on anode microbes in microbial fuel cells.” AMB Express 5 (1): 1–9. https://doi.org/10.1186/s13568-015-0123-6.
Okamoto, M. 2003. Polymer/layered silicate nanocomposites. OH: iSmithers Rapra Publishing.
Olad, A. 2011. “Polymer/clay nanocomposites.” Advances in diverse industrial applications of nanocomposites. London: InTech.
Özhan, H. O. 2017. “Effects of adding anionic polymer to GCLs treated with chemical Solutions.” In Proc., 19th ICSMGE, 955–958. London: ISSMGE.
Quang, N. D., and J. C. Chai. 2015. “Permeability of lime-and cement-treated clayey soils.” Can. Geotech. J. 52 (9): 1221–1227. https://doi.org/10.1139/cgj-2014-0134.
Rahman, M. A., M. A. Imteaz, A. Arulrajah, M. M. Disfani, and S. Horpibulsuk. 2015a. “Engineering and environmental assessment of recycled construction and demolition materials used with geotextile for permeable pavements.” J. Environ. Eng. 141 (9): 04015019. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000941.
Rahman, M. A., M. A. Imteaz, A. Arulrajah, J. Piratheepan, and M. M. Disfani. 2015b. “Recycled construction and demolition materials in permeable pavement systems: Geotechnical and hydraulic characteristics.” J. Cleaner Prod. 90: 183–194. https://doi.org/10.1016/j.jclepro.2014.11.042.
Razakamanantsoa, A. R., G. Barast, and I. Djeran-Maigre. 2012. “Hydraulic performance of activated calcium bentonite treated by polyionic charged polymer.” Appl. Clay Sci. 59: 103–114. https://doi.org/10.1016/j.clay.2012.01.022.
Razakamanantsoa, A. R., G. Barast, I. Djeran-Maigre, G. Didier, and A. Couradin. 2008. “Hydraulic performance of bentonite soil mixture reinforced by polymer in contact of different fluids.” In Proc., Journées Nationales de Géotechnique et de Géologie de l’Ingénieur, 133–140. Paris: Labex MMCD.
Rozainy, M. M. R., M. Hasif, P. Puganeshwary, and A. Afifi. 2014. “Combination of chitosan and bentonite as coagulant agents in dissolved air flotation.” APCBEE Procedia 10: 229–234. https://doi.org/10.1016/j.apcbee.2014.10.044.
Scalia, J., C. H. Benson, G. L. Bohnhoff, T. B. Edil, and C. D. Shackelford. 2014. “Long-term hydraulic conductivity of a bentonite-polymer composite permeated with aggressive inorganic solutions.” J. Geotech. Geoenviron. Eng. 140 (3): 04013025. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001040.
Scalia, J., C. H. Benson, T. B. Edil, G. L. Bohnhoff, and C. D. Shackelford. 2011. “Geosynthetic clay liners containing bentonite polymer nanocomposite.” In Proc., Geo-Frontiers 2011: Advances in Geotechnical Engineering, 2001–2009. Reston, VA: ASCE.
Schanz, T., and S. Tripathy. 2009. “Swelling pressure of a divalent-rich bentonite: Diffuse double-layer theory revisited.” Water Resour. Res. 45 (5): 1–9. https://doi.org/10.1029/2007WR006495.
Seiphoori, A., L. Laloui, A. Ferrari, M. Hassan, and W. H. Khushefati. 2016. “Water retention and swelling behaviour of granular bentonites for application in geosynthetic clay liner (GCL) systems.” Soils Found. 56 (3): 449–459. https://doi.org/10.1016/j.sandf.2016.04.011.
Tang, Q., T. Katsumi, T. Inui, and Z. Li. 2014. “Membrane behavior of bentonite-amended compacted clay.” Soils Found. 54 (3): 329–344. https://doi.org/10.1016/j.sandf.2014.04.019.
Tao, Z., S. Dai, and X. Chai. 2017. “Mercury emission to the atmosphere from municipal solid waste landfills: A brief review.” Atmos. Environ. 170: 303–311.
Taylor, D. 1948. Fundamentals of soil mechanics. New York: Chapman and Hall.
Theng, B. K. G. 1982. “Clay–polymer interactions: Summary and perspectives.” Clays and clay minerals 30 (1): 1–10.
Wahl, R. R., S. Madison, R. DePinto, and B. Shay. 1998. “Mechanistic studies on the decomposition of water soluble azo-radical-initiators.” J. Chem. Soc. Perkin Trans. 2 (9): 2009–2018. https://doi.org/10.1039/a801624k.
Wang, M., Z. Wang, J. Wang, Y. Zhu, and S. Wang. 2011a. “An antioxidative composite membrane with the carboxylate group as a fixed carrier for CO2 separation from flue gas.” Energy Environ. Sci. 4 (10): 3955–3959. https://doi.org/10.1039/c1ee01908b.
Wang, Y., J. Ma, S. Yang, and J. Xu. 2011b. “PDMAA/Clay nanocomposite hydrogels based on two different initiations.” Colloids Surf. A 390 (1): 20–24. https://doi.org/10.1016/j.colsurfa.2011.08.029.
Yanovska, E., I. Savchenko, D. Sternik, O. Kychkiruk, L. Ol’khovik, and I. Buriachenko. 2017. “In situ immobilization on the silica gel surface and adsorption capacity of poly [N-(4-carboxyphenyl) methacrylamide] on toxic metal ions.” Nanoscale Res. Lett. 12 (1): 313. https://doi.org/10.1186/s11671-017-2066-0.
Zdanowicz, M., B. Schmidt, and T. Spychaj. 2010. “Starch graft copolymers as superabsorbents obtained via reactive extrusion processing.” Polish J. Chem. Technol. 12 (2): 14–17. https://doi.org/10.2478/v10026-010-0012-3.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 30Issue 10October 2018

History

Received: Jan 5, 2018
Accepted: Mar 27, 2018
Published online: Jul 14, 2018
Published in print: Oct 1, 2018
Discussion open until: Dec 14, 2018

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Scholar, Dept. of Civil Engineering and Architecture, Saga Univ., 1 Honjo-machi, Saga 840-8502, Japan. ORCID: https://orcid.org/0000-0002-9021-7478. Email: [email protected]
Jin-Chun Chai [email protected]
Professor, Dept. of Civil Engineering and Architecture, Saga Univ., 1 Honjo-machi, Saga 840-8502, Japan (corresponding author). Email: [email protected]
Shuilong Shen [email protected]
Professor, Dept. of Civil Engineering and State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong Univ., Shanghai 200240, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share