Abstract

Ordinary portland cement (OPC) has been extensively used for decades to improve the engineering properties of a variety of soils. However, the environmental issues related to the production of OPC have created an urgent need to develop and use alternative binders such as alkali-activated cements (AAC). Thus, this work assesses the mechanical performance of a sandy soil amended with an AAC composed of ground waste glass (GWG), carbide lime (CL), and sodium hydroxide (NaOH). The effect of key factors, such as the presence of a NaOH solution, the dry unit weight, and the amount of binder were evaluated on the unconfined compressive strength (qu), initial shear modulus (G0), and accumulated loss of mass (ALM) of compacted sand-binder specimens cured for 7 days. When analyzing the curves that correlated the mechanical behavior of the blends (qu, G0, and ALM) with the η/Biv index, the results show that the alkaline solution has a significant positive influence on the mechanical response of the tested specimens. The improved mechanical performance of the alkali-activated treatments was associated with the formation of a blend of C─ S─ H and (C,N)─ S─ H cementitious compounds coexisting in the same cementitious matrix (alkaline hybrid cement), of heterogeneous structure and composition, and characterized by developing in greater quantity than those produced from a pozzolanic reaction.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, or models, used during the study are available from the corresponding author by request.

Acknowledgments

The authors express appreciation to FAPERGS/CNPq 12/2014—PRONEX (Project No. 16/2551-0000469-2), MCT-CNPq (Editais INCT-REAGEO, Universal and Productivities’ em Pesquisa) and MEC-CAPES (PROEX) for their support to the research group.

References

Amiri, S. T., R. Nazir, and A. Dehghanbanadaki. 2018. “Experimental study of geotechnical characteristics of crushed glass mixed with kaolinite soil.” Int. J. Geomate 14 (45): 170–176. https://doi.org/10.21660/2018.45.83839.
Araújo, N., M. Corrêa-Silva, T. Miranda, A. Topa Gomes, F. Castro, T. Teixeira, and N. Cristelo. 2020. “Unsaturated response of clayey soils stabilised with alkaline cements.” Molecules 25 (11): 2533. https://doi.org/10.3390/molecules25112533.
Arulrajah, A., T. A. Kua, S. Horpibulsuk, C. Phetchuay, C. Suksiripattanapong, and Y. J. Du. 2016. “Strength and microstructure evaluation of recycled glass-fly ash geopolymer as low-carbon masonry units.” Constr. Build. Mater. 114 (Jul): 400–406. https://doi.org/10.1016/j.conbuildmat.2016.03.123.
ASTM. 2012. Standard test methods for laboratory compaction characteristics of soil using modified effort (2,700  kN-m/m3). ASTM D1557. West Conshohocken, PA: ASTM.
ASTM. 2013. Standard specification for mixing rooms, moist cabinets, moist rooms, and water storage tanks used in the testing of hydraulic cements and concretes. ASTM C511. West Conshohocken, PA: ASTM.
ASTM. 2014. Standard test methods for specific gravity of soil solids by water pycnometer. ASTM D854. West Conshohocken, PA: ASTM.
ASTM. 2015. Standard test methods for wetting and drying compacted soil-cement mixtures. ASTM D559. West Conshohocken, PA: ASTM.
ASTM. 2017a. Standard classification of soils for engineering purposes. ASTM D2487. West Conshohocken, PA: ASTM.
ASTM. 2017b. Standard practice for making and curing soil-cement compression and flexure test specimens in the laboratory. ASTM D1632. West Conshohocken, PA: ASTM.
ASTM. 2017c. Standard test methods for compressive strength of molded soil-cement cylinders. ASTM D1633. West Conshohocken, PA: ASTM.
ASTM. 2017d. Standard test methods for precipitated silica—Surface area by single point B.E.T. nitrogen adsorption. ASTM D5604. West Conshohocken, PA: ASTM.
Attom, M. 2018. “The use of waste glass material to control soil swelling pressure.” In Proc., Int. Conf. on Technological Challenges for Better World. Tokyo: International Conference on Technological Challenges for Better World.
Ben Haha, M., G. Le Saout, F. Winnefeld, and B. Lothenbach. 2011. “Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags.” Cem. Concr. Res. 41 (3): 301–310. https://doi.org/10.1016/j.cemconres.2010.11.016.
Bernal, S. A., R. Mejía de Gutiérrez, V. Rose, and J. L. Provis. 2010. “Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags.” Cem. Concr. Res. 40 (6): 898–907. https://doi.org/10.1016/j.cemconres.2010.02.003.
Bernal, S. A., J. L. Provis, V. Rose, and R. Mejía de Gutiérrez. 2013. “High-resolution X-ray diffraction and fluorescence microscopy characterization of alkali-activated slag-metakaolin binders.” J. Am. Ceram. Soc. 96 (6): 1951–1957. https://doi.org/10.1111/jace.12247.
Bilgen, G. 2020. “Utilization of powdered glass as an additive in clayey soils.” Geotech. Geol. Eng. 38 (3): 3163–3173. https://doi.org/10.1007/s10706-020-01215-7.
Bilondi, M. P., M. M. Toufigh, and V. Toufigh. 2018. “Experimental investigation of using a recycled glass powder-based geopolymer to improve the mechanical behavior of clay soils.” Constr. Build. Mater. 170 (May): 302–313. https://doi.org/10.1016/j.conbuildmat.2018.03.049.
BSI (British Standards Institution). 2015. Code of practice for ground investigations. BS 5930. London: BSI.
Canakci, H., A. Aram, and F. Celik. 2016. “Stabilization of clay with waste soda lime glass powder.” Procedia Eng. 161: 600–605. https://doi.org/10.1016/j.proeng.2016.08.705.
Chen, J. J., J. J. Thomas, H. F. W. Taylor, and H. M. Jennings. 2004. “Solubility and structure of calcium silicate hydrate.” Cem. Concr. Res. 34 (9): 1499–1519. https://doi.org/10.1016/j.cemconres.2004.04.034.
Cong, X. D., and R. J. Kirkpatrick. 1995. “Effects of the temperature and relative humidity on the structure of CSH gel.” Cem. Concr. Res. 25 (6): 1237–1245. https://doi.org/10.1016/0008-8846(95)00116-T.
Consoli, N. C., M. S. Carretta, L. Festugato, H. B. Leon, L. F. Tomasi, and K. S. Heineck. 2021. “Ground waste glass–carbide lime as a sustainable binder stabilising three different silica sands.” Géotechnique 71 (6): 480–493. https://doi.org/10.1680/jgeot.18.P.099.
Consoli, N. C., M. S. Carretta, H. B. Leon, H. C. Scheuermann Filho, and L. F. Tomasi. 2019a. “Strength and stiffness of ground waste glass–carbide lime blends.” J. Mater. Civ. Eng. 31 (10): 06019010. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002862.
Consoli, N. C., L. Festugato, H. C. Scheuermann Filho, G. D. Miguel, A. Tebechrani Neto, and D. Andreghetto. 2020a. “Durability assessment of soil-pozzolan-lime blends through ultrasonic pulse velocity test.” J. Mater. Civ. Eng. 32 (8): 04020223. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003298.
Consoli, N. C., D. Foppa, L. Festugato, and K. S. Heineck. 2007. “Key parameters for strength control of artificially cemented soils.” J. Geotech. Geoenviron. Eng. 133 (2): 197–205. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(197).
Consoli, N. C., A. M. Lotero Caicedo, R. B. Saldanha, H. C. Scheuermann Filho, and C. J. Moncaleano Acosta. 2020b. “Eggshell produced limes: Innovative materials for soil stabilization.” J. Mater. Civ. Eng. 32 (11): 06020018. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003418.
Consoli, N. C., R. B. Saldanha, and H. C. Scheuermann Filho. 2019b. “Short- and long-term effects of sodium chloride on strength and durability of coal fly ash stabilized with carbide lime.” Can. Geotech. J. 56 (12): 1929–1939. https://doi.org/10.1139/cgj-2018-0696.
Consoli, N. C., D. Winter, H. B. Leon, and H. C. Scheuermann Filho. 2018. “Durability, strength, and stiffness of green stabilized sand.” J. Geotech. Geoenviron. Eng. 144 (9): 04018057. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001928.
Coppola, L., et al. 2018. “Binders alternative to portland cement and waste management for sustainable construction. Part 1.” J. Appl. Biomater. Funct. Mater. 16 (3): 186–202. https://doi.org/10.1177/2280800018782845.
Corrêa-Silva, M., T. Miranda, M. Rouainia, N. Araújo, S. Glendinning, and N. Cristelo. 2020. “Geomechanical behaviour of a soft soil stabilised with alkali-activated blast-furnace slags.” J. Cleaner Prod. 267 (Sep): 122017. https://doi.org/10.1016/j.jclepro.2020.122017.
Criado, M., A. Fernández-Jiménez, A. Palomo, I. Sobrados, and J. Sanz. 2008. “Effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Part II: 29Si MAS-NMR survey.” Microporous Mesoporous Mater. 109 (1–3): 525–534. https://doi.org/10.1016/j.micromeso.2007.05.062.
Cristelo, N., A. Fernández-Jiménez, C. Vieira, T. Miranda, and A. Palomo. 2018. “Stabilisation of construction and demolition waste with a high fines content using alkali activated fly ash.” Constr. Build. Mater. 170 (May): 26–39. https://doi.org/10.1016/j.conbuildmat.2018.03.057.
Cristelo, N., S. Glendinning, L. Fernandes, and A. T. Pinto. 2012. “Effect of calcium content on soil stabilisation with alkaline activation.” Constr. Build. Mater. 29 (Apr): 167–174. https://doi.org/10.1016/j.conbuildmat.2011.10.049.
Cristelo, N., L. Segadães, J. Coelho, B. Chaves, N. R. Sousa, and M. L. Lopes. 2020. “Recycling municipal solid waste incineration slag and fly ash as precursors in low-range alkaline cements.” Waste Manage. 104 (Mar): 60–73. https://doi.org/10.1016/j.wasman.2020.01.013.
Cyr, M., R. Idir, and T. Poinot. 2012. “Properties of inorganic polymer (geopolymer) mortars made of glass cullet.” J. Mater. Sci. 47 (6): 2782–2797. https://doi.org/10.1007/s10853-011-6107-2.
Da Rocha, C. G., A. Passuello, N. C. Consoli, R. A. Quiñónez Samaniego, and N. M. Kanazawa. 2016. “Life cycle assessment for soil stabilization dosages: A study for the Paraguayan Chaco.” J. Cleaner Prod. 139 (Dec): 309–318. https://doi.org/10.1016/j.jclepro.2016.07.219.
Diambra, A., E. Ibraim, L. Festugato, and M. B. Corte. 2021. “Stiffness of artificially cemented sands: Insight on characterization through empirical power relations.” Road Mater. Pavement Des. 22 (6): 1469–1479. https://doi.org/10.1080/14680629.2019.1705379.
Diambra, A., E. Ibraim, A. Peccin, N. C. Consoli, and L. Festugato. 2017. “Theoretical derivation of artificially cemented granular soil strength.” J. Geotech. Geoenviron. Eng. 143 (5): 04017003. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001646.
Disfani, M., A. Arulrajah, M. Ali, and M. Bo. 2011. “Fine recycled glass: A sustainable alternative to natural aggregates.” Int. J. Geotech. Eng. 5 (3): 255–266. https://doi.org/10.3328/IJGE.2011.05.03.255-266.
Dodson, V. H. 1990. “Pozzolans and the pozzolanic reaction.” In Concrete admixtures, 159–201. New York: Springer.
Du, Y.-J., B.-W. Yu, K. Liu, N.-J. Jiang, and M. D. Liu. 2017. “Physical, hydraulic, and mechanical properties of clayey soil stabilized by lightweight alkali-activated slag geopolymer.” J. Mater. Civ. Eng. 29 (2): 04016217. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001743.
Duxson, P., A. Fernández-Jiménez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S. J. Van Deventer. 2007. “Geopolymer technology: The current state of the art.” J. Mater. Sci. 42 (9): 2917–2933. https://doi.org/10.1007/s10853-006-0637-z.
Fernández-Jiménez, A., E. Flores, O. Maltseva, I. Garcia Lodeiro, and A. Palomo. 2013. “Hybrid alkaline cements. Part III: Durability and industrial applications.” Rom. J. Mater. 43 (2): 68–73.
Garcia-Lodeiro, I., N. Cristelo, A. Palomo, and A. Fernández-Jiménez. 2020. “Use of industrial by-products as alkaline cement activators.” Constr. Build. Mater. 253 (Aug): 119000. https://doi.org/10.1016/j.conbuildmat.2020.119000.
Garcia-Lodeiro, I., A. Fernández-Jiménez, and A. Palomo. 2013a. “Hydration kinetics in hybrid binders: Early reaction stages.” Cem. Concr. Compos. 39 (May): 82–92. https://doi.org/10.1016/j.cemconcomp.2013.03.025.
Garcia-Lodeiro, I., A. Fernández-Jiménez, and A. Palomo. 2013b. “Variation in hybrid cements over time: Alkaline activation of fly ash–portland cement blends.” Cem. Concr. Res. 52 (Oct): 112–122. https://doi.org/10.1016/j.cemconres.2013.03.022.
Garcia-Lodeiro, I., A. Palomo, and A. Fernández-Jiménez. 2015. “An overview of the chemistry of alkali-activated cement-based binders.” In Handbook of alkali-activated cements, mortars and concretes, 19–47. Amsterdam, Netherlands: Elsevier. https://doi.org/10.1533/9781782422884.1.19.
García-Lodeiro, I., D. E. Macphee, A. Palomo, and A. Fernández-Jiménez. 2009. “Effect of alkalis on fresh C─ S─ H gels. FTIR analysis.” Cem. Concr. Res. 39 (3): 147–153. https://doi.org/10.1016/j.cemconres.2009.01.003.
Gomez-Zamorano, L., M. Balonis, B. Erdemli, N. Neithalath, and G. Sant. 2017. “C-(N)-S-H and N-A-S-H gels: Compositions and solubility data at 25°C and 50°C.” J. Am. Ceram. Soc. 100 (6): 2700–2711. https://doi.org/10.1111/jace.14715.
Habert, G., and C. Ouellet-Plamondon. 2016. “Recent update on the environmental impact of geopolymers.” RILEM Tech. Lett. 1 (1): 17–23. https://doi.org/10.21809/rilemtechlett.2016.6.
Ibanez, A., and F. Sandoval. 1993. “La Wollastonita: Propiedades, síntesis y aplicaciones cerámicas.” Bol. Soc. Esp. Ceram. Vidrio 32 (6): 349–361.
ICSD (Inorganic Crystal Structure Database). 2019. “ICSD for WWW.” Accessed October 16, 2019. https://doi.org/10.1533/9781782422884.1.19.
Ingles, O., and J. Metcalf. 1972. Soil stabilization: Principles and practice. Sydney: Butterworths.
Islam, G. M. S., M. H. Rahman, and N. Kazi. 2017. “Waste glass powder as partial replacement of cement for sustainable concrete practice.” Int. J. Sustainable Built Environ. 6 (1): 37–44. https://doi.org/10.1016/j.ijsbe.2016.10.005.
Jegandan, S., M. Liska, A. A.-M. Osman, and A. Al-Tabbaa. 2010. “Sustainable binders for soil stabilization.” Proc. Inst. Civ. Eng. Ground Improv. 163 (1): 53–61. https://doi.org/10.1680/grim.2010.163.1.53.
Kazmi, D., D. J. Williams, and M. Serati. 2020. “Waste glass in civil engineering: A review.” Int. J. Appl. Ceram. Technol. 17 (2): 529–554. https://doi.org/10.1111/ijac.13434.
Khan, M. S., M. Tufail, and M. Mateeullah. 2018. “Effects of waste glass powder on the geotechnical properties of loose subsoils.” Civ. Eng. J. 4 (9): 2044–2051. https://doi.org/10.28991/cej-03091137.
Kirkpatrick, R. K., J. L. Yarger, P. F. McMillan, P. Yu, and X. Cong. 1997. “Raman spectroscopy of C-S-H, tobermorite, and jennite.” Adv. Cem. Based Mater. 5 (3–4): 93–99. https://doi.org/10.1016/S1065-7355(97)00001-1.
Ladd, R. S. 1978. “Preparing test specimens using under-compaction.” Geotech. Test. J. 1 (1): 16–23. https://doi.org/10.1520/GTJ10364J.
Lade, P. V., and N. Trads. 2014. “The role of cementation in the behaviour of cemented soils.” Geotech. Res. 1 (4): 111–132. https://doi.org/10.1680/gr.14.00011.
Liu, Y., C. Shia, Z. B. Zhanga, and N. Lia. 2019. “An overview on the reuse of waste glasses in alkali-activated materials.” Resour. Conserv. Recycl. 144 (May): 297–309. https://doi.org/10.1016/j.resconrec.2019.02.007.
Lotero, A., N. C. Consoli, C. J. Moncaleano, A. T. Neto, and E. Koester. 2021. “Mechanical properties of alkali-activated ground waste glass-carbide lime blends for geotechnical uses.” J. Mater. Civ. Eng. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003918.
Manzano, H., R. González-Teresa, J. S. Dolado, and A. Ayuela. 2010. “X-ray spectra and theoretical elastic properties of crystalline calcium silicate hydrates: Comparison with cement hydrated gels.” Mater. Constr. 60 (299): 7–19. https://doi.org/10.3989/mc.2010.57310.
Maraghechi, H., S. Salwocki, and F. Rajabipour. 2016. “Utilisation of alkali activated glass powder in binary mixtures with Portland cement, slag, fly ash and hydrated lime.” Mater. Struct. 50 (1): 16. https://doi.org/10.1617/s11527-016-0922-5.
Más-López, M. I., E. M. García del Toro, A. L. Patiño, and L. J. M. García. 2020. “Eco-friendly pavements manufactured with glass waste: Physical and mechanical characterization and its applicability in soil stabilization.” Materials (Basel) 13 (17): 3727. https://doi.org/10.3390/ma13173727.
Massaza, F. 2004. “Pozzolana and pozzolanic cements.” In Lea´s chemistry of cement and concrete. 4th ed. Oxford, UK: Hewlett.
Miranda, T., D. Leitão, J. Oliveira, M. Corrêa-Silva, N. Araújo, J. Coelho, A. Fernández-Jiménez, and N. Cristelo. 2020. “Application of alkali-activated industrial wastes for the stabilisation of a full-scale (sub)base layer.” J. Cleaner Prod. 242 (Jan): 118427. https://doi.org/10.1016/j.jclepro.2019.118427.
Mitchell, J., and K. Soga. 2005. Fundamentals of soil behavior. Hoboken, NJ: Wiley.
Mitchell, J. K. 1981. “Soil improvement: State-of-the-art report.” In Proc., 10th Int. Conf. on Soil Mechanics and Foundation Engineering, 509–565. Stockholm, Sweden: International Society of Soil Mechanics and Foundation Engineering.
Montgomery, D. 2013. Design and analysis of experiments. Hoboken, NJ: Wiley.
Ninov, J., I. Doykov, L. Dimova, B. Petrov, and L. Brakalov. 2011. “On the kinetics of pozzolanic reaction in metakaolin–lime–water system.” J. Therm. Anal. Calorim. 105 (1): 245–250. https://doi.org/10.1007/s10973-011-1419-7.
Olufowobi, J., A. Ogundoju, B. Michael, and O. Aderinlewo. 2014. “Clay soil stabilisation using powdered glass.” J. Eng. Sci. Technol. 9 (5): 541–558.
Palomo, A., O. Maltseva, I. Garcia Lodeiro, and A. Fernández-Jimenez. 2013. “Hybrid alkaline cements. Part II: Clinker factor.” Rom. J. Mater. 43 (1): 74–79.
PCA (Portland Cement Association). 1995. Soil-cement construction handbook. Skokie, IL: PCA.
Pourakbar, S., and B. K. Huat. 2017. “A review of alternatives traditional cementitious binders for engineering improvement of soils.” Int. J. Geotech. Eng. 11 (2): 206–216. https://doi.org/10.1080/19386362.2016.1207042.
Provis, J. L. 2010. “Discussion of C. Li et al., A review: The comparison between alkali- activated slag (Si + Ca) and metakaolin (Si + Al) cements.” Cem. Concr. Res. 40 (12): 1766–1767. https://doi.org/10.1016/j.cemconres.2010.08.005.
Provis, J. L. 2018. “Alkali-activated materials.” Cem. Concr. Res. 114 (Dec): 40–48. https://doi.org/10.1016/j.cemconres.2017.02.009.
Provis, J. L., and J. S. J. Van Deventer. 2014. Alkali activated materials state-of-the-art. Dordrecht, Netherlands: Springer.
Rivera, J. F., Z. I. Cuarán-Cuarán, N. Vanegas-Bonilla, and R. Mejía de Gutiérrez. 2018. “Novel use of waste glass powder: Production of geopolymeric tiles.” Adv. Powder Technol. 29 (12): 3448–3454. https://doi.org/10.1016/j.apt.2018.09.023.
Rivera, J. F., A. Orobio, R. Mejía de Gutiérrez, and N. Cristelo. 2020. “Clayey soil stabilization using alkali-activated cementitious materials.” Mater. Constr. 70 (337): 211. https://doi.org/10.3989/mc.2020.07519.
Salamatpoor, S., and S. Salamatpoor. 2017. “Evaluation of adding crushed glass to different combinations of cement-stabilized sand.” Int. J. Geo-Eng. 8 (1): 8. https://doi.org/10.1186/s40703-017-0044-0.
Saldanha, R. B., J. E. C. Mallmann, and N. C. Consoli. 2016. “Salts accelerating strength increase of coal fly ash–carbide lime compacted blends.” Géotech. Lett. 6 (1): 23–27. https://doi.org/10.1680/jgele.15.00111.
Saldanha, R. B., K. R. Reddy, and N. C. Consoli. 2019. “Influence of sodium chloride on leaching behavior of fly ash stabilized with carbide lime.” Constr. Build. Mater. 227 (Dec): 116571. https://doi.org/10.1016/j.conbuildmat.2019.07.297.
Saldanha, R. B., H. C. Scheuermann Filho, J. E. C. Mallmann, N. C. Consoli, and K. R. Reddy. 2018. “Physical–mineralogical–chemical characterization of carbide lime: An environment-friendly chemical additive for soil stabilization.” J. Mater. Civ. Eng. 30 (6): 06018004. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002283.
Saldanha, R. B., H. C. Scheuermann Filho, J. L. D. Ribeiro, and N. C. Consoli. 2017. “Modelling the influence of density, curing time, amounts of lime and sodium chloride on the durability of compacted geopolymers monolithic walls.” Constr. Build. Mater. 136 (Apr): 65–72. https://doi.org/10.1016/j.conbuildmat.2017.01.023.
Santamarina, J., K. Klein, and M. Fam. 2001. Soils and waves. New York: Wiley.
Sargent, P. 2015. “The development of alkali-activated mixtures for soil stabilisation.” In Handbook of alkali-activated cements, mortars and concretes, 555–604. Cambridge, MA: Elsevier.
Schneider, M., M. Romer, M. Tschudin, and H. Bolio. 2011. “Sustainable cement production—Present and future.” Cem. Concr. Res. 41 (7): 642–650. https://doi.org/10.1016/j.cemconres.2011.03.019.
Shi, C., Y. Wu, C. Riefler, and H. Wang. 2005. “Characteristics and pozzolanic reactivity of glass powders.” Cem. Concr. Res. 35 (5): 987–993. https://doi.org/10.1016/j.cemconres.2004.05.015.
Taylor, H. F. W. 1986. “Proposed structure for calcium silicate hydrate gel.” J. Am. Ceram. Soc. 69 (6): 464–467. https://doi.org/10.1111/j.1151-2916.1986.tb07446.x.
Torres-Carrasco, M., J. G. Palomo, and F. P. Maroto. 2014. “Sodium silicate solutions from dissolution of glasswastes. Statistical analysis.” Mater. Constr. 64 (314): e014–857. https://doi.org/10.3989/mc.2014.05213.
Torres-Carrasco, M., and F. Puertas. 2015. “Waste glass in the geopolymer preparation. Mechanical and microstructural characterization.” J. Cleaner Prod. 90 (Mar): 397–408. https://doi.org/10.1016/j.jclepro.2014.11.074.
Torres-Carrasco, M., and F. Puertas. 2017a. “La activación alcalina de diferentes aluminosilicatos como una alternativa al cemento Portland: Cementos activados alcalinamente o geopolímeros.” Rev. Ing. Constr. 32 (2): 5–12. https://doi.org/10.4067/S0718-50732017000200001.
Torres-Carrasco, M., and F. Puertas. 2017b. “Waste glass as a precursor in alkaline activation: Chemical process and hydration products.” Constr. Build. Mater. 139 (May): 342–354. https://doi.org/10.1016/j.conbuildmat.2017.02.071.
Torres-Carrasco, M., M. T. Tognonvi, A. Tagnit-Hamou, and F. Puertas. 2015. “Durability of alkali-activated slag concretes prepared using waste glass as alternative activator.” ACI Mater. J. 112 (6): 791–800.
Van Deventer, J. S. J., J. L. Provis, P. Duxson, and D. G. Brice. 2010. “Chemical research and climate change as drivers in the commercial adoption of alkali activated materials.” Waste Biomass Valorization 1 (1): 145–155. https://doi.org/10.1007/s12649-010-9015-9.
Walker, R., and S. Pavía. 2010. “Physical properties and reactivity of pozzolans, and their influence on the properties of lime–pozzolan pastes.” Mater. Struct. 44 (6): 1139–1150. https://doi.org/10.1617/s11527-010-9689-2.
Wang, S.-D., X.-C. Pu, K. L. Scrivener, and P. L. Pratt. 1995. “Alkali-activated slag cement and concrete: A review of properties and problems.” Adv. Cem. Res. 7 (27): 93–102. https://doi.org/10.1680/adcr.1995.7.27.93.
Weng, J. K., B. W. Langan, and M. A. Ward. 1997. “Pozzolanic reaction in Portland cement, silica fume, and fly ash mixtures.” Can. J. Civ. Eng. 24 (5): 754–760. https://doi.org/10.1139/l97-025.
Yip, C. K., G. C. Lukey, and J. S. J. Deventer. 2005. “The coexistence of geopolymeric and calcium silicate hydrate at the early stage of alkaline activation.” Cem. Concr. Res. 35 (9): 1688–1697. https://doi.org/10.1016/j.cemconres.2004.10.042.
Zhang, S., A. Keulen, K. Arbi, and G. Ye. 2017. “Waste glass as partial mineral precursor in alkali-activated slag/fly ash system.” Cem. Concr. Res. 102 (Dec): 29–40. https://doi.org/10.1016/j.cemconres.2017.08.012.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 147Issue 10October 2021

History

Received: Oct 14, 2020
Accepted: Jun 1, 2021
Published online: Jul 30, 2021
Published in print: Oct 1, 2021
Discussion open until: Dec 30, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Professor of Civil Engineering, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90035-190, Brazil (corresponding author). ORCID: https://orcid.org/0000-0002-6408-451X. Email: [email protected]
Cocou Auxence Pierre Daassi-Gli [email protected]
Ph.D. Candidate, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90035-190, Brazil. Email: [email protected]
Cesar Alberto Ruver [email protected]
Assistant Professor, Dept. of Civil Engineering, Univ. Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90035-190, Brazil. Email: [email protected]
Research Fellow, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90035-190, Brazil. ORCID: https://orcid.org/0000-0002-2843-8384. Email: [email protected]
Hugo Carlos Scheuermann Filho [email protected]
Ph.D. Candidate, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90035-190, Brazil. Email: [email protected]
Cindy Johanna Moncaleano [email protected]
Ph.D. Candidate, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90035-190, Brazil. Email: [email protected]
David Eduardo Lourenço [email protected]
Research Fellow, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90035-190, Brazil. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Strength, Mineralogy, Microstructure, and Statistical Analysis of Alkali-Activated Sugarcane Bagasse Ash–Eggshell Lime Pastes, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-14539, 35, 6, (2023).
  • Compressibility, Structure, and Leaching Assessments of an Alluvium Stabilized with a Biochar–Slag Binder, Journal of Geotechnical and Geoenvironmental Engineering, 10.1061/JGGEFK.GTENG-11102, 149, 12, (2023).
  • Stabilization of Dredging Material from Rio Grande Harbor with Alkali-Activated Cements to Produce Masonry Elements, Journal of Materials in Civil Engineering, 10.1061/(ASCE)MT.1943-5533.0004677, 35, 4, (2023).
  • Rice husk ash as an alternative soluble silica source for alkali-activated metakaolin systems applied to recycled asphalt pavement stabilization, Transportation Geotechnics, 10.1016/j.trgeo.2023.100940, 39, (100940), (2023).
  • Alkali-activated red ceramic wastes-carbide lime blend: An alternative alkaline cement manufactured at room temperature, Journal of Building Engineering, 10.1016/j.jobe.2022.105663, 65, (105663), (2023).
  • Potential use of iron ore tailings for binder production: A life cycle assessment, Construction and Building Materials, 10.1016/j.conbuildmat.2022.130008, 365, (130008), (2023).
  • Evaluation of mechanical and microstructural properties of eggshell lime/rice husk ash alkali-activated cement, Construction and Building Materials, 10.1016/j.conbuildmat.2022.129931, 364, (129931), (2023).
  • Stabilization of gold mining tailings with alkali-activated carbide lime and sugarcane bagasse ash, Transportation Geotechnics, 10.1016/j.trgeo.2021.100704, 32, (100704), (2022).
  • Mechanical response of filtered and compacted iron ore tailings with different cementing agents: Focus on tailings-binder mixtures disposal by stacking, Construction and Building Materials, 10.1016/j.conbuildmat.2022.128770, 349, (128770), (2022).
  • Key parameters establishing alkali activation effects on stabilized rammed earth, Construction and Building Materials, 10.1016/j.conbuildmat.2022.128299, 345, (128299), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share