Abstract

Degradation of geomaterials, that is, particle breakage, can be harmful to the full life-cycle stability of practical engineering; for example, rockfill dam, energy-pile foundation, railway embankment, and retaining wall. A key issue is how to precisely quantify grain crushing during the life-cycle operation of the project that suffers high pressure or dynamic loading. This paper reviews the advantages and limitations of existing particle breakage indices and proposes a new simple breakage index for estimating the evolution of grain crushing. The new index without an integral grading area can be easily and directly obtained from the sieving results and independent of the coordinate of particle size axis. It can also adequately capture the grain crushing at all grain sizes. Moreover, it can be used for uniformly graded, well-graded, and gap-graded crushable soils.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors would like to acknowledge the financial support from the National Nature Science Foundation of China (Grant Nos. 51922024, 52078085, and 51678094) and the Natural Science Foundation of Chongqing, China (Grant No. cstc2019jcyjjqX0014).

Notation

The following symbols are used in this paper:
B10
particle breakage index proposed by Lade et al. (1996);
B15
particle breakage index proposed by Lee and Farhoomand (1967);
BN, BNH, BNE
particle breakage index proposed in this study;
Bf
particle breakage index proposed by Nakata et al. (1999);
Bg
particle breakage index proposed by Marsal (1967);
Bp
breakage potential;
BrE
particle breakage index proposed by Einav (2007);
BrH
particle breakage index proposed by Hardin (1985);
Br50
particle breakage index proposed by Xiao and Liu (2017);
BrI
particle breakage index proposed by Indraratna et al. (2005);
Bt
total breakage;
bp
potential for breakage of a particle for a given particle size;
D10
effective particle size;
D15
particle size corresponding to 15% in PSD;
D10i and D10f
effective particle size of the initial and final gradation, respectively;
D50i, D50c, and D50u
mean particle diameters of the initial PSD, current PSD, and ultimate PSD, respectively;
Dm and DM
minimum and maximum particle sizes, respectively;
df
differential of PSD with percentage finer divided by 100;
F(D)
grain-size cumulative function;
ID
initial relative density;
IG
particle breakage index proposed by Muir Wood and Maeda (2008);
Mc
sum of total passing-sieve weights percentage at current state;
Mi
sum of total passing-sieve weights percentage at initial state before test;
Mu
sum of total passing-sieve weights percentage at ultimate state;
P0
percentage of particles in current PSD smaller than the minimum particle size in the original sand;
pki, pkc, pku
cumulative passing-sieve weights percentage corresponding to a particle size for the initial, current, and ultimate states, respectively;
R2
coefficient of determination;
α
fractal dimension; and
ΔPmax
maximum difference between initial PSD and current PSD.

References

Alonso, E. E., and L. A. Oldecop. 2007. “Theoretical investigation of the time-dependent behaviour of rockfill.” Géotechnique 57 (3): 289–301. https://doi.org/10.1680/geot.2007.57.3.289.
Anderson, W. F., and P. Fair. 2008. “Behavior of railroad ballast under monotonic and cyclic loading.” J. Geotech. Geoenviron. Eng. 134 (3): 316–327. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:3(316).
Bauer, E., and S. Safikhani. 2020. “Numerical investigation of grain fragmentation of a granular specimen under plane strain compression.” Int. J. Geomech. 20 (3): 04020007. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001608.
Casini, F., G. M. B. Viggiani, and S. M. Springman. 2013. “Breakage of an artificial crushable material under loading.” Granular Matter 15 (5): 661–673. https://doi.org/10.1007/s10035-013-0432-x.
Cavarretta, I., C. O’Sullivan, and M. R. Coop. 2017. “The relevance of roundness to the crushing strength of granular materials.” Géotechnique 67 (4): 301–312. https://doi.org/10.1680/jgeot.15.P.226.
Chang, D., Y. Lai, and J. Gao. 2019a. “An investigation on the constitutive response of frozen saline coarse sandy soil based on particle breakage and plastic shear mechanisms.” Cold Reg. Sci. Technol. 159: 94–105. https://doi.org/10.1016/j.coldregions.2018.12.011.
Chang, D., Y. Lai, and F. Yu. 2019b. “An elastoplastic constitutive model for frozen saline coarse sandy soil undergoing particle breakage.” Acta Geotech. 14 (6): 1757–1783. https://doi.org/10.1007/s11440-019-00775-0.
Charles, J. A., and K. S. Watts. 1980. “The influence of confining pressure on the shear strength of compacted rockfill.” Géotechnique 30 (4): 353–367. https://doi.org/10.1680/geot.1980.30.4.353.
Chavez, C., and E. E. Alonso. 2003. “A constitutive model for crushed granular aggregates which includes suction effects.” Soils Found. 43 (4): 215–227. https://doi.org/10.3208/sandf.43.4_215.
Chen, W.-B., K. Liu, Z.-Y. Yin, and J.-H. Yin. 2020. “Crushing and flooding effects on one-dimensional time-dependent behaviors of a granular soil.” Int. J. Geomech. 20 (2): 04019156. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001560.
Cil, M. B., R. C. Hurley, and L. Graham-Brady. 2020. “Constitutive model for brittle granular materials considering competition between breakage and dilation.” J. Eng. Mech. 146 (1): 04019110. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001690.
Coop, M. R., K. K. Sorensen, T. Bodas Freitas, and G. Georgoutsos. 2004. “Particle breakage during shearing of a carbonate sand.” Géotechnique 54 (3): 157–163. https://doi.org/10.1680/geot.2004.54.3.157.
Einav, I. 2007. “Breakage mechanics—Part I: Theory.” J. Mech. Phys. Solids 55 (6): 1274–1297. https://doi.org/10.1016/j.jmps.2006.11.003.
Frossard, E., C. Dano, W. Hu, and P. Y. Hicher. 2012. “Rockfill shear strength evaluation: A rational method based on size effects.” Géotechnique 62 (5): 415–427. https://doi.org/10.1680/geot.10.P.079.
Fu, Z., S. Chen, and H. Han. 2017. “Experimental investigations on the residual strain behavior of a rockfill material subjected to dynamic loading.” J. Mater. Civ. Eng. 29 (5): 04016278. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001816.
Fu, Z., S. Chen, and C. Peng. 2014. “Modeling the cyclic behaviour of rockfill materials within the framework of generalized plasticity.” Int. J. Geomech. 14 (2): 191–204. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000302.
Gan, V. J. L., I. M. C. Lo, J. Ma, K. T. Tse, J. C. P. Cheng, and C. M. Chan. 2020. “Simulation optimisation towards energy efficient green buildings: Current status and future trends.” J. Cleaner Prod. 254: 120012. https://doi.org/10.1016/j.jclepro.2020.120012.
Guo, W. L., and J. G. Zhu. 2017. “Particle breakage energy and stress dilatancy in drained shear of rockfills.” Géotech. Lett. 7 (4): 304–308. https://doi.org/10.1680/jgele.17.00099.
Hagerty, M. M., D. R. Hite, C. R. Ullrich, and D. J. Hagerty. 1993. “One-dimensional high-pressure compression of granular media.” J. Geotech. Eng. 119 (1): 1–18. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:1(1).
Hardin, B. O. 1985. “Crushing of soil particles.” J. Geotech. Eng. 111 (10): 1177–1192. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:10(1177).
He, S.-H., H.-F. Shan, T.-D. Xia, Z.-J. Liu, Z. Ding, and F. Xia. 2020. “The effect of temperature on the drained shear behavior of calcareous sand.” Acta Geotech. 16 (2): 613–633. https://doi.org/10.1007/s11440-020-01030-7.
Hedegaard, K., B. V. Mathiesen, H. Lund, and P. Heiselberg. 2012. “Wind power integration using individual heat pumps—Analysis of different heat storage options.” Energy 47 (1): 284–293. https://doi.org/10.1016/j.energy.2012.09.030.
Hiroshi, F., S. Kyoji, W. Gonghui, and S. Ryo. 2006. “Observation of shear zone development in ring-shear apparatus with a transparent shear box.” Landslides 3 (3): 239–251. https://doi.org/10.1007/s10346-006-0043-2.
Huang, J. Y., J. C. E, J. E. Huang, T. Sun, K. Fezzaa, S. L. Xu, and S. N. Luo. 2016a. “Dynamic deformation and fracture of single crystal silicon: Fracture modes, damage laws, and anisotropy.” Acta Mater. 114: 136–145. https://doi.org/10.1016/j.actamat.2016.05.022.
Huang, J. Y., L. Lu, D. Fan, T. Sun, K. Fezzaa, S. L. Xu, M. H. Zhu, and S. N. Luo. 2016b. “Heterogeneity in deformation of granular ceramics under dynamic loading.” Scripta Mater 111: 114–118. https://doi.org/10.1016/j.scriptamat.2015.08.028.
Huang, J. Y., S. Xu, and S. Hu. 2014. “Influence of particle breakage on the dynamic compression responses of brittle granular materials.” Mech. Mater. 68: 15–28. https://doi.org/10.1016/j.mechmat.2013.08.002.
Hyodo, M., Y. Wu, N. Aramaki, and Y. Nakata. 2017. “Undrained monotonic and cyclic shear response and particle crushing of silica sand at low and high pressures.” Can. Geotech. J. 54 (2): 207–218. https://doi.org/10.1139/cgj-2016-0212.
Igwe, O., K. Sassa, and F. Wang. 2007. “The influence of grading on the shear strength of loose sands in stress-controlled ring shear tests.” Landslides 4 (1): 43–51. https://doi.org/10.1007/s10346-006-0051-2.
Indraratna, B., J. Lackenby, and D. Christie. 2005. “Effect of confining pressure on the degradation of ballast under cyclic loading.” Géotechnique 55 (4): 325–328. https://doi.org/10.1680/geot.2005.55.4.325.
Jia, Y., B. Xu, S. Chi, B. Xiang, D. Xiao, and Y. Zhou. 2019. “Particle breakage of rockfill material during triaxial tests under complex stress paths.” Int. J. Geomech. 19 (12): 04019124. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001517.
Jia, Y., B. Xu, S. Chi, B. Xiang, and Y. Zhou. 2017. “Research on the particle breakage of rockfill materials during triaxial tests.” Int. J. Geomech. 17 (10): 04017085. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000977.
Jia, Y., B. Xu, C. S. Desai, S. Chi, and B. Xiang. 2020. “Rockfill particle breakage generated by wetting deformation under the complex stress path.” Int. J. Geomech. 20 (10): 04020166. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001789.
Kermani, M., J.-M. Konrad, and M. Smith. 2018. “In situ short-term and long-term rockfill compressibility as a function of void ratio and strength of parent rock.” J. Geotech. Geoenviron. Eng. 144 (4): 04018009. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001835.
Kuwajima, K., M. Hyodo, and A. F. L. Hyde. 2009. “Pile bearing capacity factors and soil crushabiity.” J. Geotech. Geoenviron. Eng. 135 (7): 901–913. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000057.
Lade, P. V., J. A. Yamamuro, and P. A. Bopp. 1996. “Significance of particle crushing in granular materials.” J. Geotech. Eng. 122 (4): 309–316. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:4(309).
Lee, K. L., and I. Farhoomand. 1967. “Compressibility and crushing of granular soil in anisotropic triaxial compression.” Can. Geotech. J. 4 (1): 68–86. https://doi.org/10.1139/t67-012.
Leung, C. F., F. H. Lee, and N. S. Yet. 1997. “The role of particle breakage in pile creep in sand.” Can. Geotech. J. 33 (6): 888–898. https://doi.org/10.1139/t96-119.
Li, M., J. Zhang, N. Zhou, and Y. Huang. 2017. “Effect of particle size on the energy evolution of crushed waste rock in coal mines.” Rock Mech. Rock Eng. 50 (5): 1347–1354. https://doi.org/10.1007/s00603-016-1151-5.
Li, X., K. Zhang, X. Ma, J. Teng, and S. Zhang. 2020. “New method to evaluate strengthen efficiency by dynamic compaction.” Int. J. Geomech. 20 (4): 04020024. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001586.
Lin, L., S. Li, L. Sun, X. Liu, and W. Chen. 2020. “Evolution of particle size distribution for carbonate sand under impact load.” Powder Technol. 376: 549–564. https://doi.org/10.1016/j.powtec.2020.08.046.
Liu, H., K. Zeng, and Y. Zou. 2020. “Particle breakage of calcareous sand and its correlation with input energy.” Int. J. Geomech. 20 (2): 04019151. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001541.
Liu, M., and Y. Gao. 2017. “Constitutive modeling of coarse-grained materials incorporating the effect of particle breakage on critical state behavior in a framework of generalized plasticity.” Int. J. Geomech. 17 (5): 04016113. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000759.
Liu, M., Y. Zhang, and H. Zhu. 2017. “3D elastoplastic model for crushable soils with explicit formulation of particle crushing.” J. Eng. Mech. 143 (12): 04017140. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001361.
Lobo-Guerrero, S., and L. E. Vallejo. 2006. “Application of Weibull statistics to the tensile strength of rock aggregates.” J. Geotech. Geoenviron. Eng. 132 (6): 786–790. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:6(786).
Lobo-Guerrero, S., L. E. Vallejo, and L. F. Vesga. 2006. “Visualization of crushing evolution in granular materials under compression using DEM.” Int. J. Geomech. 6 (3): 195–200. https://doi.org/10.1061/(ASCE)1532-3641(2006)6:3(195).
Luzzani, L., and M. R. Coop. 2002. “On the relationship between particle breakage and the critical state of sands.” Soils Found. 42 (2): 71–82. https://doi.org/10.3208/sandf.42.2_71.
Lv, Y., X. Li, and Y. Wang. 2020. “Particle breakage of calcareous sand at high strain rates.” Powder Technol. 366: 776–787. https://doi.org/10.1016/j.powtec.2020.02.062.
Mao, W., H. Hamaguchi, and J. Koseki. 2020. “Discrimination of particle breakage below pile tip after model pile penetration in sand using image analysis.” Int. J. Geomech. 20 (1): 04019142. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001535.
Mao, W., Y. Yang, W. Lin, S. Aoyama, and I. Towhata. 2018. “High frequency acoustic emissions observed during model pile penetration in sand and implications for particle breakage behavior.” Int. J. Geomech. 18 (11): 04018143. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001287.
Marsal, R. J. 1967. “Large scale testing of rockfill materials.” J. Soil Mech. Found. Div. 93 (2): 27–43. https://doi.org/10.1061/JSFEAQ.0000958.
McDowell, G. R. 2002. “On the yielding and plastic compression of sand.” Soils Found. 42 (1): 139–145. https://doi.org/10.3208/sandf.42.139.
McDowell, G. R., and A. Amon. 2000. “The application of Weibull statistics to the fracture of soil particles.” Soils Found. 40 (5): 133–141. https://doi.org/10.3208/sandf.40.5_133.
McDowell, G. R., M. D. Bolton, and D. Robertson. 1996. “The fractal crushing of granular materials.” J. Mech. Phys. Solids 44 (12): 2079–2101. https://doi.org/10.1016/S0022-5096(96)00058-0.
Meng, M., Z. Sun, C. Wang, X. He, and Y. Xiao. 2021. “Size effect on mudstone strength during freezing-thawing cycle.” Environ. Geotech. https://doi.org/10.1680/jenge.1618.00160.
Miao, G., and D. Airey. 2013. “Breakage and ultimate states for a carbonate sand.” Géotechnique 63 (14): 1221–1229. https://doi.org/10.1680/geot.12.P.111.
Miura, N., and S. O-Hara. 1979. “Particle-crushing of a decomposed granite soil under shear stresses.” Soils Found. 19 (3): 1–14. https://doi.org/10.3208/sandf1972.19.3_1.
Miura, S., K. Yagi, and T. Asonuma. 2003. “Deformation-strength evaluation of crushable volcanic soils by laboratory and in-situ testing.” Soils Found. 43 (4): 47–57. https://doi.org/10.3208/sandf.43.4_47.
Muir Wood, D., and K. Maeda. 2008. “Changing grading of soil: Effect on critical states.” Acta Geotech. 3 (1): 3–14. https://doi.org/10.1007/s11440-007-0041-0.
Mun, W., and J. S. McCartney. 2017. “Roles of particle breakage and drainage in the isotropic compression of sand to high pressures.” J. Geotech. Geoenviron. Eng. 143 (10): 04017071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001770.
Nakata, Y., A. F. L. Hyde, M. Hyodo, and H. Murata. 1999. “A probabilistic approach to sand particle crushing in the triaxial test.” Géotechnique 49 (5): 567–583. https://doi.org/10.1680/geot.1999.49.5.567.
Nakata, Y., M. Hyodo, A. F. L. Hyde, Y. Kato, and H. Murata. 2001. “Microscopic particle crushing of sand subjected to high pressure one-dimensional compression.” Soils Found. 41 (1): 69–82. https://doi.org/10.3208/sandf.41.69.
Ning, F., J. Liu, X. Kong, and D. Zou. 2020. “Critical state and grading evolution of rockfill material under different triaxial compression tests.” Int. J. Geomech. 20 (2): 04019154. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001550.
Ovalle, C., E. Frossard, C. Dano, W. Hu, S. Maiolino, and P. Y. Hicher. 2014. “The effect of size on the strength of coarse rock aggregates and large rockfill samples through experimental data.” Acta Mech. 225: 2199–2216. https://doi.org/10.1007/s00707-014-1127-z.
Pan, J., J. Jiang, Z. Cheng, H. Xu, and Y. Zuo. 2020. “Large-scale true triaxial test on stress-strain and strength properties of rockfill.” Int. J. Geomech. 20 (1): 04019146. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001527.
Ravera, E., M. Sutman, and L. Laloui. 2020. “Load transfer method for energy piles in a group with pile-soil-slab-pile interaction.” J. Geotech. Geoenviron. Eng. 146 (6): 04020042. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002258.
Russell, A. R. 2011. “A compression line for soils with evolving particle and pore size distributions due to particle crushing.” Géotech. Lett. 1 (1): 5–9. https://doi.org/10.1680/geolett.10.00003.
Sadrai, S., J. A. Meech, D. Tromans, and F. Sassani. 2011. “Energy efficient comminution under high velocity impact fragmentation.” Miner. Eng. 24 (10): 1053–1061. https://doi.org/10.1016/j.mineng.2011.05.006.
Sadrekarimi, A., and S. M. Olson. 2010. “Particle damage observed in ring shear tests on sands.” Can. Geotech. J. 47 (5): 497–515. https://doi.org/10.1139/T09-117.
Sadrekarimi, A., and S. M. Olson. 2011. “Yield strength ratios, critical strength ratios, and brittleness of sandy soils from laboratory tests.” Can. Geotech. J. 48 (3): 493–510. https://doi.org/10.1139/T10-078.
Sevi, A., and L. Ge. 2012. “Cyclic behaviors of railroad ballast within the parallel gradation scaling framework.” J. Mater. Civ. Eng. 24 (7): 797–804. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000460.
Shahnazari, H., and R. Rezvani. 2013. “Effective parameters for the particle breakage of calcareous sands: An experimental study.” Eng. Geol. 159: 98–105. https://doi.org/10.1016/j.enggeo.2013.03.005.
Shen, C., S. Liu, L. Wang, and Y. Wang. 2019. “Micromechanical modeling of particle breakage of granular materials in the framework of thermomechanics.” Acta Geotech. 14 (4): 939–954. https://doi.org/10.1007/s11440-018-0692-z.
Sovacool, B. K., and G. Walter. 2018. “Major hydropower states, sustainable development, and energy security: Insights from a preliminary cross-comparative assessment.” Energy 142: 1074–1082. https://doi.org/10.1016/j.energy.2017.09.085.
Sun, Y., B. Indraratna, J. P. Carter, T. Marchant, and S. Nimbalkar. 2017. “Application of fractional calculus in modelling ballast deformation under cyclic loading.” Comput. Geotech. 82: 16–30. https://doi.org/10.1016/j.compgeo.2016.09.010.
Timpong, S., S. Miura, and K. Yara. 2005. “Effect of consolidation time on shear modulus of crushable volcanic soils.” Soils Found. 45 (5): 115–119. https://doi.org/10.3208/sandf.45.5_115.
Ueng, T. S., and T. J. Chen. 2000. “Energy aspects of particle breakage in drained shear of sands.” Géotechnique 50 (1): 65–72. https://doi.org/10.1680/geot.2000.50.1.65.
Varadarajan, A., K. G. Sharma, K. Venkatachalam, and A. K. Gupta. 2003. “Testing and modeling two rockfill materials.” J. Geotech. Geoenviron. Eng. 129 (3): 206–218. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:3(206).
Wafid Agung, M., K. Sassa, H. Fukuoka, and G. Wang. 2004. “Evolution of shear-zone structure in undrained ring-shear tests.” Landslides 1 (2): 101–112. https://doi.org/10.1007/s10346-004-0001-9.
Wang, G., Z. Wang, Q. Ye, and X. Wei. 2020. “Particle breakage and deformation behavior of carbonate sand under drained and undrained triaxial compression.” Int. J. Geomech. 20 (3): 04020012. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001601.
Wang, G., and J. Zha. 2020. “Particle breakage evolution during cyclic triaxial shearing of a carbonate sand.” Soil Dyn. Earthquake Eng. 138: 106326. https://doi.org/10.1016/j.soildyn.2020.106326.
Wang, J., F. Y. Liu, P. Wang, and Y. Q. Cai. 2016. “Particle size effects on coarse soil-geogrid interface response in cyclic and post-cyclic direct shear tests.” Geotext. Geomembr. 44 (6): 854–861. https://doi.org/10.1016/j.geotexmem.2016.06.011.
Wang, J., and H. Yan. 2012. “DEM analysis of energy dissipation in crushable soils.” Soils Found. 52 (4): 644–657. https://doi.org/10.1016/j.sandf.2012.07.006.
Wei, H., Z. Tao, J. He, Q. Meng, and X. Wang. 2018. “Evolution of particle breakage for calcareous sands during ring shear tests.” Int. J. Geomech. 18 (2): 04017153. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001073.
Wei, H., T. Zhao, Q. Meng, X. Wang, and B. Zhang. 2020. “Quantifying the morphology of calcareous sands by dynamic image analysis.” Int. J. Geomech. 20 (4): 04020020. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001640.
Wiloso, E. I., et al. 2019. “Life cycle assessment research and application in Indonesia.” Int. J. Life Cycle Assess. 24 (3): 386–396. https://doi.org/10.1007/s11367-018-1459-3.
Wu, Y., H. Yamamoto, J. Cui, and H. Y. Cheng. 2020. “Influence of load mode on particle crushing characteristics of silica sand at high stresses.” Int. J. Geomech. 20 (3): 04019194. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001600.
Wu, Y., H. Yamamoto, and Y. Yao. 2013. “Numerical study on bearing behavior of pile considering sand particle crushing.” Geomech. Eng. 5 (3): 241–261. https://doi.org/10.12989/gae.2013.5.3.241.
Xiao, Y., H. Chen, A. W. Stuedlein, T. M. Evans, J. Chu, L. Cheng, N. Jiang, H. Lin, H. Liu, and H. M. Aboel-Naga. 2020a. “Restraint of particle breakage by biotreatment method.” J. Geotech. Geoenviron. Eng. 146 (11): 04020123. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002384.
Xiao, Y., C. S. Desai, A. Daouadji, A. W. Stuedlein, H. Liu, and H. Abuel-Naga. 2020b. “Grain crushing in geoscience materials–Key issues on crushing response, measurement and modeling: Review and preface.” Geosci. Front. 11 (2): 363–374. https://doi.org/10.1016/j.gsf.2019.11.006.
Xiao, Y., and H. Liu. 2017. “Elastoplastic constitutive model for rockfill materials considering particle breakage.” Int. J. Geomech. 17 (1): 04016041. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000681.
Xiao, Y., H. Liu, Q. Chen, L. Long, and J. Xiang. 2017a. “Evolution of particle breakage and volumetric deformation of binary granular soils under impact load.” Granular Matter 19 (4): 71. https://doi.org/10.1007/s10035-017-0756-z.
Xiao, Y., H. Liu, Q. Chen, Q. Ma, Y. Xiang, and Y. Zheng. 2017b. “Particle breakage and deformation of carbonate sands with wide range of densities during compression loading process.” Acta Geotech. 12 (5): 1177–1184. https://doi.org/10.1007/s11440-017-0580-y.
Xiao, Y., H. Liu, P. Xiao, and J. Xiang. 2016. “Fractal crushing of carbonate sands under impact loading.” Géotech. Lett. 6 (3): 199–204. https://doi.org/10.1680/jgele.16.00056.
Xiao, Y., L. Long, T. M. Evans, H. Zhou, H. Liu, and A. W. Stuedlein. 2019a. “Effect of particle shape on stress-dilatancy responses of medium-dense sands.” J. Geotech. Geoenviron. Eng. 145 (2): 04018105. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001994.
Xiao, Y., M. Meng, A. Daouadjie, Q. Chen, Z. Wu, and X. Jiang. 2020c. “Effects of particle size on crushing and deformation behaviors of rockfill materials.” Geosci. Front. 11 (2): 375–388. https://doi.org/10.1016/j.gsf.2018.10.010.
Xiao, Y., Z. Sun, C. S. Desai, and M. Meng. 2019b. “Strength and surviving probability in grain crushing under acidic erosion and compression.” Int. J. Geomech. 19 (11): 04019123. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001508.
Xiao, Y., Z. Sun, A. M. Stuedlein, C. Wang, Z. Wu, and Z. Zhang. 2020d. “Bounding surface plasticity model for stress-strain and grain-crushing behaviors of rockfill materials.” Geosci. Front. 11 (2): 495–510. https://doi.org/10.1016/j.gsf.2019.06.010.
Xiao, Y., Z. Yuan, J. Chu, H. Liu, J. Huang, S. N. Luo, S. Wang, and J. Lin. 2019c. “Particle breakage and energy dissipation of carbonate sands under quasi-static and dynamic compression.” Acta Geotech. 14 (6): 1741–1755. https://doi.org/10.1007/s11440-019-00790-1.
Xiao, Y., Z. Yuan, C. S. Desai, M. Zaman, Q. Ma, Q. Chen, and H. Liu. 2020e. “Effects of load duration and stress level on deformation and particle breakage of carbonate sands.” Int. J. Geomech. 20 (7): 06020014. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001731.
Xiao, Y., Z. Yuan, Y. Lv, and L. Wang. 2018. “Fractal crushing of carbonate and quartz sands along the specimen height under impact loading.” Constr. Build. Mater. 182: 188–199. https://doi.org/10.1016/j.conbuildmat.2018.06.112.
Xu, B., D. Zou, X. Kong, Y. Zhou, and X. Liu. 2017. “Concrete slab dynamic damage analysis of CFRD based on concrete nonuniformity.” Int. J. Geomech. 17 (9): 04017055. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000939.
Xu, D.-s., M. Huang, and Y. Zhou. 2020. “One-dimensional compression behavior of calcareous sand and marine clay mixtures.” Int. J. Geomech. 20 (9): 04020137. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001763.
Yamamuro, J. A., P. A. Bopp, and P. V. Lade. 1996. “One-dimensional compression of sands at high pressures.” J. Geotech. Eng. 122 (2): 147–154. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:2(147).
Yang, Z. X., R. J. Jardine, B. T. Zhu, P. Foray, and C. H. C. Tsuha. 2010. “Sand grain crushing and interface shearing during displacement pile installation in sand.” Géotechnique 60 (6): 469–482. https://doi.org/10.1680/geot.2010.60.6.469.
Yu, F. 2017. “Particle breakage and the drained shear behavior of sands.” Int. J. Geomech. 17 (8): 04017041. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000919.
Yu, F. 2019. “Influence of particle breakage on behavior of coral sands in triaxial tests.” Int. J. Geomech. 19 (12): 04019131. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001524.
Yu, J., C. Shen, S. Liu, and Y. P. Cheng. 2020. “Exploration of the survival probability and shape evolution of crushable particles during one-dimensional compression using dyed gypsum particles.” J. Geotech. Geoenviron. Eng. 146 (11): 04020121. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002371.
Yu, Q., J. Liu, U. D. Patil, and A. J. Puppala. 2018. “New approach for predicting particle breakage of granular material using the grey system theory.” J. Mater. Civ. Eng. 30 (9): 04018210. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002395.
Zhang, C., G. D. Nguyen, and I. Einav. 2013. “The end-bearing capacity of piles penetrating into crushable soils.” Géotechnique 63 (5): 341–354. https://doi.org/10.1680/geot.11.P.117.
Zhang, J., M. Li, Z. Liu, and N. Zhou. 2017. “Fractal characteristics of crushed particles of coal gangue under compaction.” Powder Technol. 305: 12–18. https://doi.org/10.1016/j.powtec.2016.09.049.
Zhang, J., and M. Luo. 2020. “Dilatancy and critical state of calcareous sand incorporating particle breakage.” Int. J. Geomech. 20 (4): 04020030. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001637.
Zhang, X., and B. A. Baudet. 2013. “Particle breakage in gap-graded soil.” Géotech. Lett. 3 (2): 72–77. https://doi.org/10.1680/geolett.13.00022.
Zhang, Y., and G. Buscarnera. 2015. “Prediction of breakage-induced couplings in unsaturated granular soils.” Géotechnique 65 (2): 135–140. https://doi.org/10.1680/geot.14.P.086.
Zhang, Y., G. Buscarnera, and I. Einav. 2016. “Grain size dependence of yielding in granular soils interpreted using fracture mechanics, breakage mechanics and Weibull statistics.” Géotechnique 66 (2): 149–160. https://doi.org/10.1680/jgeot.15.P.119.
Zhao, B., J. Wang, E. Andò, G. Viggiani, and M. Coop. 2020. “Investigation of particle breakage under one-dimensional compression of sand using X-ray microtomography.” Can. Geotech. J. 57 (5): 754–762. https://doi.org/10.1139/cgj-2018-0548.
Zheng, W., and D. Tannant. 2016. “Frac sand crushing characteristics and morphology changes under high compressive stress and implications for sand pack permeability.” Can. Geotech. J. 53 (9): 1412–1423. https://doi.org/10.1139/cgj-2016-0045.
Zhou, M., and E. Song. 2016. “A random virtual crack DEM model for creep behavior of rockfill based on the subcritical crack propagation theory.” Acta Geotech. 11 (4): 827–847. https://doi.org/10.1007/s11440-016-0446-8.
Zhou, X., G. Ma, and Y. Zhang. 2019. “Grain size and time effect on the deformation of rockfill dams: A case study on the Shuibuya CFRD.” Géotechnique 69 (7): 606–619. https://doi.org/10.1680/jgeot.17.P.299.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 21Issue 8August 2021

History

Received: Jan 13, 2021
Accepted: Mar 5, 2021
Published online: May 21, 2021
Published in print: Aug 1, 2021
Discussion open until: Oct 21, 2021

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Professor, Key Laboratory of New Technology for Construction of Cities in Mountain Area, State Key Laboratory of Coal Mine Disaster Dynamics and Control, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China (corresponding author). ORCID: https://orcid.org/0000-0002-9411-4660. Email: [email protected]
Chenggui Wang [email protected]
Ph.D. Candidate, Key Laboratory of New Technology for Construction of Cities in Mountain Area, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Assistant Professor, Key Laboratory of New Technology for Construction of Cities in Mountain Area, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Chandrakant S. Desai, Dist.M.ASCE [email protected]
Regents Professor Emeritus, Dept. of Civil and Architectural Engineering and Mechanics, Univ. of Arizona, Tucson, AZ 85721. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • A New Index for Estimating the Improved Depth of Dynamic Compaction, International Journal of Geomechanics, 10.1061/IJGNAI.GMENG-8705, 24, 3, (2024).
  • Breakage-Dependent Fractional Plasticity Model for Sands, International Journal of Geomechanics, 10.1061/IJGNAI.GMENG-8140, 23, 3, (2023).
  • State-dependent behavior of weathered sands incorporating progressive particle breakage in drained triaxial tests, Acta Geotechnica, 10.1007/s11440-023-01822-7, (2023).
  • Recent progress on crushing-strength-energy dissipation of coarse granular soil and biocementation at contacts, SCIENTIA SINICA Technologica, 10.1360/SST-2021-0387, 52, 7, (999-1021), (2022).
  • Experiment and discrete element modeling of particle breakage in coral sand under triaxial compression conditions, Marine Georesources & Geotechnology, 10.1080/1064119X.2021.2019356, 41, 2, (142-151), (2022).
  • Breakage and Morphology of Sands in Drained Shearing, International Journal of Geomechanics, 10.1061/(ASCE)GM.1943-5622.0002522, 22, 9, (2022).
  • Fracturing and Ultimate State of Binary Carbonate Sands, International Journal of Geomechanics, 10.1061/(ASCE)GM.1943-5622.0002450, 22, 7, (2022).
  • Cumulative deformations and particle breakage in calcareous sand subjected to drained high-cyclic loading: Experimental investigation, Soil Dynamics and Earthquake Engineering, 10.1016/j.soildyn.2022.107417, 161, (107417), (2022).
  • A breakage matrix methodology to predict particle size evolution of calcareous sands, Powder Technology, 10.1016/j.powtec.2022.117626, 407, (117626), (2022).
  • Effects of particle size on the particle breakage of calcareous sands under impact loadings, Construction and Building Materials, 10.1016/j.conbuildmat.2022.127809, 341, (127809), (2022).
  • See more

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share