Open access
Technical Papers
Aug 30, 2024

Calibration of Frequency-Dependent Wave Speed and Attenuation in Water Pipes Using a Dual-Sensor and Paired-IRF Approach

Publication: Journal of Water Resources Planning and Management
Volume 150, Issue 11

Abstract

The propagation of pressure waves in water pipes is frequency dependent, which leads to these waves experiencing a frequency-dependent wave speed and attenuation, resulting in wave dissipation and dispersion. The effect is much more significant and complex in plastic pipes than in metal pipes, which makes most wave-based pipe condition assessment techniques ineffective for plastic pipes. In this paper, a new technique is developed to calibrate the frequency-dependent wave speed and attenuation for pressurized water pipes. Persistent hydraulic waves induced by a side-discharge valve are used as excitation. Pressure responses are measured using two pressure sensors, and a paired-impulse response function (paired-IRF) is determined through a deconvolution process. The transfer function between the two sensors is determined using the main spike in the paired-IRF trace, which contains the information on the wave propagation characteristics. The frequency-dependent wave speed and attenuation are then derived from the transfer function. The proposed new technique is validated by both numerical simulations and laboratory experiments. Three pipe configurations are considered in the experiments: (1) a high-density polyethylene (HDPE) pipe in the air; (2) an HDPE pipe buried in sand; and (3) a copper pipe in the air. The frequency-dependent wave speed and attenuation are calibrated for all three configurations and the results are distinctive from each other.

Formats available

You can view the full content in the following formats:

Data Availability Statement

Some of the experimental data and numerical code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The research presented in the paper has been supported by the Australian Research Council through the Linkage Project scheme (LP180100569).

References

Abdel-Gawad, H. A., and B. Djebedjian. 2020. “Modeling water hammer in viscoelastic pipes using the wave characteristic method.” Appl. Math. Modell. 83 (Jul): 322–341. https://doi.org/10.1016/j.apm.2020.01.045.
Ayati, A. H., and A. Haghighi. 2023. “Multiobjective wrapper sampling design for leak detection of pipe networks based on machine learning and transient methods.” J. Water Resour. Plann. Manage. 149 (2): 04022076. https://doi.org/10.1061/JWRMD5.WRENG-5620.
Bergant, A., A. S. Tijsseling, J. P. Vítkovský, D. I. Covas, A. R. Simpson, and M. F. Lambert. 2008. “Parameters affecting water-hammer wave attenuation, shape and timing—Part 2: Case studies.” J. Hydraul. Res. 46 (3): 382–391. https://doi.org/10.3826/jhr.2008.2847.
Brennan, M. J., Y. Gao, and P. F. Joseph. 2007. “On the relationship between time and frequency domain methods in time delay estimation for leak detection in water distribution pipes.” J. Sound Vib. 304 (1–2): 213–223. https://doi.org/10.1016/j.jsv.2007.02.023.
Brunone, B. 1999. “Transient test-based technique for leak detection in outfall pipes.” J. Water Resour. Plann. Manage. 125 (5): 302–306. https://doi.org/10.1061/(ASCE)0733-9496(1999)125:5(302).
Chaudhry, M. H. 2014. Applied hydraulic transients. 3rd ed. New York: Springer.
Che, T.-C., H.-F. Duan, and P. J. Lee. 2021. “Transient wave-based methods for anomaly detection in fluid pipes: A review.” Mech. Syst. Signal Process. 160 (Nov): 107874. https://doi.org/10.1016/j.ymssp.2021.107874.
Covas, D., and H. Ramos. 2010. “Case studies of leak detection and location in water pipe systems by inverse transient analysis.” J. Water Resour. Plann. Manage. 136 (2): 248–257. https://doi.org/10.1061/(ASCE)0733-9496(2010)136:2(248).
Covas, D., I. Stoianov, J. F. Mano, H. Ramos, N. Graham, and C. Maksimovic. 2005. “The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part II—Model development, calibration and verification.” J. Hydraul. Res. 43 (1): 56–70. https://doi.org/10.1080/00221680509500111.
Covas, D., I. Stoianov, H. Ramos, N. Graham, and C. Maksimovic. 2004. “The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part I—Experimental analysis and creep characterization.” J. Hydraul. Res. 42 (5): 516–530. https://doi.org/10.1080/00221686.2004.9641221.
Duan, H. 2016. “Sensitivity analysis of a transient-based frequency domain method for extended blockage detection in water pipeline systems.” J. Water Resour. Plann. Manage. 142 (4): 04015073. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000625.
Duan, H.-F., M. Ghidaoui, P. J. Lee, and Y.-K. Tung. 2010. “Unsteady friction and visco-elasticity in pipe fluid transients.” J. Hydraul. Res. 48 (3): 354–362. https://doi.org/10.1080/00221681003726247.
Evangelista, S., A. Leopardi, R. Pignatelli, and G. de Marinis. 2015. “Hydraulic transients in viscoelastic branched pipelines.” J. Hydraul. Eng. 141 (8): 04015016. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001030.
Fox, G., Jr., and D. Stepnewski. 1974. “Pressure wave transmission in a fluid contained in a plastically deforming pipe.” J. Pressure Vessel Technol. 96 (4): 258–262. https://doi.org/10.1115/1.3454178.
Gally, M., M. Guney, and E. Rieutord. 1979. “An investigation of pressure transients in viscoelastic pipes.” J. Fluids Eng. 101 (4): 495–499. https://doi.org/10.1115/1.3449017.
Gao, Y., M. Brennan, P. F. Joseph, J. M. Muggleton, and O. Hunaidi. 2005. “On the selection of acoustic/vibration sensors for leak detection in plastic water pipes.” J. Sound Vib. 283 (3–5): 927–941. https://doi.org/10.1016/j.jsv.2004.05.004.
Gao, Y., Y. Liu, and J. M. Muggleton. 2017. “Axisymmetric fluid-dominated wave in fluid-filled plastic pipes: Loading effects of surrounding elastic medium.” Appl. Acoust. 116 (Jan): 43–49. https://doi.org/10.1016/j.apacoust.2016.09.016.
Gong, J., M. Lambert, A. Zecchin, A. Simpson, N. Arbon, and Y.-I. Kim. 2016a. “Field study on non-invasive and non-destructive condition assessment for asbestos cement pipelines by time-domain fluid transient analysis.” Struct. Health Monit. 15 (1): 113–124. https://doi.org/10.1177/1475921715624505.
Gong, J., G. M. Png, J. W. Arkwright, A. W. Papageorgiou, P. R. Cook, M. F. Lambert, A. R. Simpson, and A. C. Zecchin. 2018. “In-pipe fibre optic pressure sensor array for hydraulic transient measurement with application to leak detection.” Measurement 126 (Oct): 309–317. https://doi.org/10.1016/j.measurement.2018.05.072.
Gong, J., M. L. Stephens, N. S. Arbon, A. C. Zecchin, M. F. Lambert, and A. R. Simpson. 2015. “On-site non-invasive condition assessment for cement mortar–lined metallic pipelines by time-domain fluid transient analysis.” Struct. Health Monit. 14 (5): 426–438. https://doi.org/10.1177/1475921715591875.
Gong, J., A. C. Zecchin, M. F. Lambert, and A. R. Simpson. 2016b. “Determination of the creep function of viscoelastic pipelines using system resonant frequencies with hydraulic transient analysis.” J. Hydraul. Eng. 142 (9): 04016023. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001149.
Gong, J., A. C. Zecchin, A. R. Simpson, and M. F. Lambert. 2014. “Frequency response diagram for pipeline leak detection: Comparing the odd and even harmonics.” J. Water Resour. Plann. Manage. 140 (1): 65–74. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000298.
Hunaidi, O., and W. T. Chu. 1999. “Acoustical characteristics of leak signals in plastic water distribution pipes.” Appl. Acoust. 58 (3): 235–254. https://doi.org/10.1016/S0003-682X(99)00013-4.
Landry, C., C. Nicolet, A. Bergant, A. Müller, and F. Avellan. 2012. “Modeling of unsteady friction and viscoelastic damping in piping systems.” IOP Conf. Ser.: Earth Environ. Sci. 15 (5): 052030. https://doi.org/10.1088/1755-1315/15/5/052030.
MathWorks. 2022. MATLAB version: 9.12.0 (R2022a). Natick, MA: MathWorks Inc.
Meniconi, S., B. Brunone, M. Ferrante, and C. Massari. 2012. “Transient hydrodynamics of in-line valves in viscoelastic pressurized pipes: Long-period analysis.” Exp. Fluids 53 (Jul): 265–275. https://doi.org/10.1007/s00348-012-1287-3.
Mitosek, M., and A. Roszkowski. 1998. “Empirical study of water hammer in plastics pipes.” Plast. Rubber Compos. Process. Appl. 27 (9): 436–439.
Muggleton, J. M., M. J. Brennan, and P. W. Linford. 2004. “Axisymmetric wave propagation in fluid-filled pipes: Wavenumber measurements in in vacuo and buried pipes.” J. Sound Vib. 270 (1–2): 171–190. https://doi.org/10.1016/S0022-460X(03)00489-9.
Muggleton, J. M., M. J. Brennan, and R. J. Pinnington. 2002. “Wavenumber prediction of waves in buried pipes for water leak detection.” J. Sound Vib. 249 (5): 939–954. https://doi.org/10.1006/jsvi.2001.3881.
Muggleton, J. M., and J. Yan. 2013. “Wavenumber prediction and measurement of axisymmetric waves in buried fluid-filled pipes: Inclusion of shear coupling at a lubricated pipe/soil interface.” J. Sound Vib. 332 (5): 1216–1230. https://doi.org/10.1016/j.jsv.2012.10.024.
Nguyen, S. T. N., J. Gong, M. F. Lambert, A. C. Zecchin, and A. R. Simpson. 2018. “Least squares deconvolution for leak detection with a pseudo random binary sequence excitation.” Mech. Syst. Signal Process. 99 (Jan): 846–858. https://doi.org/10.1016/j.ymssp.2017.07.003.
Pezzinga, G., B. Brunone, D. Cannizzaro, M. Ferrante, S. Meniconi, and A. Berni. 2014. “Two-dimensional features of viscoelastic models of pipe transients.” J. Hydraul. Eng. 140 (8): 04014036. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000891.
Prek, M. 2007. “Analysis of wave propagation in fluid-filled viscoelastic pipes.” Mech. Syst. Signal Process. 21 (4): 1907–1916. https://doi.org/10.1016/j.ymssp.2006.07.013.
Soares, A. K., D. I. Covas, and L. F. Reis. 2008. “Analysis of PVC pipe-wall viscoelasticity during water hammer.” J. Hydraul. Eng. 134 (9): 1389–1394. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:9(1389).
Stephens, M., J. Gong, C. Zhang, A. Marchi, L. Dix, and M. F. Lambert. 2020. “Leak-before-break main failure prevention for water distribution pipes using acoustic smart water technologies: Case study in Adelaide.” J. Water Resour. Plann. Manage. 146 (10): 05020020. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001266.
Stephens, M. L., M. F. Lambert, A. R. Simpson, and J. P. Vitkovsky. 2011. “Calibrating the water-hammer response of a field pipe network by using a mechanical damping model.” J. Hydraul. Eng. 137 (10): 1225–1237. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000413.
Suo, L., and E. B. Wylie. 1989. “Impulse response method for frequency-dependent pipeline transients.” J. Fluids Eng. 111 (4): 478–483. https://doi.org/10.1115/1.3243671.
Suo, L., and E. B. Wylie. 1990. “Complex wavespeed and hydraulic transients in viscoelastic pipes.” J. Fluids Eng. 112 (4): 496–500. https://doi.org/10.1115/1.2909434.
Tijsseling, A. S., M. F. Lambert, A. R. Simpson, M. L. Stephens, J. P. Vítkovský, and A. Bergant. 2006. “Wave front dispersion due to fluid-structure interaction in long liquid-filled pipelines.” In Proc., 23rd IAHR Symp. on Hydraulic Machinery and Systems. Madrid, Spain: International Association for Hydro-Environment Engineering and Research.
Wang, X., J. Lin, and M. S. Ghidaoui. 2020. “Usage and effect of multiple transient tests for pipeline leak detection.” J. Water Resour. Plann. Manage. 146 (11): 06020011. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001284.
Wylie, E. B., and V. L. Streeter. 1993. Fluid transients in systems. Englewood Cliffs, NJ: Prentice Hall.
Zecchin, A. C., N. Do, J. Gong, M. Leonard, M. F. Lambert, and M. L. Stephens. 2022. “Optimal pipe network sensor layout design for hydraulic transient event detection and localization.” J. Water Resour. Plann. Manage. 148 (8): 04022041. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001536.
Zeng, W., J. Gong, A. R. Simpson, B. S. Cazzolato, A. C. Zecchin, and M. F. Lambert. 2020a. “Paired-IRF method for detecting leaks in pipe networks.” J. Water Resour. Plann. Manage. 146 (5): 04020021. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001193.
Zeng, W., J. Gong, A. C. Zecchin, M. F. Lambert, A. R. Simpson, and B. S. Cazzolato. 2018. “Condition assessment of water pipelines using a modified layer-peeling method.” J. Hydraul. Eng. 144 (12): 04018076. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001547.
Zeng, W., A. C. Zecchin, J. Gong, M. F. Lambert, A. R. Simpson, and B. S. Cazzolato. 2020b. “Inverse wave reflectometry method for hydraulic transient-based pipeline condition assessment.” J. Hydraul. Eng. 146 (8): 04020056. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001785.

Information & Authors

Information

Published In

Go to Journal of Water Resources Planning and Management
Journal of Water Resources Planning and Management
Volume 150Issue 11November 2024

History

Received: Aug 29, 2023
Accepted: Jun 17, 2024
Published online: Aug 30, 2024
Published in print: Nov 1, 2024
Discussion open until: Jan 30, 2025

Authors

Affiliations

Ji-Sung Lee [email protected]
Ph.D. Candidate, School of Engineering, Deakin Univ., Geelong Waurn Ponds Campus, Waurn Ponds, VIC 3216, Australia. Email: [email protected]
ARC DECRA Fellow, School of Architecture and Civil Engineering, Univ. of Adelaide, Adelaide, SA 5005, Australia. Email: [email protected]
Martin F. Lambert, A.M.ASCE [email protected]
Professor, School of Architecture and Civil Engineering, Univ. of Adelaide, Adelaide, SA 5005, Australia. Email: [email protected]
Senior Lecturer, School of Engineering, Deakin Univ., Geelong Waurn Ponds Campus, Waurn Ponds, VIC 3216, Australia (corresponding author). ORCID: https://orcid.org/0000-0002-6344-5993. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share