Technical Papers
Feb 28, 2023

Approach for Near-Real-Time Pipe Burst Detection and Location Estimation Utilizing Any Sequence of Harmonics of the Transient Pressure Signal

Publication: Journal of Water Resources Planning and Management
Volume 149, Issue 5

Abstract

The purpose of the paper is to present an approach for real-time pipe burst detection and location estimation, based on the changes in the harmonics and analysis of the corresponding damping that is caused by the burst. The amplitude of each resonance response of the transient pressure wave caused by the burst is damped differently due to the occurrence of the burst. However, utilizing higher order harmonics beyond the first few fundamental frequencies has not previously been possible as it leads to an increasing number of possible solutions to the burst location, which limits the application of the method. An algorithm for damping analysis has been developed which overcomes this limitation, and is able to exclude most of the incorrect solutions when utilizing the information contained in higher order harmonics. Additionally, the gap between data windows can be set so that it enables the real-time data analysis by letting the window gap equal the reciprocal of the sampling rate. Therefore, this algorithm makes utilizing any sequence of harmonics of the signal be possible for real-time burst detection and location estimation. The approach has been verified both numerically and experimentally with acceptable accuracy.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all of the data generated or used during the study are available from the corresponding author by request. The available data includes the data from the numerical studies and the experimental study presented in the paper.

Acknowledgments

The first author thanks the University of Adelaide for providing an academic scholarship to support this research.

References

Anderson, D. A., and C. J. Anderson. 1986. “Weather coverage in dailies.” Journalism Q. 63 (2): 382–385. https://doi.org/10.1177/107769908606300225.
Brunone, B. 1999. “Transient test-based technique for leak detection in outfall pipes.” J. Water Resour. Plann. Manage. 125 (5): 302–306. https://doi.org/10.1061/(ASCE)0733-9496(1999)125:5(302).
Brunone, B., and M. Ferrante. 2001. “Detecting leaks in pressurised pipes by means of transients.” J. Hydraul. Res. 39 (5): 539–547. https://doi.org/10.1080/00221686.2001.9628278.
Brunone, B., M. Ferrante, and S. Meniconi. 2008. “Portable pressure wave-maker for leak detection and pipe system characterization.” J. Am. Water Works Assn. 100 (4): 108–116. https://doi.org/10.1002/j.1551-8833.2008.tb09607.x.
Brunone, B., S. Meniconi, and C. Capponi. 2018. “Numerical analysis of the transient pressure damping in a single polymeric pipe with a leak.” Urban Water J. 15 (8): 760–768. https://doi.org/10.1080/1573062X.2018.1547772.
Capponi, C., S. Meniconi, P. J. Lee, B. Brunone, and M. Cifrodelli. 2020. “Time-domain analysis of laboratory experiments on the transient pressure damping in a leaky polymeric pipe.” Water Resour. Manage. 34 (2): 501–514. https://doi.org/10.1007/s11269-019-02454-x.
Cataldo, A., E. De Benedetto, G. Cannazza, G. Leucci, L. De Giorgi, and C. Demitri. 2017. “Enhancement of leak detection in pipelines through time-domain reflectometry/ground penetrating radar measurements.” IET Sci. Meas. Technol. 11 (6): 696–702. https://doi.org/10.1049/iet-smt.2016.0310.
Cataldo, A., R. Persico, G. Leucci, E. De Benedetto, G. Cannazza, L. Matera, and L. De Giorgi. 2014. “Time domain reflectometry, ground penetrating radar and electrical resistivity tomography: A comparative analysis of alternative approaches for leak detection in underground pipes.” NDT & E Int. 62 (Mar): 14–28. https://doi.org/10.1016/j.ndteint.2013.10.007.
Colombo, A. F., P. Lee, and B. W. Karney. 2009. “A selective literature review of transient-based leak detection methods.” J. Hydro-environ. Res. 2 (4): 212–227. https://doi.org/10.1016/j.jher.2009.02.003.
Covas, D., H. Ramos, and A. B. De Almeida. 2005. “Standing wave difference method for leak detection in pipeline systems.” J. Hydraul. Eng. 131 (12): 1106–1116. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:12(1106).
Du, X.-X., M. F. Lambert, L. Chen, E. Jing Hu, and W. Xi. 2020. “Pipe burst detection, localization, and quantification using the transient pressure damping method.” J. Hydraul. Eng. 146 (11): 04020077. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001810.
Du, X.-X., W. Zeng, M. F. Lambert, L. Chen, and E. Jing Hu. 2021. “Approach for near-real-time pipe burst detection, localization, and quantification with low data transmission and sampling rates.” J. Water Resour. Plann. Manage. 147 (7): 04021032. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001380.
Duan, H.-F., M. Ghidaoui, P. J. Lee, and Y.-K. Tung. 2010a. “Unsteady friction and visco-elasticity in pipe fluid transients.” J. Hydraul. Res. 48 (3): 354–362. https://doi.org/10.1080/00221681003726247.
Duan, H.-F., P. J. Lee, M. S. Ghidaoui, and Y.-K. Tung. 2010b. “Essential system response information for transient-based leak detection methods.” J. Hydraul. Res. 48 (5): 650–657. https://doi.org/10.1080/00221686.2010.507014.
Duan, H.-F., P. J. Lee, M. S. Ghidaoui, and Y.-K. Tung. 2011. “Leak detection in complex series pipelines by using the system frequency response method.” J. Hydraul. Res. 49 (2): 213–221. https://doi.org/10.1080/00221686.2011.553486.
Duan, H.-F., P. J. Lee, M. S. Ghidaoui, and Y.-K. Tung. 2012. “Extended blockage detection in pipelines by using the system frequency response analysis.” J. Water Resour. Plann. Manage. 138 (1): 55–62. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000145.
Ferrante, M., and B. Brunone. 2003. “Pipe system diagnosis and leak detection by unsteady-state tests. 1. Harmonic analysis.” Adv. Water Resour. 26 (1): 95–105. https://doi.org/10.1016/S0309-1708(02)00101-X.
Ferrante, M., B. Brunone, S. Meniconi, B. W. Karney, and C. Massari. 2014. “Leak size, detectability and test conditions in pressurized pipe systems.” Water Resour. Manage. 28 (13): 4583–4598. https://doi.org/10.1007/s11269-014-0752-6.
Fuchs, H., and R. Riehle. 1991. “Ten years of experience with leak detection by acoustic signal analysis.” Appl. Acoust. 33 (1): 1–19. https://doi.org/10.1016/0003-682X(91)90062-J.
Gao, Y., M. J. Brennan, P. F. Joseph, J. M. Muggleton, and O. Hunaidi. 2004. “A model of the correlation function of leak noise in buried plastic pipes.” J. Sound Vib. 277 (1–2): 133–148. https://doi.org/10.1016/j.jsv.2003.08.045.
Gao, Y., M. J. Brennan, Y. Liu, F. C. Almeida, and P. F. Joseph. 2017. “Improving the shape of the cross-correlation function for leak detection in a plastic water distribution pipe using acoustic signals.” Appl. Acoust. 127 (Dec): 24–33. https://doi.org/10.1016/j.apacoust.2017.05.033.
Gong, J., M. F. Lambert, A. R. Simpson, and A. C. Zecchin. 2013. “Single-event leak detection in pipeline using first three resonant responses.” J. Hydraul. Eng. 139 (6): 645–655. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000720.
Gong, J., M. F. Lambert, A. C. Zecchin, and A. R. Simpson. 2016a. “Experimental verification of pipeline frequency response extraction and leak detection using the inverse repeat signal.” J. Hydraul. Res. 54 (2): 210–219. https://doi.org/10.1080/00221686.2015.1116115.
Gong, J., A. C. Zecchin, M. F. Lambert, and A. R. Simpson. 2016b. “Determination of the creep function of viscoelastic pipelines using system resonant frequencies with hydraulic transient analysis.” J. Hydraul. Eng. 142 (9): 04016023. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001149.
Guo, X.-L., K.-L. Yang, F.-T. Li, and T. Wang. 2012. “Analysis of first transient pressure oscillation for leak detection in a single pipeline.” J. Hydrodyn. 24 (3): 363–370. https://doi.org/10.1016/S1001-6058(11)60256-4.
Hovey, D. J., and E. J. Farmer. 1993. “Pipeline accident, failure probability determined from historical data.” Oil Gas J. 91 (28): 104–107.
Jönsson, L., and M. Larson. 1992. “Leak detection through hydraulic transient analysis.” In Pipeline systems, 273–286. Dordrecht, Netherlands: Springer.
Juliano, T. M., J. N. Meegoda, and D. J. Watts. 2013. “Acoustic emission leak detection on a metal pipeline buried in sandy soil.” J. Pipeline Syst. Eng. Pract. 4 (3): 149–155. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000134.
Keramat, A., A. Tijsseling, Q. Hou, and A. Ahmadi. 2012. “Fluid–structure interaction with pipe-wall viscoelasticity during water hammer.” J. Fluids Struct. 28 (Jan): 434–455. https://doi.org/10.1016/j.jfluidstructs.2011.11.001.
Kjerrumgaard Jensen, R., J. Kær Larsen, K. Lindgren Lassen, M. Mandø, and A. Andreasen. 2018. “Implementation and validation of a free open source 1D water hammer code.” Fluids 3 (3): 64. https://doi.org/10.3390/fluids3030064.
Lazhar, A., L. Hadj-Taïeb, and E. Hadj-Taïeb. 2013. “Two leaks detection in viscoelastic pipeline systems by means of transient.” J. Loss Prev. Process Ind. 26 (6): 1341–1351. https://doi.org/10.1016/j.jlp.2013.08.007.
Lee, P., M. Lambert, A. Simpson, J. Vítkovsky, and D. Misiunas. 2007. “Leak location in single pipelines using transient reflections.” Australas. J. Water Resour. 11 (1): 53–65. https://doi.org/10.1080/13241583.2007.11465311.
Lee, P. J., M. F. Lambert, A. R. Simpson, J. P. Vítkovskỳ, and J. Liggett. 2006. “Experimental verification of the frequency response method for pipeline leak detection.” J. Hydraul. Res. 44 (5): 693–707. https://doi.org/10.1080/00221686.2006.9521718.
Lee, P. J., J. P. Vítkovskỳ, M. F. Lambert, A. R. Simpson, and J. A. Liggett. 2005. “Frequency domain analysis for detecting pipeline leaks.” J. Hydraul. Eng. 131 (7): 596–604. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:7(596).
Liggett, J. A., and L.-C. Chen. 1994. “Inverse transient analysis in pipe networks.” J. Hydraul. Eng. 120 (8): 934–955. https://doi.org/10.1061/(ASCE)0733-9429(1994)120:8(934).
Louati, M., M. S. Ghidaoui, M. M. Tekitek, and P. Jose Lee. 2020. “Wave-leak interaction in a simple pipe system.” J. Hydraul. Eng. 146 (4): 04020013. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001714.
McInnis, D., and B. W. Karney. 1995. “Transients in distribution networks: Field tests and demand models.” J. Hydraul. Eng. 121 (3): 218–231. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:3(218).
Meniconi, S., C. Capponi, M. Frisinghelli, and B. Brunone. 2021. “Leak detection in a real transmission main through transient tests: Deeds and misdeeds.” Water Resour. Res. 57 (3): e2020WR027838. https://doi.org/10.1029/2020WR027838.
Misiunas, D., J. Vítkovskỳ, G. Olsson, A. Simpson, and M. Lambert. 2005. “Pipeline break detection using pressure transient monitoring.” J. Water Resour. Plann. Manage. 131 (4): 316–325. https://doi.org/10.1061/(ASCE)0733-9496(2005)131:4(316).
Mpesha, W., S. L. Gassman, and M. H. Chaudhry. 2001. “Leak detection in pipes by frequency response method.” J. Hydraul. Eng. 127 (2): 134–147. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:2(134).
Nixon, W., M. Ghidaoui, and A. Kolyshkin. 2006. “Range of validity of the transient damping leakage detection method.” J. Hydraul. Eng. 132 (9): 944–957. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:9(944).
Nixon, W., and M. S. Ghidaoui. 2007. “Numerical sensitivity study of unsteady friction in simple systems with external flows.” J. Hydraul. Eng. 133 (7): 736–749. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:7(736).
Pudar, R. S., and J. A. Liggett. 1992. “Leaks in pipe networks.” J. Hydraul. Eng. 118 (7): 1031–1046. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:7(1031).
Ramos, H., D. Covas, A. Borga, and D. Loureiro. 2004. “Surge damping analysis in pipe systems: Modelling and experiments.” J. Hydraul. Res. 42 (4): 413–425. https://doi.org/10.1080/00221686.2004.9728407.
Silva, R. A., C. M. Buiatti, S. L. Cruz, and J. A. Pereira. 1996. “Pressure wave behaviour and leak detection in pipelines.” Comput. Chem. Eng. 20 (Jan): S491–S496. https://doi.org/10.1016/0098-1354(96)00091-9.
Soares, A. K., D. I. Covas, and L. F. Reis. 2008. “Analysis of PVC pipe-wall viscoelasticity during water hammer.” J. Hydraul. Eng. 134 (9): 1389–1394. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:9(1389).
Srirangarajan, S., M. Allen, A. Preis, M. Iqbal, H. B. Lim, and A. J. Whittle. 2013. “Wavelet-based burst event detection and localization in water distribution systems.” J. Signal Process. Syst. 72 (1): 1–16. https://doi.org/10.1007/s11265-012-0690-6.
Stephens, M., J. Gong, A. Marchi, L. Dix, A. Wilson, and M. Lambert. 2018. “Leak detection in the adelaide CBD water network using permanent acoustic monitoring.” In Proc., OzWater 18 Conf. Canberra, ACT, Australia: Australian Water Partnership.
Stephens, M., J. Gong, C. Zhang, A. Marchi, L. Dix, and M. F. Lambert. 2020. “Leak-before-break main failure prevention for water distribution pipes using acoustic smart water technologies: Case study in Adelaide.” J. Water Resour. Plann. Manage. 146 (10): 05020020. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001266.
Sun, Q., Z. Zhang, Y. Wu, Y. Xu, and H. Liang. 2022. “Numerical analysis of transient pressure damping in viscoelastic pipes at different water temperatures.” Materials (Basel) 15 (14): 4904. https://doi.org/10.3390/ma15144904.
Tafuri, A. N. 2000. “Locating leaks with acoustic technology.” J. Am. Water Works Assn. 92 (7): 57–66. https://doi.org/10.1002/j.1551-8833.2000.tb08973.x.
Vardy, A., and J. Brown. 2004. “Transient turbulent friction in fully rough pipe flows.” J. Sound Vib. 270 (1–2): 233–257. https://doi.org/10.1016/S0022-460X(03)00492-9.
Wang, X., and M. S. Ghidaoui. 2018. “Pipeline leak detection using the matched-field processing method.” J. Hydraul. Eng. 144 (6): 04018030. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001476.
Wang, X.-J., M. F. Lambert, A. R. Simpson, J. A. Liggett, and J. P. Vítkovskỳ. 2002. “Leak detection in pipelines using the damping of fluid transients.” J. Hydraul. Eng. 128 (7): 697–711. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:7(697).
Ziegel, E. 1987. Numerical recipes: The art of scientific computing. Cambridge, UK: Cambridge University Press.

Information & Authors

Information

Published In

Go to Journal of Water Resources Planning and Management
Journal of Water Resources Planning and Management
Volume 149Issue 5May 2023

History

Received: Jul 29, 2022
Accepted: Jan 5, 2023
Published online: Feb 28, 2023
Published in print: May 1, 2023
Discussion open until: Jul 28, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Xiao-xuan Du [email protected]
Research Fellow, Dept. of Civil and Environmental Engineering, Univ. of Adelaide, Adelaide, SA 5005, Australia. Email: [email protected]
Professor, Dept. of Civil and Environmental Engineering, Univ. of Adelaide, Adelaide, SA 5005, Australia (corresponding author). ORCID: https://orcid.org/0000-0001-8272-6697. Email: [email protected]
Senior Lecturer, Dept. of Mechanical Engineering, Univ. of Adelaide, Adelaide, SA 5005, Australia. Email: [email protected]
Associate Professor, Dept. of Mechanical Engineering, Univ. of Adelaide, Adelaide, SA 5005, Australia. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share