Abstract

This study uses a water-food-energy nexus model, which connects water-based productive activities and allocation policies, to simulate water resources management strategies for adapting the Maule Basin in Chile to climate change impacts. Two strategies are considered: introducing linear hedging rules to a reservoir and establishing adaptative water rights linked to irrigation efficiency of crops in the area. The simulations are run over 14 different climatic scenarios that project different water availability conditions. A multiobjective optimization of environmental, agricultural, and energy outcome indicators is conducted to generate noninferior portfolios that combine the strategies proposed. Simulation results, though limited to a deterministic approach and pessimistic climate scenarios, show that 79 out of the 84 combinations of objective-scenarios increase their performance because of the strategies, with notable increases in agricultural resilience (64%), outflow (92%), and total benefits (26%). We find considerable trade-offs between the food/energy production and water outflow, alongside agricultural vulnerability and resilience.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code generated or used during the study are available in a repository online in accordance with funder data retention policies. A public repository has been created via Github, containing all the data at https://github.com/VJander/Maule-Basin.

Reproducible Results

The authors have made all data, models, code, and directions findable and accessible in an online public repository.

Acknowledgments

We thank the help of J. Tomlinson, who provided guidance and supported the coding of additional features required for this work in Pywr. Also, we would like to recognize the ARClim project, which produced the downscaled climate scenarios and results used in this study. Finally, we would like to thank I. Ricalde and M. Canales for advisory on Pywr, repositories, and multiobjective optimization modeling.

References

Ahmadianfar, I., and R. Zamani. 2020. “Assessment of the hedging policy on reservoir operation for future drought conditions under climate change.” Clim. Change 159 (2): 253–268. https://doi.org/10.1007/s10584-020-02672-y.
Arriagada, P., B. Dieppois, M. Sidibe, and O. Link. 2019. “Impacts of climate change and climate variability on hydropower potential in data-scarce regions subjected to multi-decadal variability.” Energies 12 (14): 3–5. https://doi.org/10.3390/en12142747.
Brekke, L. D., E. P. Maurer, J. D. Anderson, M. D. Dettinger, E. S. Townsley, A. Harrison, and T. Pruitt. 2009. “Assessing reservoir operations risk under climate change.” Water Resour. Res. 45 (4): 3–5. https://doi.org/10.1029/2008WR006941.
Brooks, D. B. 2006. “An operational definition of water demand management.” Int. J. Water Resour. Dev. 22 (4): 521–528. https://doi.org/10.1080/07900620600779699.
Burt, C. M., A. J. Clemmens, T. S. Strelkoff, K. H. Solomon, R. D. Bliesner, L. A. Hardy, T. A. Howell, and D. E. Eisenhauer. 1997. “Irrigation performance measures: Efficiency and uniformity.” J. Irrig. Drain. Eng. 123 (6): 423–442. https://doi.org/10.1061/(ASCE)0733-9437(1997)123:6(423).
Cai, X., K. Wallington, M. Shafiee-Jood, and L. Marston. 2018. “Understanding and managing the food-energy-water nexus–opportunities for water resources research.” Adv. Water Resour. 111 (Jan): 259–273. https://doi.org/10.1016/j.advwatres.2017.11.014.
Chadwick, C., J. Gironás, S. Vicuña, F. Meza, and J. McPhee. 2018. “Using a statistical preanalysis approach as an ensemble technique for the unbiased mapping of GCM changes to local stations.” J. Hydrometeorol. 19 (9): 1447–1465. https://doi.org/10.1175/JHM-D-17-0198.1.
Clemmens, A. J., and C. M. Burt. 1997. “Accuracy of irrigation efficiency estimates.” J. Irrig. Drain. Eng. 123 (6): 443–453. https://doi.org/10.1061/(ASCE)0733-9437(1997)123:6(443).
CR2 (Center for Climate and Resilience Science). 2019. Simulaciones climáticas regionales para el territorio insular Chileno. Santiago, Chile: Ministerio del Medio Ambiente.
de Estudios, O., P. Agrarias, P. Larrañaga, and M. A. Osores. 2019. Catastro frutícola: Principales resultados. región del maule/julio 2019. Santiago, Chile: Oficina de Estudios y Políticas Agrarias.
DGA (Dirección General de Aguas). 1983. Resolución dirección general de Aguas 105/83: Derecho de aprovechamiento no consuntivo en el río maule. Santiago, Chile: DGA.
Draper, A. J., and J. R. Lund. 2004. “Optimal hedging and carryover storage value.” J. Water Resour. Plann. Manage. 130 (1): 83–87. https://doi.org/10.1061/(ASCE)0733-9496(2004)130:1(83).
Elsayed, H., S. Djordjević, D. A. Savić, I. Tsoukalas, and C. Makropoulos. 2020. “The Nile water-food-energy nexus under uncertainty: Impacts of the grand Ethiopian renaissance dam.” J. Water Resour. Plann. Manage. 146 (11): 04020085. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001285.
ENDESA (Empresa Nacional De Electricidad S. A.). 1947. Convenio ENDESA-direccion de Riego del MOP para el uso compartido de los recursos del embalse laguna del maule. Santiago, Chile: ENDESA.
FAO (Food and Agriculture Organization of the United Nations). 2014. The water-energy-food nexus: A new approach in support of food security and sustainable agriculture. Rome: FAO.
Gondhalekar, D., and T. Ramsauer. 2017. “Nexus city: Operationalizing the urban water-energy-food nexus for climate change adaptation in Munich, Germany.” Urban Clim. 19 (Jan): 28–40. https://doi.org/10.1016/j.uclim.2016.11.004.
Habibi Davijani, M., M. E. Banihabib, A. Nadjafzadeh Anvar, and S. R. Hashemi. 2016. “Multi-objective optimization model for the allocation of water resources in arid regions based on the maximization of socioeconomic efficiency.” Water Resour. Manage. 30 (Feb): 927–946. https://doi.org/10.1007/s11269-015-1200-y.
Hashimoto, T., J. R. Stedinger, and D. P. Loucks. 1982. “Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation.” Water Resour. Res. 18 (1): 14–20. https://doi.org/10.1029/WR018i001p00014.
Hatamkhani, A., and A. Moridi. 2019. “Multi-objective optimization of hydropower and agricultural development at river basin scale.” Water Resour. Manage. 33 (Oct): 4431–4450. https://doi.org/10.1007/s11269-019-02365-x.
INE (National Institute of Statistics). 2007a. Agricultural census. Santiago, Chile: INE.
INE (National Institute of Statistics). 2007b. Cambios estructurales en la agricultura chilena: Análisis intercensal 1976-1997-2007. Santiago, Chile: INE.
IPCC (Intergovernmental Panel on Climate Change). 2018. An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Geneva: IPCC.
Jevons, W. S. 1866. The coal question; an inquiry concerning the progress of the nation and the probable exhaustion of our coal-mines. London: Macmillan.
Kundzewicz, Z. W., V. Krysanova, R. E. Benestad, Ø. Hov, M. Piniewski, and I. M. Otto. 2018. “Uncertainty in climate change impacts on water resources.” Environ. Sci. Policy 79 (Jan): 1–8. https://doi.org/10.1016/j.envsci.2017.10.008.
Lorca, A., E. Saumda, and T. Tapia. 2020. “Informe proyecto arclim: Sistema eléctrico.” In Atlas de Riesgo climático para Chile, 156–165. Santiago, Chile: Deutsche Gesellschaft für Internationale Zusammenarbeit.
Malekmohammadi, B., B. Zahraie, and R. Kerachian. 2011. “Ranking solutions of multi-objective reservoir operation optimization models using multi-criteria decision analysis.” Expert Syst. Appl. 38 (6): 7851–7863. https://doi.org/10.1016/j.eswa.2010.12.119.
Masui, T., K. Matsumoto, Y. Hijioka, T. Kinoshita, T. Nozawa, S. Ishiwatari, E. Kato, P. R. Shukla, Y. Yamagata, and M. Kainuma. 2011. “An emission pathway for stabilization at 6  Wm2 radiative forcing.” Clim. Change 109 (Nov): 59–76. https://doi.org/10.1007/s10584-011-0150-5.
McPhee, J., E. Rubio-Alvarez, R. Meza, A. Ayala, X. Vargas, and S. Vicuna. 2010. “An approach to estimating hydropower impacts of climate change from a regional perspective.” In Proc., Watershed Management 2010: Innovations in Watershed Management under Land Use and Climate Change, 13–24. Reston, VA: ASCE.
Men, B., Z. Wu, Y. Li, and H. Liu. 2019. “Reservoir operation policy based on joint hedging rules.” Water 11 (3): 419. https://doi.org/10.3390/w11030419.
MIDESO (Ministerio de Desarrollo Social). 2016. Methodology for formulation and evaluation of irrigation projects. Santiago, Chile: Ministerio de Desarrollo Social y Familia.
Ministerio de Energía. 2016. Estudio de cuencas. Análisis de las condicionantes para el desarrollo hidroeléctrico en las cuencas del maule, biobío, toltén, valdivia, bueno, puelo, yelcho, palena, cisnes, aysén, baker y pascua. Santiago, Chile: Gobierno de Chile.
Ministerio de Energía. 2019. Long term energy planning. Santiago, Chile: Ministerio de Energía.
Molinos-Senante, M., G. Donoso, R. Sala, and A. Villegas. 2018. “Benchmarking the efficiency of the Chilean water and sewerage companies: A double-bootstrap approach.” Environ. Sci. Pollut. Res. 25 (Mar): 8432–8440. https://doi.org/10.1007/s11356-017-1149-x.
Momblanch, A., L. Papadimitriou, S. K. Jain, A. Kulkarni, C. S. P. Ojha, A. J. Adeloye, and I. P. Holman. 2019. “Untangling the water-food-energy-environment nexus for global change adaptation in a complex Himalayan water resource system.” Sci. Total Environ. 655 (Mar): 35–47. https://doi.org/10.1016/j.scitotenv.2018.11.045.
Nam, W.-H., and J.-Y. Choi. 2014. “Development of an irrigation vulnerability assessment model in agricultural reservoirs utilizing probability theory and reliability analysis.” Agric. Water Manage. 142 (Aug): 115–126. https://doi.org/10.1016/j.agwat.2014.05.009.
ODEPA (Oficina de Estudios y Políticas Agrarias). 2010. Development of a cost information system for small fruit and vegetable producers. Santiago, Chile: ODEPA.
ODEPA (Oficina de Estudios y Políticas Agrarias). 2020. “Crop cadastres.” Productive Statistics. Accessed August 20, 2021. https://www.odepa.gob.cl/estadisticas-del-sector/estadisticas-productivas.
Pica-Téllez, A., R. Garreaud, F. Meza, S. Bustos, M. Falvey, M. Ibarra, K. Duarte, R. Ormazábal, R. Dittborn, and I. Silva. 2020. Informe proyecto ARClim: Atlas de Riesgos climáticos para Chile. Santiago, Chile: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ).
Reed, P. M., D. Hadka, J. D. Herman, J. R. Kasprzyk, and J. B. Kollat. 2013. “Evolutionary multiobjective optimization in water resources: The past, present, and future.” Adv. Water Resour. 51 (Jan): 438–456. https://doi.org/10.1016/j.advwatres.2012.01.005.
Riahi, K., S. Rao, V. Krey, C. Cho, V. Chirkov, G. Fischer, G. Kindermann, N. Nakicenovic, and P. Rafaj. 2011. “RCP 8.5—A scenario of comparatively high greenhouse gas emissions.” Clim. Change 109 (Nov): 33–57. https://doi.org/10.1007/s10584-011-0149-y.
Ricalde, I., S. Vicuña, O. Melo, J. E. Tomlinson, J. J. Harou, and G. Characklis. 2022. “Assessing tradeoffs in the design of climate change adaptation strategies for water utilities in Chile.” J. Environ. Manage. 302 (Jan): 114035. https://doi.org/10.1016/j.jenvman.2021.114035.
Rubio-Álvarez, E., and J. McPhee. 2010. “Patterns of spatial and temporal variability in streamflow records in south central Chile in the period 1952–2003.” Water Resour. Res. 46 (5): 2–4. https://doi.org/10.1029/2009WR007982.
Savva, A. P., and K. Frenken. 2002. Irrigation manual: Planning, development monitoring and evaluation of irrigated agriculture with farmer participation, modules. Harare, Zimbabwe: Food and Agriculture Organization of the United Nations.
Scott, C. A., S. Vicuña, I. Blanco-Gutiérrez, F. Meza, and C. Varela-Ortega. 2014. “Irrigation efficiency and water-policy implications for river basin resilience.” Hydrol. Earth Syst. Sci. 18 (4): 1339–1348. https://doi.org/10.5194/hess-18-1339-2014.
Sears, L., J. Caparelli, C. Lee, D. Pan, G. Strandberg, L. Vuu, and C.-Y. C. Lin Lawell. 2018. “Jevons’ paradox and efficient irrigation technology.” Sustainability 10 (5): 1590. https://doi.org/10.3390/su10051590.
Smajgl, A., J. Ward, and L. Pluschke. 2016. “The water–food–energy nexus—Realising a new paradigm.” J. Hydrol. 533 (Feb): 533–540. https://doi.org/10.1016/j.jhydrol.2015.12.033.
Steduto, P., T. Hsiao, E. Fereres, and D. Raes. 2012. Respuesta del rendimiento de los cultivos al agua. Rome: Food and Agriculture Organization of the United Nations.
Tomlinson, J. E., J. H. Arnott, and J. J. Harou. 2020. “A water resource simulator in Python.” Environ. Modell. Software 126 (Apr): 104635. https://doi.org/10.1016/j.envsoft.2020.104635.
Tushar, M. H. K., and C. Assi. 2017. “Optimal energy management and marginal-cost electricity pricing in microgrid network.” IEEE Trans. Ind. Inf. 13 (6): 3286–3298. https://doi.org/10.1109/TII.2017.2712652.
Vicuña, S., E. Bustos, C. Calvo, K. Tesen, J. Gironás, and F. Suárez. 2020. “Informe proyecto arclim: Recursos hídricos.” Chap. 6.6 in Atlas de Riesgo climático para Chile, 92–102. Santiago, Chile: Deutsche Gesellschaft für Internationale Zusammenarbeit.
Vicuña, S., M. Gil, O. Melo, G. Donoso, and P. Merino. 2018. “Water option contracts for climate change adaptation in Santiago, Chile.” Water Int. 43 (2): 237–256. https://doi.org/10.1080/02508060.2017.1416444.
Vicuña, S., R. Leonardson, M. W. Hanemann, L. L. Dale, and J. A. Dracup. 2008. “Climate change impacts on high elevation hydropower generation in California’s Sierra Nevada: A case study in the Upper American River.” Supplement, Clim. Change 87 (S1): 123–137. https://doi.org/10.1007/s10584-007-9365-x.
Vicuña, S., J. McPhee, and R. D. Garreaud. 2012. “Agriculture vulnerability to climate change in a snowmelt-driven basin in semiarid Chile.” J. Water Resour. Plann. Manage. 138 (5): 431–441. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000202.
Yang, Y. C. E., C. Ringler, C. Brown, and M. A. H. Mondal. 2016. “Modeling the agricultural water–energy–food nexus in the Indus River Basin, Pakistan.” J. Water Resour. Plann. Manage. 142 (12): 04016062. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000710.
Yates, D., D. Purkey, J. Sieber, A. Huber-Lee, and H. Galbraith. 2005a. “WEAP21: A demand-, priority-, and preference-driven water planning model. Part 2: Aiding freshwater ecosystem service evaluation.” Water Int. 30 (4): 501–512. https://doi.org/10.1080/02508060508691894.
Yates, D., J. Sieber, D. Purkey, and A. Huber-Lee. 2005b. “WEAP21: A demand-, priority-, and preference-driven water planning model. Part 1: Model characteristics.” Water Int. 30 (4): 487–500. https://doi.org/10.1080/02508060508691893.
Zhang, J., Y.-C. E. Yang, H. Li, and E. Shittu. 2021. “Examining the food-energy-water-environment nexus in transboundary river basins through a human dimension lens: Columbia River Basin.” J. Water Resour. Plann. Manage. 147 (10): 05021019. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001461.

Information & Authors

Information

Published In

Go to Journal of Water Resources Planning and Management
Journal of Water Resources Planning and Management
Volume 149Issue 11November 2023

History

Received: Sep 20, 2021
Accepted: Jun 15, 2023
Published online: Aug 28, 2023
Published in print: Nov 1, 2023
Discussion open until: Jan 28, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Dept. of Hydraulics and Environmental Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820436, Chile (corresponding author). ORCID: https://orcid.org/0000-0003-0087-8545. Email: [email protected]
Sebastián Vicuña, Ph.D. [email protected]
Director, Centro de Cambio Global Universidad Católica (CCGUC), Dept. of Hydraulics and Environmental Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820436, Chile. Email: [email protected]
Associate Professor, Centro de Cambio Global Universidad Católica (CCGUC), Dept. of Agricultural Economics, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820436, Chile. ORCID: https://orcid.org/0000-0002-9136-5413. Email: [email protected]
Associate Professor, Dept. of Electrical Engineering, and Dept. of Industrial and Systems Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820436, Chile. ORCID: https://orcid.org/0000-0002-9864-0932. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Journal of Water Resources Planning and Management’s Reproducibility Review Program: Accomplishments, Lessons, and Next Steps, Journal of Water Resources Planning and Management, 10.1061/JWRMD5.WRENG-6559, 150, 8, (2024).
  • Evaluation of Multipurpose Reservoir Operating Policies at Basin and Electric Power System Scales, Journal of Water Resources Planning and Management, 10.1061/JWRMD5.WRENG-6349, 150, 7, (2024).
  • Small-Scale Irrigation: Improving Food Security under Changing Climate and Water Resource Conditions in Ethiopia, Journal of Water Resources Planning and Management, 10.1061/JWRMD5.WRENG-6190, 150, 8, (2024).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share