Technical Papers
Oct 31, 2023

Comparison of the SIMAR-WANA, ERA-5, and Waverys Databases for Maritime Climate Estimations and the Implications of Coastal Protection Structures

Publication: Journal of Waterway, Port, Coastal, and Ocean Engineering
Volume 150, Issue 1

Abstract

Estimating maritime climate accurately is essential to ensure the safety of marine structures. The most reliable data are in situ measurements, but due to the lack of this kind of data in both time and space, other datasets, from reanalyses and wave models, have to be used. In this study, data from the three main databases of the Spanish Mediterranean Sea used for the design of maritime structures (ERA5, Waverys and SIMAR-WANA) were compared with buoy data from Valencia, Alicante, and Cabo de Palos. A statistical analysis, using Python, MATLAB, and the Ameva tool, was performed on both the entire historic record (20,362,032 data) and the most extreme data distribution (95th percentile). Then, further analysis was performed to assess the consequences of using these datasets in the design of coastal protection and their reliability. Waverys performed slightly better than the in situ measurements and SIMAR-WANA underestimated the extreme values of significant wave height the least. Regarding the consequences on the design of coastal protection structures, the estimation of extreme events proved to be of particular interest, with the databases typically underestimating the values of extreme events, which was determined to have the potential to lead to errors in the design of coastal protection structures by up to 60%.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

The buoy and SIMAR-WANA datasets related to this article can be found at Prediccion de oleaje, nivel del mar; Boyas y mareografos | puertos.es, an open-source online data repository hosted at Puertos del Estado. The Waverys dataset related to this article can be found at Access to data | Copernicus, an open-source online data repository hosted by the Copernicus Programme of the European Union. The ERA5 dataset related to this article can be found at ERA5 | ECMWF, an open-source online data repository hosted by the European Centre for Medium-Range Weather Forecasts (ECMWF).

Acknowledgments

Nerea Portillo Juan received research support from the Spanish Government and was the beneficiary of an FPU scholarship. The authors wish to thank the entire Ingeniería Creativa Pita S. L. (INCREA) team for their help, and particularly Eloy Pita Olalla and Mario Sánchez-Barriga Marín.

References

Agarwal, A., V. Venugopal, and G. P. Harrison. 2013. “The assessment of extreme wave analysis methods applied to potential marine energy sites using numerical model data.” Renew. Sust. Energ. Rev. 27: 244–257. https://doi.org/10.1016/j.rser.2013.06.049.
Akpinar, A., and S. Ponce de León. 2016. “An assessment of the wind re-analyses in the modelling of an extreme sea state in the Black Sea.” Dyn. Atmos. Oceans 73: 61–75. https://doi.org/10.1016/j.dynatmoce.2015.12.002.
Alday, M., M. Accensi, F. Ardhuin, and G. Dodet. 2021. “A global wave parameter database for geophysical applications. Part 3: Improved forcing and spectral resolution.” Ocean Modell. 166: 101848. https://doi.org/10.1016/j.ocemod.2021.101848.
Alday, M., F. Ardhuin, G. Dodet, and M. Accensi. 2022. “Accuracy of numerical wave model results: Application to the Atlantic coasts of Europe.” Ocean Sci. 18 (6): 1665–1689. https://doi.org/10.5194/os-18-1665-2022.
Allsop, N. W. H., and S. S. L. Hettiarachchi. 1989. Wave reflections in harbours; the design, construction and performance of wave absorbing structures. Wallingford, CT: Hydraulics Research.
Aouf, L., A. Dalphinet, D. Hauser, L. Delaye, C. Tison, B. Chapron, L. Hermozo, and C. Tourain. 2019. “On the assimilation of CFOSAT wave data in the wave model MFWAM: Verification phase.” In Proc., IGARSS 2019—2019 IEEE Int. Geoscience and Remote Sensing Symp. Yokohama, Japan: IEEE Geoscience and Remote Sensing Society.
Appendini, C. M., A. Torres-Freyermuth, F. Oropeza, P. Salles, J. López, and E. T. Mendoza. 2013. “Wave modeling performance in the Gulf of Mexico and Western Caribbean: Wind reanalyses assessment.” Appl. Ocean Res. 39: 20–30. https://doi.org/10.1016/j.apor.2012.09.004.
Ardhuin, F., L. Bertotti, J.-R. Bidlot, L. Cavaleri, V. Filipetto, J.-M. Lefevre, and P. Wittmann. 2007. “Comparison of wind and wave measurements and models in the Western Mediterranean Sea.” Ocean Eng. 34 (3–4): 526–541. https://doi.org/10.1016/j.oceaneng.2006.02.008.
Aydogan, B., and B. Ayat. 2021. “Performance evaluation of SWAN ST6 physics forced by ERA5 wind fields for wave prediction in an enclosed basin.” Ocean Eng. 240: 109936. https://doi.org/10.1016/j.oceaneng.2021.109936.
Battjes, J. A. 1974. “Surf similarity.” Coastal Eng. Proc. 1 (14): 26. https://doi.org/10.9753/icce.v14.26.
Bengtsson, L., et al. 2017. “The HARMONIE–AROME model configuration in the ALADIN–HIRLAM NWP system.” Mon. Weather Rev. 145 (5): 1919–1935. https://doi.org/10.1175/mwr-d-16-0417.1.
Bhatt, V., A. Sarkar, R. Kumar, S. Basu, and V. K. Agarwal. 2004. “Impact of Oceansat-I MSMR data on analyzed oceanic winds and wave predictions.” Ocean Eng. 31 (17–18): 2283–2294. https://doi.org/10.1016/j.oceaneng.2004.03.011.
Bjorkqvist, J.-V., O. Vaha-Piikkio, V. Alari, A. Kuznetsova, and L. Tuomi. 2020. “WAM, SWAN and WAVEWATCH III in the Finnish archipelago––The effect of spectral performance on bulk wave parameters.” J. Oper. Oceanogr. 13 (1): 55–70. https://doi.org/10.1080/1755876x.2019.1633236.
Booij, N., R. C. Ris, and L. H. Holthuijsen. 1999. “A third-generation wave model for coastal regions 1. Model description and validation.” J. Geophys. Res.: Oceans 104 (C4): 7649–7666. https://doi.org/10.1029/98JC02622.
Bossing Christensen, O., M. Drews, J. Hesselbjerg Christensen, K. Dethof, K. Ketelsen, I. Hebestadt, and A. Rinke. 2007. The HIRHAM regional climate model. Version 5 (beta). Copenhagen, Denmark. Danish Meteorological Institute.
Boudière, E., C. Maisondieu, F. Ardhuin, M. Accensi, L. Pineau-Guillou, and J. Lepesqueur. 2013. “A suitable Metocean Hindcast database for the design of marine energy converters.” Int. J. Mar. Energy 3–4: e40–e52. https://doi.org/10.1016/j.ijome.2013.11.010.
Bromwich, D. H., and S.-H. Wang. 2008. “A review of the temporal and spatial variability of Arctic and Antarctic atmospheric circulation based upon ERA-40.” Dyn. Atmos. Oceans 44 (3): 213–243. https://doi.org/10.1016/j.dynatmoce.2007.09.001.
Campos, R. M., and C. Guedes Soares. 2016. “Comparison of HIPOCAS and ERA wind and wave reanalyses in the North Atlantic Ocean.” Ocean Eng. 112: 320–334. https://doi.org/10.1016/j.oceaneng.2015.12.028.
Catterson, V. M., D. McMillan, I. Dinwoodie, M. Revie, J. Dowell, J. Quigley, and K. Wilson. 2016. “An economic impact metric for evaluating wave height forecasters for offshore wind maintenance access.” Wind Energy 19 (2): 199–212. https://doi.org/10.1002/we.1826.
Cavaleri, L., and L. Bertotti. 2004. “Accuracy of the modelled wind and wave fields in enclosed seas.” Tellus A: Dyn. Meteorol. Oceanogr. 56 (2): 167–175. https://doi.org/10.1111/j.1600-0870.2004.00042.x.
Ciardini, V., G. M. Contessa, R. Falsaperla, J. L. Gómez-Amo, D. Meloni, F. Monteleone, G. Pace, S. Piacentino, D. Sferlazzo, and A. di Sarra. 2016. “Global and Mediterranean climate change: A short summary.” Ann. Ist. Super. Sanita 52 (3): 325–337. https://doi.org/10.4415/ann_16_03_04.
CMEMS (Copernicus Marine Environment Monitoring Service). 2021. Global ocean waves reanalysis WAVERYS. Toulouse, France: CMEMS.
Copernicus. 2023. “Wave reanalysis dataset.” Accessed January 29, 2023. https://www.copernicus.eu/en/access-data.
ECMWF (European Centre for Medium-Range Weather Forecasts). 2018. “ECMWF model documentation.” Accessed September 13, 2022. https://confluence.ecmwf.int/display/CKB/ECMWF+Model+Documentation.
Eldeberky, Y., A. Metwally, K. Rakha, and L. Cavaleri. 2002. “Wave hindcast in the Eastern Mediterranean Sea.” In Proc., 21st Int. Conf. on Offshore Mechanics and Arctic Engineering. Colombo, Sri Lanka: PIANC.
Elkut, A. E., M. T. Taha, A. B. E. Abu Zed, F. M. Eid, and M. A. Abdallah. 2021. “Wind-wave hindcast using modified ECMWF ERA-Interim wind field in the Mediterranean Sea.” Estuar. Coast. Shelf Sci. 252: 107267. https://doi.org/10.1016/j.ecss.2021.107267.
Estado, P. d. 2020. “Conjunto de datos SIMAR-WANA.” Accessed January 29, 2023. https://bancodatos.puertos.es/BD/informes/INT_8.pdf.
Hersbach, H., et al. 2020. “The ERA5 global reanalysis.” Q. J. R. Meteorolog. Soc. 146 (730): 1999–2049. https://doi.org/10.1002/qj.3803.
Hopstad, A. L. H., K. Argyriadis, A. Manjock, J. Goldsmith, and K. O. Ronold. 2018. “DNV GL standard for floating wind turbines.” In Proc., 1st Int. Offshore Wind Technical Conf. New York: ASME.
Hudson, R. Y. 1953. Stability of rubble-mound breakwaters. Vicksburg, MS: Waterways Experiment Station, CERC.
Hunter, J. D. 2003. “Matlab (Version 2021b).” Accessed February 1, 2023. https://login.mathworks.com/embedded-login/landing.html?cid=getmatlab&s_tid=gn_getml.
IHC (IH Cantabria). 2013. “Análisis Matemático y Estadístico de Variables medioambientales (version v.1.3.2).” Accessed January 27, 2023. https://ihcantabria.com/software-y-servicios-tic/software/.
Iribarren, R. 1938. Una fórmula para el cálculo de los diques de escollera. Pasajes, Spain: M. Bermejillo Usabiaga.
Jean-Michel, L., et al. 2021. “The Copernicus global 1/12° oceanic and sea ice GLORYS12 reanalysis.” Front. Earth Sci. 9: 698876. https://doi.org/10.3389/feart.2021.698876.
Law-Chune, S., L. Aouf, A. Dalphinet, B. Levier, Y. Drillet, and M. Drévillon. 2021. “WAVERYS: A CMEMS global wave reanalysis during the altimetry period.” Ocean Dyn. 71: 357–378. https://doi.org/10.1007/s10236-020-01433-w.
Losada, M. A., and L. A. Giménez-Curto. 1982. “Mound breakwaters under oblique wave attack; a working hypothesis.” Coastal Eng. 6 (1): 83–92. https://doi.org/10.1016/0378-3839(82)90017-5.
Marechal, G., and F. Ardhuin. 2021. “Surface currents and significant wave height gradients: Matching numerical models and high-resolution altimeter wave heights in the Agulhas Current region.” J. Geophys. Res.: Oceans 126 (2): e2020JC016564. https://doi.org/10.1029/2020JC016564.
Morcrette, J.-J., H. W. Barker, J. N. S. Cole, M. J. Iacono, and R. Pincus. 2008. “Impact of a new radiation package, McRad, in the ECMWF integrated forecasting system.” Mon. Weather Rev. 136: 4773–4798. https://doi.org/10.1175/2008MWR2363.1.
Ponce de León, S., and C. Guedes Soares. 2008. “Sensitivity of wave model predictions to wind fields in the Western Mediterranean Sea.” Coastal Eng. 55 (11): 920–929. https://doi.org/10.1016/j.coastaleng.2008.02.023.
Ponce de León, S., and C. Guedes Soares. 2015. “Hindcast of the Hércules winter storm in the North Atlantic.” Nat. Hazard. 78 (3): 1883–1897. https://doi.org/10.1007/s11069-015-1806-7.
Portillo Juan, N., J. Olalde Rodríguez, V. Negro Valdecantos, and G. Iglesias. 2023. “Data-driven and physics-based approach for wave downscaling: A comparative study.” Ocean Eng. 285: 115380. https://doi.org/10.1016/j.oceaneng.2023.115380.
Puertos del Estado. 2023. “Informes anuales Oceanografía Puertos del Estado.” Accessed January 20, 2023. https://www.puertos.es/es-es.
Puertos del Estado. 2020. “Ministerio de Transportes, Movilidad y Agenda Urbana.” Accessed January 20, 2023. Conjunto de Datos SIMAR. https://bancodatos.puertos.es/BD/informes/INT_8.pdf.
Puertos del Estado. n.d. “Oceanografía.” Registros históricos de oleaje. https://www.puertos.es/es-es/oceanografia/Paginas/portus.aspx.
Rossum, G. V. 1989. “Python (Version 3.10).” Accessed January 15, 2023. https://www.python.org/downloads/windows/.
Samuelsson, P., C. G. Jones, U. Willén, A. Ullerstig, S. Gollvik, U. Hansson, C. Jansson, E. Kjellström, G. Nikulin, and K. Wyser. 2011. “The Rossby centre regional climate model RCA3: Model description and performance.” Tellus A: Dyn. Meteorol. Oceanogr. 63 (1): 4–23. https://doi.org/10.1111/j.1600-0870.2010.00478.x/.
Sebastiao, P., C. Guedes Soares, and N. Booij. 2000. “Wave hindcasting off the coast of Portugal.” Coastal Eng. 40 (4): 411–425. https://doi.org/10.1016/s0378-3839(00)00021-1.
Sharmar, V. D., M. Y. Markina, and S. K. Gulev. 2021. “Global ocean wind-wave model hindcasts forced by different reanalyzes [sic.]: A comparative assessment.” J. Geophys. Res.: Oceans 126 (1): e2020JC016710. https://doi.org/10.1029/2020JC016710.
Stephens, S. A., and R. M. Gorman. 2006. “Extreme wave predictions around New Zealand from hindcast data.” N. Z. J. Mar. Freshwater Res. 40 (3): 399–411. https://doi.org/10.1080/00288330.2006.9517431.
Stopa, J. E., and K. F. Cheung. 2014. “Intercomparison of wind and wave data from the ECMWF Reanalysis Interim and the NCEP Climate Forecast System Reanalysis.” Ocean Modell. 75: 65–83. https://doi.org/10.1016/j.ocemod.2013.12.006.
Umesh, P. A., and J. Swain. 2018. “Inter-comparisons of SWAN hindcasts using boundary conditions from WAM and WWIII for northwest and northeast coasts of India.” Ocean Eng. 156: 523–549. https://doi.org/10.1016/j.oceaneng.2018.03.029.
Van der Meer, J. W. 1988. “Rock slopes and gravel beaches under wave attack.” Ph.D. thesis, Dept. of Civil Engineering and Geosciences, Delft Hydraulics Laboratory.

Information & Authors

Information

Published In

Go to Journal of Waterway, Port, Coastal, and Ocean Engineering
Journal of Waterway, Port, Coastal, and Ocean Engineering
Volume 150Issue 1January 2024

History

Received: Mar 29, 2023
Accepted: Sep 26, 2023
Published online: Oct 31, 2023
Published in print: Jan 1, 2024
Discussion open until: Mar 31, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Univ. Politécnica de Madrid, Campus Ciudad Universitaria, Calle del Profesor Aranguren 3, 28040 Madrid, Spain (corresponding author). ORCID: https://orcid.org/0000-0003-4060-1575. Email: [email protected]
Univ. Politécnica de Madrid, Campus Ciudad Universitaria, Calle del Profesor Aranguren 3, 28040 Madrid, Spain. ORCID: https://orcid.org/0000-0002-9429-3830. Email: [email protected]
Vicente Negro Valdecantos [email protected]
Univ. Politécnica de Madrid, Campus Ciudad Universitaria, Calle del Profesor Aranguren 3, 28040 Madrid, Spain. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share